

Learning Compositional Robot Activities from Examples

Bernd Neumann, Lothar Hotz, Pascal Rost

Cognitive Systems Laboratory, University of Hamburg

- Knowledge representation conventions
- Conceptualizing examples relevance analysis
- Constructing a Good Common Subsumer
- Other learning scenarios

A learning scenario

Conclusions

٠

Object Descriptor	Old Concept	New Concept
{IN: CN'} leaf of assertion graph	CN	$CN'' \sqsubseteq \{IN\}$ $CN'' \neq CN \rightarrow change$
$\{IN: CN' \land \land (RN_k CN_k' IN_k) \}$	$CN \sqsubseteq CN_0 \sqcap \dots$ $\sqcap RN_k CN_k \sqcap \dots$	$CN'' \sqsubseteq CN' \sqcap \sqcap RN_k CN_k' CN' = CN_0, all CN_k' unchanged \rightarrow CN'' = CNelse CN'' = new concept name$
{IN: CN' A A (hasStartTime Int [int ₁ , int ₂]) A (hasEndTime Int [int ₃ , int ₄]) A (hasDuration Int [int ₅ , int ₆])}	CN ⊑ CN ₀ ⊓ ⊓ hasStartTime Int ⊓ hasEndTime Int ⊓ hasDuration Int	CN'' \sqsubseteq CN' \sqcap \sqcap hasStartTime Int \sqcap hasEndTime Int \sqcap hasDuration {(1-q)*int ₅ , (1+q)*int ₆]}

