

Integration of Probabilistic Models

eTRIMS Meeting 4.-5. October 2007 in London

Bernd Neumann CSL, Hamburg University

Reviewer Remarks

- What are your challenges? Specify problems for the next 2 years.
- Document progress by benchmarking.
- How do you control low-level by high-level processing?
- Stop working with preclassified images to let high-level interpretation show its effect on low-level image analysis.
- Bridge gap between low-level and high-level work.
- Provide seamless integration of logic-based and probabilistic approaches.

Purpose of Presentation

- Provide conceptual view of probabilistic scene interpretation
 from the Hamburg perspective
- Show possible ways for integrating probabilistic information into SCENIC
- Discuss concrete integration steps

Uncertainty in Scene Interpretation

Bottom-to-top Probabilistic Model

labelled aggregates

labelled scene elements

scene elements

hierarchy of image elements

real world

How far can we get with flat models (e.g. for labelling pixels)?

Probabilistic Inference Services for Scene Interpretation

Stepwise evidence classification

- Choose class for evidence to maximise interpretation probability (or utility)
- Choose evidence for hypothesis to maximise interpretation probability Service: max P($\underline{i} | \underline{e}$)
- Generate high-level hypotheses which maximise interpretation probability
 - existence and number of parts
 - part membership in aggregates
 - temporal expectations
 - Service: max P($\underline{i} i^h | \underline{e}$)

Generate low-level hypotheses

- most probable evidence (e.g. behind occlusion)
- control parameters for low-level image analysis
 Service: max P(<u>i</u> e^h | <u>e</u>)

Structuring High-level Knowledge

Yes, we need probabilistic representations and inferences

But:

- Distinction of fuzzy definitions and probabilistic events
- Natural compositional hierarchy
- Taxonomies useful for logical reasoning
- Need for logical reasoning:
 - Common-sense knowledge
 - Spatial and temporal reasoning
 - Classification
- Ontological embedding and machine readability

Our Approach

- Maintain logic-based framework
- Introduce probabilities for nondeterministic choices within logic-based framework
 - specialisations
 - optional parts
 - range-valued attributes
 - set-valued attributes
- Allow correlations between parts of aggregates within aggregates but not across aggregates

correlation may not be directly represented

rooftiledthatchedroofflatroofroof

window-array has-parts [3 to inf] window

window size-X [30 to 200], size-Y [50 to 300]

window colour {whie, grey, black, brown}

Plausible independence assumptions give rise to probabilistic aggregation hierarchy with useful abstraction properties

external representation in terms of aggregate properties

internal representation in terms of component properties

Structuring the Middle Layer (1)

Select view hypothesis for evidence

Using Hamburg aggregation hierarchy:

- View description type must match low-level evidence type
- Construct abstraction hierarchy by hand or by many interpretation examples
- Classify evidence to achieve maximally probable interpretation
- Exact probabilistic inference by propagation

Using London MRF model:

- Consider region classification
- Learn probabilistic influence of spatial context
- Exploit spatial context model for region classification

Structuring the Middle Layer (2)

Select evidence for view hypothesis

Using Hamburg aggregation hierarchy:

- Select evidence to achieve maximally probable interpretation
- Trial and error

Using London MRF model:

• Exploit spatial context model to determine most probable location of region with given class (?)

In general:

• Provide prediction of evidence based on relevant interpretation context (e.g. for tracking)

Structuring Low-level Image Analysis

Kinds of bottom-up processing:

- Non-probabilistic image analysis
 - evidence classified as views of specific object classes
 - unclassified evidence
 - => instances for probabilistic view descriptions
- Probabilistic image analysis
 - top-down expectations
 - sensor uncertainties
 - => instances or distributions for probabilistic view descriptions

In eTRIMS currently:

- IPMs deliver view instances
- Top-down control via IPM selection and location constraints

Practical Steps for Integration of Probabilistic Knowledge into SCENIC

SCENIC calls external probabilistic services at choice points

- Probabilistic model is initialised with prior probabilities
- SCENIC updates model with evidence and interpretation decisions
- Model computes updated probabilities
- SCENIC queries model for probabilities

Example: Evidence Classification

If Door-View is made an instance of B-Door-View or E-Door-view, which decision allows the most probable scene interpretation?

Example: Hypothesis Generation

If a hypothesis B-Window or E-Window is created, which one allows the most probable scene interpretation?

Deep Integration into the SCENIC High-level Interpretation System

- Describe specialisation choices, range-type and set-type attributes by marginal probability distributions
- Replace constraints by joint probability distributions
- Replace constraint propagation by probability propagation

Problems:

- Current SCENIC constraints do not necessarily respect encapsulation according to abstraction properties of the aggregation hierarchy
- Probabilistic model corresponding to current constraints may be difficult to obtain and to operate
- SCENIC activates costraints only for instantiated concepts
- SCENIC "instances" may be hypotheses which have remaining uncertainties, different from instances of random variables

Using Partial Probabilistic Models

Pragmatic approach:

- Import probabilistic information whenever useful
- Evaluate interpretation performance with and without partial probabilistic guidance

Conceptual problems:

- Partial probabilistic model may not pertain to most probable interpretation
- Information in separate models may overlap and be inconsistent

Goal and Context Information

We must be able to introduce

- context information from other sources
- goal information for purposive vision

Context:

Provide service for introducing external context information in terms of

- specific instances for concepts (for sets of random variables)
- changed constraints (distributions) for concepts (for sets of random variables)

<u>Goal</u>:

- Provide service for specifying goals in similar terms as context
- **Restrict interpretation (propagation) process to determine goal** E.g. "Is there an X in the image?" "Give all examples of X with attribute Y"