

HIGH-LEVEL VISION Introduction

Bernd Neumann

Cognitive Systems Laboratory Hamburg University Germany

neumann@informatik.uni-hamburg.de http://kogs-www.informatik.uni-hamburg.de

CSL History

Cognitive Systems

Current Research at CSL in Hamburg

Cognitive Systems

Laboratory

Computer Vision

High-level image interpretation Segmentation Aerial image analysis Medical image analysis

- Knowledge Representation Foundations of description logics Spatial reasoning for GIS applications Optimized reasoning algorithms (RACER)
- Al applications in technical domains
 Configuration tools
 Software configuration
 Model-based diagnosis
 Automatic computation of decision trees

Cognitive Computer Vision

http://www.ecvision.info/home/Home.htm

Cognitive computer vision is concerned with integration and control of vision systems using explicit but not necessarily symbolic models of context, situation and goal-directed behaviour. Cognitive vision implies functionalities for knowledge representation, learning, reasoning about events & structures, recognition and categorization, and goal specification, all of which are concerned with the semantics of the relationship between the visual agent and its environment.

- integration and control
- explicit models
- not necessarily symbolic
- context
- situation
- goal-directed behaviour

knowledge representation

Cognitive Systems

- learning
- reasoning
- recognition
- categorization
- goal specification
- visual agent

High-level Scene Interpretation

Cognitive Systems

Laboratory

High-level scene interpretation is the task of "understanding" a scene beyond single-object recognition. Typical examples are traffic scene understanding for driver assistance, inferring user intentions in smartroom scenarios, recognizing team behavior in robocup games, discovering criminal acts in monitoring tasks.

Characteristics:

- Interpretations involve several objects and occurrences.
- Interpretations depend on temporal and spatial relations between parts of a scene
- Interpretations describes the scene in qualitative terms, omitting geometric details.
- Interpretations include inferred facts, unobservable in the scene.
- Interpretations are based on conceptual knowledge and experience about the world.

Examples for High-level Scene Understanding

Garbage collection in Hamburg (1 frame of a sequence)

Cognitive Systems

Laboratory

Note

- parts
- activities
- intentions
- spatial relations
- temporal relations

Buster Keaton in "The Navigator"

Note

- episodes
- story
- emotions
- funnyness

Role of viewer knowledge and reasoning

Challenge Areas of Cognitive Vision

High-level scene interpretation

- conceptual descriptions of multi-object dynamic scenes
- temporal and spatial reasoning
- connecting to common-sense knowledge
- interpretation strategies

Active Vision

- vision and acting
- task-oriented vision
- control of attention
- embodied vision

Vision and learning

- vision memory
- predicting from experience
- discovering reoccurring patterns ("suspicious coincidences")

Multidisciplinary Contributions to Cognitive Vision

Cognitive Vision research requires multidisciplinary efforts and escape from traditional research community boundaries.

Knowledge Representation & Reasoning

- KR languages
- logic-based reasoning services
- default theories
- reasoning about actions & change
- Description Logics
- spatial and temporal calculi

Robotics

- planning, goal-directed behaviour
- manipulation
- sensor integration
- navigation
- localization, mapping, SLAM
- integrative architectures

Computer Vision

- object recognition, tracking
- bottom-up image analysis
- geometry and shape
- hypothesize-and-test control

Cognitive

Vision

probabilistic methods

Cognitive Science

- psychophysical models
- neural models
- conceptual spaces
- qualitative representations
- naive physics

Cognitive Systems

Laboratory

- Learning & Data Mining
- concept learning
- inductive generalization
- clustering
- knowledge discovery

Natural Language

- high-level concepts
- qualitative descriptions
- NL scene descriptions
- communication

Uncertain Reasoning

- Bayesian nets, belief nets
- decision & estimation
- causality
- probabilistic learning

Cognitive Systems

Early Traffic Scene Analysis (Badler 75)

Natural Language Description of Traffic Scenes (Neumann & Novak 86)

DIE SZENE ENTHAELT DREI BEWEGTE OBJEKTE: ZWEI PKWS UND EINEN LKW.

EIN GELBER PKW FAEHRT IN RICHTUNG HALLERPLATZ. DABEI UEBERHOLT ER DEN LKW AUF DER SCHLUETERSTRASSE. DER GELBE PKW RAST VON DER ALTEN POST VOR DAS GELBE HAUS. ER ERREICHT DIE HARTUNGSTRASSE. ER HAELT AN. ER HAELT.

EIN SCHWARZER PKW ERREICHT DIE SCHLUETERSTRASSE. ER NAEHERT SICH DEM LKW VON DER ALTEN POST. DER SCHWARZE PKW FAEHRT IN RICHTUNG HALLERSTRASSE.

DER LKW FAEHRT VON DER ALTEN POST VOR DAS GRUENE HAUS. DABEI STOPPT ER VOR IHM. ER HAELT. ER FAEHRT IN RICHTUNG DAMMTOR WEITER. ER ENTFERNT SICH VON DEM GELBEN PKW. DER LKW HAELT AN. ER HAELT.

Occurrence Recognition (Hongeng 02)

recognizing assaults

recognizing thefts at a phonebooth

Signal-Symbol Problems (1)

Cognitive Systems

Signal-Symbol Problems (2)

Signal-Symbol Problems (3)

Grounded symbolic reasoning

Deductions from symbolic knowledge about a scene should not only be correct wrt to the underlying logic but also wrt to common sense.

Examples:

(implies (and house (some near lake)) mosquito-house)
(instance house1 house)
(instance lake1 lake)
(related house1 lake1 near)
=> (instance house1 mosquito-house)

(instance house1 house)
(instance cup1 cup)
(related house1 cup1 inside)
=> inconsistent???

Cognitive Systems

Uncertainty Problems (1)

Fuzzyness of concepts

Many high-level concepts have unsharp boundaries.

"behind" "overtake" "meet"

=> mapping into logical propositions may be problematic

 Fuzzy set theory offers "degree of applicability"

 Probability theory offers statistical measures for language use Fuzzy definition of behind

Uncertainty Problems (2)

Uncertainty of data

Example: Object boundaries

Image interpretation is fundamentally ill-defined

Uncertainty Problems (3)

Exploring multiple hypotheses

Answers from several disciplines:

- graph matching
- heuristic search
- optimization theory
- logic theories
- probability & utility theory
- case-based reasoning
- neural networks
- particle physics (and others)

Mixed bottom-up and top-down interpretation strategies have been rarely explored

Uncertainty Problems (4)

Cultural clash betweeen logical and probabilistic reasoning

Probabilistic methods are nor yet seamlessly integrated with logical calculi

Interesting recent developments:

- First-order probabilistic inference (Poole 03)
- Probabilistic relational models (http://dags.stanford.edu/PRMs/)

Example for reasoning in image interpretation: (from Kanade's invited lecture at IJCAI-03: "Computer Vision: AI or Non-AI Problem?")

Topics of Tuesday

Cognitive Systems Laboratory

C

What is High-level Scene Interpretation?	3
Historical Examples	8
Relational Matching	27
Rule-Based Interpretation	42
Description Logics	47
Image Interpretation as Deduction	61
Logics of Image Interpretation	66
Image Interpretation as Configuration	72
Signal-symbol Interface	75
Occurrence Models	87
Navigating in Hallucination Space	96
Recognizing Intentions	101
Bayesian Nets	105
Summary	117