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Reviewer Remarks

• What are your challenges? Specify problems for the next 2 years.

• Document progress by benchmarking.

• How do you control low-level by high-level processing?

• Stop working with preclassified images to let high-level
interpretation show its effect on low-level image analysis.

• Bridge gap between low-level and high-level work.

• Provide seamless integration of logic-based and probabilistic
approaches.



Purpose of Presentation

• Provide conceptual view of probabilistic scene interpretation
from the Hamburg perspective

• Show possible ways for integrating probabilistic information
into SCENIC

• Discuss concrete integration steps



Uncertainty in Scene Interpretation
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Bottom-to-top Probabilistic Model
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Probabilistic Inference Services for
Scene Interpretation

• Stepwise evidence classification
-  Choose class for evidence to maximise interpretation probability (or utility)
-  Choose evidence for hypothesis to maximise interpretation probability
Service: max P( i | e )

• Generate high-level hypotheses which maximise interpretation
probability
-  existence and number of parts
-  part membership in aggregates
-  temporal expectations
Service: max P( i ih | e )

• Generate low-level hypotheses
-  most probable evidence (e.g. behind occlusion)
-  control parameters for low-level image analysis
Service: max P( i eh | e )



Structuring High-level Knowledge

Yes, we need probabilistic representations and inferences

But:
• Distinction of fuzzy definitions and probabilistic events
• Natural compositional hierarchy
• Taxonomies useful for logical reasoning
• Need for logical reasoning:

-  Common-sense knowledge
-  Spatial and temporal reasoning
-  Classification

• Ontological embedding and machine readability



Our Approach

• Maintain logic-based framework

• Introduce probabilities for nondeterministic
choices within logic-based framework

-  specialisations

-  optional parts

-  range-valued attributes

-  set-valued attributes

• Allow correlations between parts of aggregates
within aggregates but not across aggregates

roof

tiled 
roof

flat 
roof

thatched 
roof

window-array has-parts [3 to inf] window

window size-X [30 to 200], size-Y [50 to 300] 

window colour {whie, grey, black, brown}

entrance balcony

e-window b-window

correlation may not be directly represented



Probabilistic Aggregate Hierarchy
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Plausible independence assumptions give rise to probabilistic
aggregation hierarchy with useful abstraction properties



Structuring the Middle Layer (1)

Select view hypothesis for evidence

Using Hamburg aggregation hierarchy:
• View description type must match low-level evidence type
• Construct abstraction hierarchy by hand or by many interpretation

examples
• Classify evidence to achieve maximally probable interpretation
• Exact probabilistic inference by propagation

Using London MRF model:
• Consider region classification
• Learn probabilistic influence of spatial context
• Exploit spatial context model for region classification



Structuring the Middle Layer (2)

Select evidence for view hypothesis

Using Hamburg aggregation hierarchy:
• Select evidence to achieve maximally probable interpretation
• Trial and error

Using London MRF model:
• Exploit spatial context model to determine most probable location of

region with given class (?)

In general:
• Provide prediction of evidence based on relevant interpretation

context (e.g. for tracking)



Structuring Low-level Image Analysis

Kinds of bottom-up processing:

• Non-probabilistic image analysis
-  evidence classified as views of specific object classes
-  unclassified evidence
=> instances for probabilistic view descriptions

• Probabilistic image analysis
-  top-down expectations
-  sensor uncertainties
=> instances or distributions for probabilistic view descriptions

In eTRIMS currently:  
• IPMs deliver view instances
• Top-down control via IPM selection and location constraints



Practical Steps for Integration
of Probabilistic Knowledge into SCENIC

SCENIC calls external probabilistic services at choice points

Ontology

SCENIC
Probabilistic

Model

• Probabilistic model is initialised with prior probabilities
• SCENIC updates model with evidence and interpretation

decisions
• Model computes updated probabilities
• SCENIC queries model for probabilities

What models
have we got
in eTRIMS?



Example: Evidence Classification

If Door-View is made an instance of B-Door-View or E-Door-view,
which decision allows the most probable scene interpretation?
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Example: Hypothesis Generation
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If a hypothesis B-Window or E-Window is created, which one allows
the most probable scene interpretation?



Deep Integration into the SCENIC
High-level Interpretation System

• Describe specialisation choices, range-type and set-type
attributes by marginal probability distributions

• Replace constraints by joint probability distributions
• Replace constraint propagation by probability propagation

Problems:
• Current SCENIC constraints do not necessarily respect

encapsulation according to abstraction properties of the
aggregation hierarchy

• Probabilistic model corresponding to current constraints may
be difficult to obtain and to operate

• SCENIC activates costraints only for instantiated concepts
• SCENIC "instances" may be hypotheses which have remaining

uncertainties, different from instances of random variables



Using Partial Probabilistic Models

Pragmatic approach:
• Import probabilistic information whenever useful
• Evaluate interpretation performance with and without partial

probabilistic guidance

Conceptual problems:
• Partial probabilistic model may not pertain to most probable

interpretation
• Information in separate models may overlap and be

inconsistent



Goal and Context Information

We must be able to introduce 
• context information from other sources
• goal information for purposive vision

Context:
Provide service for introducing external context information in terms of
• specific instances for concepts (for sets of random variables)
• changed constraints (distributions) for concepts (for sets of random

variables)

Goal:
• Provide service for specifying goals in similar terms as context
• Restrict interpretation (propagation) process to determine goal

E.g. "Is there an X in the image?"   "Give all examples of X with attribute Y"


