
1

1

Structure-based Configuration

What is "configuration"?

• Assembling a (technical) system from individual parameterisable
objects to a configuration that fulfills a certain task (or purpose)

• "Configuration" means:
- the process of combining and
- the result of the process, i.e. a list of components
- the field in AI, which deals with knowledge-based configuration

What is "structure-based configuration"?

• Configuration based on a declarative representation of the
compositional structure of configurable systems

Examples: Structure-based configuration of industrial machinery, cars,
aircraft cabins, chemical structures, software

2

History of Structure-based
Configuration Systems

• Success of rule-based configuration with XCON (1982 - 1988)

• AI funding of German government offered for "Technische
Expertensysteme für Konstruktion TEX-K" (1984).

• Development of the configuration system shell PLAKON (1986 - 1990)
in a joint project with partners Batelle (Frankfurt), Philips (Hamburg),
Siemens (Erlangen), URW (Hamburg) and Hamburg University.

• Development of the configuration system shell KONWERK with
application-specific modules in a joint project led by Hamburg
University (1991 - 1995).

• Development of the commercial configuration tool EngCon based on
KONWERK (1996 - 1998).

2

3

Main Components of
Structure-based Configuration

• Domain objects (components, aggregates)
Conceptual descriptions of technical components

• Configuration model
Conceptual description of permissable configurations

• Concrete configuration task
Description of customer wishes

• Configuration strategies
Control strategies, e.g. top-down, least-commitment

4

Application Example Cabin-layout

Placement of cabin equipment in view of customer wishes, technical
constraints, legal constraints and optimality criteria

Domain objects: seats, kitchens, toilets, etc.
Configuration model: possible kinds of domain objects and ways to

place them into a cabin
Configuration task: > 200 seats economy, as little leg room as legally

possible, 50 seats business, 2 toilets, etc.
Configuration strategy: focus business seats, interactive

3

5

Representation of a
Configuration Model

possible solutionconfiguration

config-A

comp-1 comp-2 comp-3 comp-4 comp-5

config-B config-C

comp-2A comp-2B comp-4A comp-4B

comp-6A comp-6B

comp-6 comp-7

part-of relation:

is-a relation:

• boxes (frames) specify
aggregate and
component properties

• has-part relations bind
components to
aggregates

• is-a relations describe
variants of entities

• constraints between
entities (not shown)
restrict choices and
parameter combinations

6

Object Description Language
In a configuration model, an "object" describes possible choices for
a configuration component (primitive or aggregate) by means of a
conceptual expression.
In the following, we present the concept language BHIPS
("Begriffshierarchie-Beschreibungssprache") developed for the
configuration system frameworks PLAKON and KONWERK.

Example:

(ist! (ein Auto)
(ein Konstruktionsobjekt

(Geschwindigkeit [0km/h 300km/h])
(Farbe {rot grün blau schwarz})
(Hersteller (eine Autofirma)
(Has-Parts (:set (ein Motor)

(eine Karosserie)
(ein Fahrgestell)))))

4

7

Concept for ´Galley´ of an Airbus A340

def-concept
 :name galley
 :super-concept {cabin-interior-component rectangle}

:parameters
 ref-nr [integer 2531000 2533999]
 door {1 2 4}

 trolleys {0 2 3 4 5 6 7 8 9 10}
 half-size-trolleys {0 1 2 3 4 5}

meals [integer 28 140]
 type {longitudinal transversal}

height {full half} (default 'full)
:relations

part-of [passenger-class]

8

Concept Expressions in BHIBS

Concept expression for objects in a configuration model:

(ist! (ein <concept name>)
(ein <concept expression1>)
. . .
(ein <concept expressionK>)

Concept expressions:
(ein <concept parent name>

<object descriptor1>
. . .
<object descriptorN>)

Compare to frame languages!

5

9

Object Descriptors (1)

Specific values: (colour red)
(weight 35t)

Value sets: (colour {red, green, blue})

Ranges: (speed [0kmh 300kmh])

Predicates: (number-of-wheels (:satisfies evenp))

Logical operators: (:and [4 12] (:satisfies evenp))

10

Object Descriptors (2)

Complex sets:
(:set :some [(ein <concept0>) m0 n0] :>

:some [(ein <concept1>) m1 n1]
. . .
:some [(ein <conceptk>) mk nk])

Between m0 and n0 elements of concept0, consisting (among others)
of m1 to n1 elements of concept1, ... , mk to nk elements of conceptk.

Similarly: (:set :some [(ein <concept0>) m0 n0] :=
:some [(ein <concept1>) m1 n1]
. . .
:some [(ein <conceptk>) mk nk])

Example: (:set :some [(ein Autoteil>) 3 3] :=
:some [(ein Motor) 1 1]
:some [(ein Fahrgestell) 1 1]
:some [(eine Karosserie) 1 1])

6

11

Parts of Aggregates

(ist! (ein Auto)
(ein Konstruktionsobjekt

(Has-Parts (:set (ein Motor)
(eine Karosserie)
(ein Fahrgestell)))))

Together with thespecialization hierarchy, the specification of parts is
important for guiding the configuration process.

Aggregates and parts constitute a
compositional hierarchy with a
top node denoting all possible
configurations.

configuration

config-A

comp-1 comp-2 comp-3 comp-4 comp-5

config-B config-C

comp-2A comp-2B comp-4A comp-4B

comp-6A comp-6B

comp-6 comp-7

part-of relation:

is-a relation:

12

Task Specification
A concrete configuration task is specified in terms of instances of concepts
and relations of the configuration model which are interpreted as desired
parts of the solution.

An instance of the top node of the compositional hierarchy ("configuration")
is always part of a task description.

configuration

config-A

comp-1 comp-2 comp-3 comp-4 comp-5

config-B config-C

comp-2A comp-2B comp-4A comp-4B

comp-6A comp-6B

comp-6 comp-7

part-of relation:

is-a relation:

sports car

tires with max. speed 300 kmh

body colour red

instance-of

instance-of

instance-of

task
specification

configuration
instance-of

7

13

Configuration Steps

configuration

config-A

comp-1 comp-2 comp-3 comp-4 comp-5

config-B config-C

comp-2A comp-2B comp-4A comp-4B

comp-6A comp-6B

comp-6 comp-7

part-of relation:

is-a relation:

constraints

Kinds of configuration steps during
the configuration process:
• instance specialization
• aggregate expansion
• aggregate instantiation
• parameterization
• instance merging

At any time, constraint propagation
may be initiated to narrow down
choices or detect conflicts.

Configuration steps must be able to
create all configurations permitted by
the configuration model.

14

Configuration Cycle

Repeat
Check for goal completion
Determine current strategy
Determine possible configuration steps

Select from agenda and execute one of
{ instance specialisation,
aggregate expansion,
aggregate instantiation,
parametrization,
instance merging }

Propagate constraints
Check for conflict

Goal completion:
Specific values are selected for all choices for instances selected from
the configuration model.

8

15

Constraints

Concept expressions involve only unary predicates and parts
specifications for a single aggregate.

N-ary predicates between parameters of arbitrary aggregates can be
expressed by constraints.

Constraints are part of the configuration model and subject to constraint
propagation during the configuration process.

Constraints are defined as conceptual constraints. Constraint instances are
generated during the configuration process and integrated into a constraint
net.

16

Conceptual Constraints

Examples:

The displacement of a cylinder is the squared diameter times the height
of stroke times π/4.
(constrain ((#?Z (ein Zylinder)

(Square (#?Z Durchmesser) ?Q)
(Multiply ?Q π/4 ?P)
(Multiply ?P (#? Hubhöhe) (#? Hubraum))

The displacement of a motor is the sum of the displacement values of
all cylinders which are constrained to be equal.
(constrain ((#?M (ein Motor) (#?Z :all (ein Zylinder (part-of #?M))))

(All-Equal (#?Z Hubraum))
(Sum (#?M Hubraum) (#?Z Hubraum)))

Constraint propagation is multi-directional in general!

9

17

Constraint Net

Aktuelle
Teilkonstruktion

Zylinder-1
Part-Of
Hubraum
Hubhöhe
Durchmesser

Motor-7
400ccm

8cm
8cm

Zylinder-4

Part-Of
Hubraum

Motor-7
400ccm

Motor-7
Has-Parts
Hubraum
......

(:set Zylinder-1 ...)
[1200ccm 1500ccm]

1 / 4 · π

∑

=

50qcm

1600ccm

400ccm 400ccm

CONSTRAINT-NETZ

X X

X

A constraint net is created when concepts of the configuration model
are instantiated during the configuration process.

Constraint Net
Partial
configuration

18

Local Propagation (1)

ADDER
A + B = C

ADDER
A + B = C

AA
{0 1 2}

BB
{1 2 3}

CC
{3 4 5}

EQUAL
A = B

EQUAL
A = B

Constraints are evaluated locally
to determine path consistency

1. Check ADDER

ADDER
A + B = C

ADDER
A + B = C

AA
{0 1 2}

BB
{1 2 3}

CC
{3 4 5}

EQUAL
A = B

EQUAL
A = B

0 3 3
1 2 3
1 3 4
2 1 3
2 2 4
2 3 5

10

19

Local Propagation (2)

ADDER
A + B = C

ADDER
A + B = C

AA
{0 1 2}

BB
{1 2 3}

CC
{3 4 5}

EQUAL
A = B

EQUAL
A = B

Constraints are evaluated locally
to determine path consistency

1. Check ADDER

ADDER
A + B = C

ADDER
A + B = C

AA
{0 1 2}

BB
{1 2 3}

CC
{3 4 5}

EQUAL
A = B

EQUAL
A = B

0 3 3
1 2 3
1 3 4
2 1 3
2 2 4
2 3 5

2. Check EQUAL

1 1
2 2

20

Local Propagation (3)

ADDER
A + B = C

ADDER
A + B = C

AA
{0 1 2}

BB
{1 2 3}

CC
{3 4 5}

EQUAL
A = B

EQUAL
A = B

Constraints are evaluated locally
to determine path consistency

1. Check ADDER

ADDER
A + B = C

ADDER
A + B = C

AA
{0 1 2}

BB
{1 2 3}

CC
{3 4 5}

EQUAL
A = B

EQUAL
A = B

0 3 3
1 2 3
1 3 4
2 1 3
2 2 4
2 3 5

2. Check EQUAL
3. Check ADDER

1 1
2 2

11

21

Propagation for Global Consistency

ADDER
A + B = C

ADDER
A + B = C

AA
{0 1 2}

BB
{1 2 3}

CC
{3 4 5}

EQUAL
A = B

EQUAL
A = B

Constraints are evaluated
dependent on each other
to determine global consistency

1. Check ADDER

ADDER
A + B = C

ADDER
A + B = C

AA
{0 1 2}

BB
{1 2 3}

CC
{3 4 5}

EQUAL
A = B

EQUAL
A = B

0 3 3
1 2 3
1 3 4
2 1 3
2 2 4
2 3 5

2. Check EQUAL
3. Check ADDER

1 1
2 2

Check global consistency

22

Control Knowledge

Each configuration cycle involves one configuration step selected from
the agenda. Control knowledge determines which step to select.

12

23

Illustration of Stepwise Configuration

Initial partial configuration inferred
from the task specification

Partial configurations

Complete configuration (solution)

24

Interactive Configuration

• Based on the configuration model and the task specification,
the user interactively constructs a configuration

• The system supports the user and checks correctness and
completeness of the solutions

• Uniquely inferable decisions are automatically made by the
system

13

25

Heuristic Configuration

• Based on the configuration model and the task specification,
the configuration system automatically makes heuristic
decisions.

• Heuristic knowledge is represented as
- rules
- default values
- computable values

26

Building the Agenda
Example:
Instantiation of ENGINE gives rise to several new agenda entries

Agenda:
...
specialize ENGINE-7
decompose ENGINE-7 slot HAS-PARTS
parametrize ENGINE-7 slot POWER

Instance ENGINE-007
is-a: Construction-Object
is-a-inv: Rallye-Engine, Racing Engine
power: [10hp 250hp]
part-of: Car
has-parts:(:set [Cylinder 2 12]

Ignition
[Turbocharger 0 1])

14

27

Selecting from the Agenda

Examples for selection criteria:
Prefer Specialization Steps
Prefer Decomposition Steps
Prefer steps concerning the ENGINE
Prefer slot POWER of ENGINE

Types of agenda selection criteria:
• Selection by Pattern
• Selection by Rating
• Selection by Sequence

28

Value Determination Methods

A decision for a concrete value is obtained by one of several value
determination methods:

• using a static or dynamic default
• querying the user
• evaluating a function
• evaluating a heuristic rule
• propagating constraints
• evaluating external simulation methods
• using a library solution

15

29

Resolution of configuration conflicts

Retracing of decisions
 Chronological Backtracking
 Dependency-based Backtracking
 Knowledge-based Backtracking
 Marking backtracking points
 Interactive Backtracking
 Backtracking with data migration

Repair
 Repair statements
 Interactive modification
 Constraint-Relaxation

30

Backtracking

Chronological
Backtracking

"Intelligent"
Backtracking

"Intelligent"
Backtracking with

data migration

16

31

Applications realized with KONWERK

• Configuring aircraft passenger cabins
• Design of liquid crystals
• Configuration and dimensioning of cardan shafts
• Selection and dimensioning of slide bearings
• Generating an optimal layout of a logistic system
• Pre-design of a space transportation system
• Configuration of hydro-geological models
• Configuration of elevators
• Applications for modelling environmental problems
• Selection and configuration of measuring devices for chemical plants
• Design of digital analogue circuits
• Configuration and dimensioning of photo-voltaic systems
• Dimensioning and parameterisation of drive systems
• Configuring driver assistance systems
• Configuring software for car engines

32

Logical interpretation

Language constructs can be mapped to logical constructs of a
description logic by using:

• Conjunction
• Negation and disjunction with atomic concepts
• Value restrictions
• Qualifying number restrictions
• Inverse roles
• Sets
• Concrete domains over R

Configuration can be interpreted as logical model construction or
abduction.

17

33

Configuration as
Logical Model Construction

Instantiate the configuration model consistent with task description.

configuration

configuration-A configuration-B

part-A1 part-A2 part-B1 part-B2

configuration model task description

configuration-001

part-B2-001

configuration-B

part-B1-001

constructed logical model
involving task description

34

Configuration as Abduction

Find "proof" for task description in terms of a derivation from the
configuration model.

configuration

configuration-A configuration-B

part-A1 part-A2 part-B1 part-B2

configuration model constructed proof by adding
hypotheses about missing
configuration components

configuration-001

part-B2-001

configuration-B

part-B1-001

18

35

Using the Structure-based Configuration
Approach for Other Problem Types

The general idea behind structure-based configuration is
• declarative representation of problems and their solutions,

not of the steps leading up to a solution
• separation of domain knowledge and control

This is possible due to a representation language which allows to define
• object classes
• ranges of property values
• possible decompositions
• constraints between arbitrary properties

Can this approach be also applied to problem types other than
configuration?

36

Problem-Solving Space for Diagnosis

Example:
battery lamp

switch

The objects of knowledge representation are components of the domain
and situations described by symptoms and their causes.

The diagnosis task is carried out by using a task specification in terms of
current symptoms for selecting fitting situations and finding out about
causes.

Compare to configuration:
Configuration is carried out by using a task specification in terms of
desired components for selecting a configuration.

What are possible causes for the lamp to be dark?

19

37

Problem-solving Space for Example (1)

Circuit
has-parts: {L, B, S, W}

Situations decribed by symptoms (S) and causes (C)
L = Lamp, B = Battery, S = Switch, W = Wires

Lamp
L-S: {on off}
L-C: {ok def}

Battery
B-C: {full empty}

Switch
S-S: {open closed}
S-C: {ok def}

Wires
B-C: {ok def}

L-ok
L-S: on
L-C: ok

L-def
L-S: off
L-C: def

B-full
B-C: full

B-empty
B-C: empty

S-ok1
S-S: open
S-C: ok

S-def1
S-S: open
S-C: def

W-ok
W-C: ok

W-def
W-C: def

S-ok2
S-S: closed
S-C: ok

S-def2
S-S: closed
S-C: def

38

Problem-solving Space for Example (2)

Circuit
has-parts: {L, B, S, W}

0-fault-circuit

All-ok1
L-S: on
L-C: ok
B-C: full
S-S: closed
S-C: ok
W-C: ok

Lamp-def
L-S: off
L-C: def
B-C: full
S-S: closed
S-C: ok
W-C: ok

Battery-empty
L-S: off
L-C: ok
B-C: empty
S-S: closed
S-C: ok
W-C: ok

Switch-def1
L-S: off
L-C: ok
B-C: full
S-S: closed
S-C: def
W-C: ok

Switch-def2
L-S: on
L-C: ok
B-C: full
S-S: open
S-C: def
W-C: ok

All-ok2
L-S: off
L-C: ok
B-C: full
S-S: open
S-C: ok
W-C: ok

1-fault-circuit 2-fault-circuit

Wires-def
L-S: off
L-C: ok
B-C: full
S-S: closed
S-C: ok
W-C: def

20

39

Concrete Diagnosis Task (1)
Observed: • lamp is off (L-S: off)

• switch is closed (S-S: closed)
• battery is full (B-S: full)

Circuit
has-parts: {L, B, S, W}

Lamp
L-S: {on off}
L-C: {ok def}

Battery
B-C: {full empty}

Switch
S-S: {open closed}
S-C: {ok def}

Wires
B-C: {ok def}

L-ok
L-S: on
L-C: ok

L-def
L-S: off
L-C: def

B-full
B-C: full

B-empty
B-C: empty

S-ok1
S-S: open
S-C: ok

S-def1
S-S: open
S-C: def

W-ok
W-C: ok

W-def
W-C: def

S-ok2
S-S: closed
S-C: ok

S-def2
S-S: closed
S-C: def

40

Concrete Diagnosis Task (2)
Observed: • lamp is off (L-S: off)

• switch is closed (S-S: closed)
• battery is full (B-S: full)

Circuit
has-parts: {L, B, S, W}

0-fault-circuit

All-ok1
L-S: on
L-C: ok
B-C: full
S-S: closed
S-C: ok
W-C: ok

Lamp-def
L-S: off
L-C: def
B-C: full
S-S: closed
S-C: ok
W-C: ok

Battery-empty
L-S: off
L-C: ok
B-C: empty
S-S: closed
S-C: ok
W-C: ok

Switch-def1
L-S: off
L-C: ok
B-C: full
S-S: closed
S-C: def
W-C: ok

Switch-def2
L-S: on
L-C: ok
B-C: full
S-S: open
S-C: def
W-C: ok

All-ok2
L-S: off
L-C: ok
B-C: full
S-S: open
S-C: ok
W-C: ok

1-fault-circuit 2-fault-circuit

Wires-def
L-S: off
L-C: ok
B-C: full
S-S: closed
S-C: ok
W-C: def

