
Probabilistic Inferences in
Compositional Hierarchies

Bernd Neumann
Cognitive System Laboratory

Hamburg University

Dagstuhl Workshop 
"Logics and Probabilities in Scene Interpretation"

24.- 29.2.2008



Introduction

We try to understand scene interpretation and to implement a generic
scene interpretation system

• Scene interpretation can be formulated as stepwise "partial model
construction" based on a compositional concept hierarchy

• Probabilities provide guidance for partial model construction

• Probabilistic inference can be efficiently realized for a
compositional hierarchy with abstraction properties

Summary
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Background

• Early work on interpretation and
natural-language description of
traffic scenes (1981-89)

• Interpreting table-laying scenes
using configuration technology
(2001-04)

• Learning man-made structures
and interpreting building facades
(2006-09)



High-level Knowledge in a
Scene Interpretation System

evidence
generated by

low-level
image analysis

requests
generated by high-
level interpretation

high-level
context

?
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Structuring High-level Knowledge

• Object-centered representations
• Compositional hierarchies with abstraction  =>  aggregates

To interface with human concepts and common knowledge,
a generic approach requires:
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Aggregate Structure in SCENIC

:name Hor-Formation
:parent Formation
:parameters Y-Difference [0 5]

Low-Left-X [0 INF]
Low-Left-Y [0 INF]
Up-Right-X [0 INF]
Up-Right-Y [0 INF]

:relations has-elements {Facade-Object [2 inf]}
element-of {Facade [1 inf]}
left-of {Physical-Object [0 inf]}
right-of {Physical-Object [0 inf]}
above {Physical-Object [0 inf]}
under {Physical-Object [0 inf]}

:contraints Y-Alignment-Constraint

Example: Concept for horizontally aligned facade objects (e.g. window array)

Y-Alignment-
Constraint on
Y-Difference
and Facade-
Object
coordinates

constraints
defined
elsewhere

"SCENIC" = Scene Interpretation by Configuration



Instantiated Aggregate

:name Hor-Formation1
:instance-of Hor-Formation
:parameters Y-Difference [0 5]

Low-Left-X [0 100]
Low-Left-Y [50 55]
Up-Right-X [200 INF]
Up-Right-Y [80 85]

:relations has-elements {Facade-Object [2 inf]
Window1 Window2}

element-of {Facade [1 inf] Facade1}
left-of {Physical-Object [2 inf]

Door1, Formation-X2}
right-of {Physical-Object [0 inf]}
above {Physical-Object [0 inf]}
under {Physical-Object [0 inf]}

:contraints Y-Alignment-Constraint

Instantiated
Y-Alignment-
Constraint on
Y-Difference
and Facade-
Object
coordinates

instantiated
constraints
defined
elsewhere



Scene Interpretation by Model Construction

An interpretation  I = [ D, ϕ, π ] of a logical language maps
-  constant symbols of the language into individuals of a real-world domain D
-  N-ary predicate symbols of the language into predicate functions over DN

A model of some clauses is an interpretation for which all clauses are true.

How to do model construction:

• Establish mapping ϕ by assigning segmentation results to constant
symbols and hypothesizing other necessary constant symbols

• Establish mapping π by assigning computational procedures to
predicate symbols

• Construct model by finding clauses which are true

Deciding whether a model exists is undecidable in FOPC!
There may be infinitely many models!



Interpretation Process
• Image analysis generates evidence
• Interpretations are stepwise instantiations of scene concepts consistent

with evidence
Scene1Scene
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Window-View
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Physical-Object
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Low-level Results



Recognized Window-Arrays



Hypothesized and Verified Additional Window



Uncertain Decisions in
Stepwise Scene Interpretation

• Evidence assignment to object views

• Choice of alternative specializations

• Choice of cardinalities in aggregate models

door

window-view

door-view

balcony-door entrance-door

balcony

balcony with
2 windows

balcony with
1 window



Evidence Assignment Problem

To which part of an aggregate should a given evidence be assigned? 

window-view door-view

evidence 1 evidence 2

?

Optimal decision would require
• postponing classification until all evidence is available
• maximization over all reasonable evidence permutations

Assignment problem not encountered in Bayesian decisions or belief
system reasoning!



Frequentist Probabilistic Model

P(A1 ... AN)

P(B)

Basic view:

An aggregate 
• is a set of correlated parts which together constitute a meaningful entity
• specifies an abstraction from the descriptions of its parts 

Example: Bounding-box abstractionB = external
aggregate
properties

A1 ... AN = internal parts properties

There exists a functional mapping  f : A1 ... AN => B

f



Probabilistic Aggregate Structure

external representation
in terms of aggregate

properties

internal representation
in terms of component

properties

Rimey 93:
Tree-shaped part-of nets, is-a trees,
expected-area nets, and task nets

B

A1 A2 AN• • •

unrealistic conditional
independence:

P(A1 ... AN| B) = P(A1|B) P(A2|B)  ... P(AN|B)

P(A1 ... AN)

P(A1 ... AN| B)

P(B)



Probabilistic Aggregate Hierarchy

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

. . .

. . .

Simplifying assumptions (initially):

• Distinct names for multiple parts
of the same kind

• Fixed set of parts per aggregate
• No specialization branchings

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

. . .
P(A1 ... AN)

P(A1 ... AN| B)

P(B)

What are useful (and plausible)
independence assumptions
•   for efficient probabilistic inferences
•   for intuitive aggregate models?



Bayesian Compositional Hierarchy (1)

Req 1: P( X | succ(X)) = P( X |  Y1 .. YN ) (1)

Aggregate properties do not depend on details below the part properties.

X an aggregate node
Y1 .. YN the parts of X
succ(X) all successors of X

B = E1 D = EN

• • •

E1 ... EN

F

B D

A1 ... AK C1 ... CM

Example:

Given E1 ... EN,
F is independent of all
successors below E1 ... EN

Conditional-independence requirements for a compositional hierarchy to
be an "Bayesian compositional hierarchy":



Bayesian Compositional Hierarchy (2)

Req 2: P( succ(Yi) |  Y1 .. YN ) = P( succ(Yi) | Yi ) (2)

Part properties depend only on the properties of the corresponding
mother aggregate.

B = E1 D = EN

• • •

E1 ... EN

F

B D

A1 ... AK C1 ... CM

Example:

Given B = E1,
A1 ... AK and their successors are
independent of E2 ... EN



Bayesian Compositional Hierarchy (3)

From (2) and (3) it follows that

P( succ( Y1 .. YN) | Y1 .. YN ) =  Π P( succ(Yi) | Yi )

Req 3: P( succ( Y1 .. YN) |  Y1 .. YN ) =  Π P( succ(Yi) | Y1 .. YN ) (3)

Parts of different aggregates are statistically independent given their
mother aggregates.

B = E1 D = EN

• • •

E1 ... EN

F

B D

A1 ... AK C1 ... CM

Example:

Given E1 ... EN,
 A1 ... AK and their successors are
independent of C1 ... CM and their
successors



Bayesian Compositional Hierarchy (4)

The complete JPD of an abstraction hierarchy can be computed from the
conditional aggregate JPDs.

Probability changes may be propagated along tree-shaped hierarchy.

P(all) = P(X | succ(X)) P(succ(X))
= P(X | Y1 .. YN) P(succ(X)) by Req 1
= P(X | Y1 .. YN)  P( Y1 .. YN succ( Y1 .. YN))
= P(X | Y1 .. YN)  P(succ( Y1 .. YN) | Y1 .. YN )  P(Y1 .. YN )

= P(X | Y1 .. YN)  Π P(succ( Yi) | Yi )  P(Y1 .. YN) by Req 2 + 3

       P(succ(X) | X) = P(Y1 .. YN | X)  Π P(succ( Yi) | Yi )

Recursive application gives:

P( Z0 .. ZM ) = P(Z0)  Π  P( parts(Zi) | Zi )

Z0 is a node and Zi, i = 1 .. M are its successors.
i = 0 ... M



Alternative Formalization of
Bayesian Compositional Hierarchy

P( Z0 .. ZM  ) = Π  P( Zi | parts(Zi) ) C(parts(Zi) )

where C( Y1 .. YN ) = P( Y1 .. YN ) / Π P(Yi)

External properties Z of an aggregate are determined by the
functional mapping f: parts(Z) => Z

⇒  P(Z | parts(Z) ) is known and fixed

The Bayesian Compositional Hierarchy factorization formula can be
reformulated:

Given the probability distributions of the properties of individual parts,
one can construct a hierarchy bottom-up by determining the
correlations between parts belonging to an aggregate.

⇒  Unsupervised learning of aggregates



Choice of Alternative Specializations

door

balcony-door entrance-doorSpecializing a hypothesis 

there may
be no stairs

there may
be stairs

Disjunctive specializations can be modelled probabilistically, probability
changes of one disjunctive branch may be propagated to the other branch.

Evidence assignment to one disjunctive branch forces specialization
decision and must prohibit evidence assignment to the other branch.

Currently, specialization decisions in SCENIC may be taken top-down,
causing backtracking in the case of a wrong choice.

Aggregates with different cardinalities
may be modelled as disjunctive
specializations  => the same applies.

balcony

balcony with
2 windows

balcony with
1 window



Top-down Initialization

B = E1 D = EN

• • •

P(F)

P(E1 ... EN | F)

P(E1 ... EN F)

P(E1) • • • P(EN)
=

P(B)

P(A1 ... AK | B)

P(A1 ... AK B)

P(A1) • • • P(AK)

=
P(D)

P(C1 ... CM | D)

P(C1 ... CM D)

P(C1) • • • P(CM)

E1 ... EN

F

B D

A1 ... AK C1 ... CM

Aggregate hierarchy subtree: Sequence of computations:



Change Propagation

B

After initialization, the state of each aggregate is represented by P(A1 ... AN)
with marginalizations P(Ai), i = 1 ... N, and P(B).

A change has to be propagated if P(B) => P´(B) or P(Ai) => P´(Ai), some i.

Crisp evidence e for Ai is modelled as P(Ai = e ) = 1 and P(Ai ≠ e ) = 0.

A1  ...  Ai  ...  AN

P(A1 ... AN B)

Propagating down:
P(B)  =>  P´(B)   
P´(A1 ... AN B) = P(A1 ... AN B) P´(B) / P(B)
followed by marginalizations

Propagating up:
P(Ai)  =>  P´(Ai)
P´(A1 ... AN B) = P(A1 ... AN B) P´(Ai) / P(Ai)
followed by marginalizations



Preference Computation for Evidence Classification

Wall

Balcony

B-Wall

Entrance

E-Door

E-Stairs

B-Door

B-Window E-Window

B-Railing

B-Wall-View

B-Window-View

B-Door-View

B-Railing-View

E-Wall E-Wall-View

E-Window-View

E-Door-View

E-Stairs-View

Door-View

• Probabilities within a branch may be compared without
considering the rest of the compositional hierarchy

• Probabilities are updated after each decision and influence the
following decisions

?



Best-first Evidence Classification

Stepwise procedure

A Choose evidence which allows most certain classification
(reducing need for backtracking)

all i ≠ k: P(viewk | e) >> P(viewi | e)

B If there is no probable classification for a given piece of evidence,
-  perform backtracking to revise previous classifications, or
-  request low-level validation of evidence

C Determine revised P(viewi | ej) after each classification
=> evidence propagation in probabilistic hierarchy

D Repeat steps A - D until task is completed
-  evidence is exhausted 
-  scene interpretation is sufficiently certain
-  specific interpretation request can be answered
-  no conceptual model fits evidence



How to Determine Probability
Distributions for Aggregates

Two alternative approaches:

a. Determine JPDs of internal and external properties by statistics
(frequentist approach).

b. Estimate JPDs based on human experiences and the mappings
from internal to external properties.

1. Determine distributions for known crisp aggregates

2. Learn aggregate concepts from scratch

• Observe primitives, determine statistics

• Build aggregate hierarchy by agglomerative clustering
(use distance measure to establish Bayesian abstraction)

• Derive higher-level probabilities from lower-level probabilities



Gaussian Aggregate Models

Uncertain aggregate properties can sometimes be roughly modelled as
Gaussian densities.
Example:

Balcony probability densities:
pb-door(b1 g1)
pb-window(d1 i1)
prailing(b1 g1)
pbalcony-int(a1 b1 c1 d1 e1 f1 g1 h1 i1)
pbalcony-ext(u1 v1)

u1 = e1
v1 = h1 + i1  

Probabilistic representation of the aggregate "balcony" by

P(a1 b1 c1 d1 e1 f1 g1 h1 i1 | u1 v1)

parts
properties

external
aggregate
properties

a1 b1 c1 d1

g1

h1

i1

u1 = e1

v1

must be linear
combination of parts
properties



Probabilistic Balcony Description

a1 b1 c1 d1 e1 f1 g1 h1 i1 u1 v1
a1 6,0 1,2 3,3 6,0 3,5 0,0 0,0 0,0 0,0 3,5 0,0
b1 1,2 2,3 1,2 5,3 2,1 0,0 0,4 0,0 1,2 2,1 1,2
c1 3,3 1,2 6,0 6,0 3,5 0,0 0,0 0,0 0,0 3,5 0,0
d1 6,0 5,3 6,0 60,0 11,0 0,0 0,0 0,0 8,5 11,0 8,5
e1 3,5 2,1 3,5 11,0 20,0 0,0 0,0 0,0 0,0 20,0 0,0
f1 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0
g1 0,0 0,4 0,0 0,0 0,0 0,0 0,3 0,0 0,4 0,0 0,4
h1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 2,3 0,0 0,0 2,3
i1 0,0 1,2 0,0 8,5 0,0 0,0 0,4 0,0 6,0 0,0 6,0
u1 3,5 2,1 3,5 11,0 20,0 0,0 0,0 0,0 0,0 20,0 0,0
V1 0,0 1,2 0,0 8,5 0,0 0,0 0,4 2,3 6,0 0,0 8,3

a1 b1 c1 d1 e1 f1 g1 h1 i1 u1 v1
5 9 5 15 39 12 19 12 15 39 27

Means

Covariances

Specification of N(µ, Σ) for balcony properties by human estimates
(unit = 1 dcm)



Normal Distributions vs.
SCENIC Ranges

• Gaussian range [-2σ .. 2σ] may
be used for SCENIC variables
with range type values

• Exploitation restricted to
values in this range min max



"Major" Example for a
Gaussian Aggregate Hierarchy

Compositional
hierarchy:

house

facade

balcony window-array

roof

b-door b-window a-window2a-window1

e1b

e1h

rectangle1

e2b

e2h

rectangle2

e3b

e3h

rectangle3 trapezoid
e4c

e4b

e4h

Evidence:

+ absolute image positions

b-railing

door

rayling

e5b

e5h

a-window3



Variables for Balcony and Window-Array

a1 b1 c1 d1

f1

g1

h1

i1

u1 = e1

v1

a2 b2 c2 d2 e2

f2 g2 h2

u2

v2

Balcony probability densities:
pb-door(b1 g1)
pb-window(d1 i1)
prailing(b1 g1)
pbalcony-int(a1 b1 c1 d1 e1 f1 g1 h1 i1)
pbalcony-ext(u1 v1)

u1 = e1
v1 = h1 + i1  

Window-array probability densities:
pa-window1(a2 f2)
pa-window2(c2 g2)
pa-window3(e2 h2)
pwindow-array-int(a2 b2 c2 d2 e2 f2 g2 h2)
pwindow-array-ext(u2 v2)

u2 = a2 + b2 + c2 + d2 + e2
v2 = (f2 + g2 + h2)/3  



Variables for Facade
a3

b3

c3

e3

d3

f3 g3

h3

i3

j3

k3

l3

m3

u3

v3

Facade probability densities:

pdoor(d3 h3)
pbalcony(b3 j3)
pwindow-array(f3 m3)

pfacade-int(a3 b3 c3 d3 e3 f3 g3 h3 i3 j3 k3 l3 m3)
pfacade-ext(u3 v3)

u3 = a3 + b3 + e3 + f3 + g3
v3 = h3 + i3 + j3 + k3  



Variables for Roof and House

u4 = a4

b4

v4 = c4

Roof probability densities:

Proof-int(a4 b4 c4)
Proof-ext(u4 v4)
u4 = a4
v4 = c4

u5 = b5

c5

a5

v5

House probability densities:

Pfacade(a5 c5)

Proof(b5 d5)

Phouse-int(a5 b5 c5 d5)
Phouse-ext(u5 v5)
u5 = b5
v5 = c5 + d5

d5



Summary and Perspectives

• Scene interpretation can be viewed as partial model
construction (with multiple solutions)

• Probabilities provide
-  a global preference measure for choosing between
   alternative interpretations
-  a local preference measure for choosing promising
   stepwise decisions

• Bayesian Compositional Hierarchies provide plausible
abstractions and allow efficient probability propagation

• To be explored:
-  how to deal with optional parts
-  how to deal with disjunctive choices
-  how to restrict propagations to areas of interest
-  how to learn probability distributions
    . . .


