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ABSTRACT:

Over the last years, active contour methods have become a basic tool in computer vision. They have proven to be efficient for various
image processing applications, like reconstruction of the edges inside images or the tracing of image features. However, when applying
the basic snake technique to synthetic aperture radar (SAR) remote sensing images, the detection of edges may not be satisfactory. This
is caused by the special imaging technique of SAR that may tend to produce varying-contrast edges and the commonly known speckle
noise. In (Seppke et al., 2010) we proposed the use of asymmetric external energy terms to cope with these problems. In this paper we
extend our approach and present a modular framework for the application of snake algorithms to SAR imagery. The main emphasis of
the framework is the use of higher knowledge about the scene depicted, e.g to initialize the snake with suitable parameters. Another
objective is to establish a modular designed and thus highly flexible testbed for the comparison of different active contour approaches.
We present the framework’s design and preliminary results for the detection of coastlines in SAR images. The proposed framework has
already proven to be a valuable tool for both, the interpretation and understanding of the results. For future projects, the framework will
be used to investigate and compare the results of snakes when applied to hi-resolution SAR imagery, e.g. TerraSAR-X HR Spotlight
images.

1 INTRODUCTION

The detection and accurate localization of edges in remote sens-
ing data is one of the most important tasks in image processing.
These edges are usually boundaries between imaged objects, and
thus can be used for the segmentation of these objects. In contrast
to region based approaches, many boundary based segmentation
approaches evolved in the past decades. (Gonzalez and Woods,
2006) gives a good overview of the different approaches. One
main challenge of edge localization is the extraction of long con-
nected boundaries from real-world image data. Due to the basic
definition of an images’ gradient, it may be locally impossible to
determine if a boundary is existent or not.

To extract connected boundaries, active contour algorithms have
been introduced by (Kass et al., 1987). They describe boundaries
by means of linear (open or closed) structures. Contrary to com-
monly known local pixel based approaches, they take advantage
of both the connectivity of the structure and the image gradient
information in conjunction. They have proven to be efficient for
the localization and tracking of linear structures at a sub-pixel ac-
curacy. According to their definition, active contour approaches
are capable to bridge those gaps in the image gradient informa-
tion. This is achieved by an energy term, which favors smooth,
connected curves and thus penalizes too much bending. The en-
ergies are usually defined such that the contour will iteratively
fit to image edges or other features of interest inside the image
during the optimization process. This behavior seems to be the
reason for their commonly used synonym: snakes.

From former studies, we noticed that the definition of the snake
and the optimization strategy may vary if the task, the data, or
both are changing. The accurate localization of varying contrast
edges in synthetic aperture radar (SAR) images may e.g. re-
quire the introduction of a new asymmetric external energy term
(Seppke et al., 2010).

Figure 1: The area of interest: The German Bight (North Sea)
showing the northern part of the Wadden Sea. red: image acqui-
sition area of the used data, green, boundary of the ENC, blue:
ROI used for this work (around the island of Amrum).

In this work, we present a highly-flexible and interactive frame-
work, which encapsulates the different possibilities by means of
modules that can be selected and replaced interactively. In addi-
tion to the flexibility of the algorithms, we add a mechanism to
initialize the snake with higher scene knowledge. These higher
knowledge can e.g. be used to initialize the snake and to inspect
the results. As an example, we have selected the accurate local-
ization of coastlines based on SAR imagery. The image has been
acquired by the ERS 2-SAR on 24th July, 2008 at 10:25 UTC and
shows the German UNESCO Heritage Site “Wadden Sea”. In this
image, the coastlines show up as boundaries between a homoge-
neously imaged water surface on one hand and a heterogeneous
silt surface on the other hand. This makes it nearly impossible to
estimate the land-water boundaries using common edge detectors



like the canny edge detector, texture based methods (Onana et al.,
2001), or classical SAR shoreline detection algorithms (Tan et al.,
2005). As a first knowledge source, we present a connection be-
tween an electronic nautical chart (ENC) and the framework by
means of snake initialization.

This paper is organized as follows: First we briefly introduce the
formal background of active contours. We will then describe the
requirements and design issues that yield to the proposed frame-
work and will give an impression of first coastline detection re-
sults. We conclude with a discussion of the results and end up
with an outlook concerning future work and other applications.

2 ACTIVE CONTOURS

We refer to a snake as a parametric curve that is geometrically
embedded into a two-dimensional plane ~s(p) = [x(p), y(p)] with
p ∈ [0, 1]. To model the parametric curve, we used a B-Spline
approximation of n given control points. This approximation
has some advantages over other approximations (Brigger et al.,
2000). As the active contour needs to fit to some linear features
of the image, we define an energy functional which shall be min-
imized during the snakes’ optimization:

E(s) =

∫ 1

0

Eint(p) + Eext(p) dp (1)

where Eint is the internal energy of the snake, which describes
the internal shape constraints, and Eext denotes the external en-
ergy that is caused solely by the image (e.g. by means of the im-
age gradient). The iterative minimization of the functional given
in eq. (1) causes the snake to move with respect to the given en-
ergy constraints.

In this work, we are focussing on the application of snakes in a
knowledge-based and modular framework, and will not go into
detail of the snakes’ theoretical background. More information
on this can be found in (Kass et al., 1987). We will now discuss a
few possible energy terms, which can be used for both the internal
and the external energy, in more detail.

2.1 Energy Definitions

Both energy parts Eint and Eext can be defined in various ways,
depending on the task and on the image data. We start with a brief
introduction to commonly used definitions of the internal energy
Eint, which represents the intrinsic energy of the snake and is
often differentiated into two internal energy parts:

Eint = asEs + acEc (2)

The strength of the different energy terms is controlled by the two
coefficients as, the spacing coefficient, and ac, the linearity co-
efficient, which controls the strength of the curvature dependent
term. The internal spacing energy Es is given by:

Es =

n−2∑
i=0

(
|~di|
l
− 1

)2

(3)

where the vectors ~di denote the differences between two neigh-
bored control points ~ci+1 and ~ci. There are n control points,
which yield n − 1 difference vectors; l gives the goal length for
the segments. This segment length is a parameter of the snake as
well and may be set programmatically (e.g. to the average seg-
ment length). Es will be zero if and only if all the segments have
a length of l. It will approach n−1 if the snake shrinks to a point

and will grow with the square of the length of the snake as it is
stretched further and further. The curvature dependent term Ec is
given by:

Ec =

n−3∑
i=0

(
1−

~di · ~di+1

|~di||~di+1|

)
(4)

This energy will be in the range [0, 2(n − 2)]. A value of zero
signals a straight line and the more the snake is bent the higher
this energy becomes.

One basic definition of the external energy Eext is given by the
image gradient under the snakes geometrical embedding. For the
simple case, we can define the energy as the inverse gradient mag-
nitude:

Eext =

n−1∑
i=0

1

∇Is(~s(pi))2
(5)

where∇Is(~s(pi))2 denotes the image gradient magnitude at po-
sition ~s(pi). This edge detector is applied to the image at all
points of the snake and rotated to match the snake’s direction. All
filter responses are squared and summed up to obtain the edge re-
lated energy term Eext. This allows the snake to find dark/bright
as well as bright/dark edges. However, when just one type of
edges (e.g. dark to bright) is allowed, we can model this by scalar
multiplying the snakes normal vector ~ni at a given snake position
pi with the gradient direction at this position:

Eext =

n−1∑
i=0

∇Is(~s(pi)) · ~ni (6)

Recent studies have shown that it may be necessary to add further
energy terms when applying the snakes on SAR imagery (Seppke
et al., 2010). This is caused by the strong speckle noise of the
images and some domain specific features of the tasks, e.g. that
water sometimes appears quite smooth in a SAR image since the
wind and hence the waves do not change on a small scale. When
adding other energy terms, the user needs to determine the ratio
of each energy compared to the other. For the simple case of
two different external energy parts, which are normalized, one
parameter α may be used as the relative weight:

Eext = αEext1 + (1− α)Eext2 (7)

If alpha is set to zero, only the edge detecting energy will be
used. Contrary, a value of one leads to a use of only the variance
dependent term.

2.2 Optimization Strategy

To minimize the overall energy E of eq. (1), several optimiza-
tion approaches can be used. So far, iterative algorithms have
yielded good results. Although there are several different iter-
ative approaches possible, we will focus on gradient back step
algorithms based on a variation of the control points. We dis-
tinguish between two different superior optimization concepts,
which are mainly independent of the actual iterative approach:
single- and multi-grid approaches.

A single grid optimizer uses the full image resolution during the
complete optimization. This may be problematic, e.g. if the dis-
tance between the initial snake and the estimated final position is
quite large. To solve the problem of large distances, multi-grid
approaches have been developed. These approaches refer to the
image at different scales, and optimize the snake on these scales.
Thus, for these approaches a scale space of the image needs to be
build a priori.



3 TOWARDS A MODULAR FRAMEWORK

The existence of different energy terms and optimization strate-
gies implies a modular framework design. Instead of an inflexible
task-tailored solution, which works well for exactly one task, our
aim is to provide support for an easy adaptation to different tasks.
From section 2.1 follows that it may be necessary to calculate not
just the magnitude but also the direction of the image’s gradient.
In addition to the gradient vector, normals along the snake may
have to be defined. If we want to support all possible configura-
tions we need to encapsulate the different possible algorithms in
different modules.

Besides the different snake definitions, the user should be sup-
ported by means of scene knowledge. For the task of detect-
ing coastlines, we propose the use of S-57 electronic nautical
charts (ENCs) for snake initialization. The ENCs used herein
have been provided by the German Federal Maritime and Hydro-
graphic Agency. More information about the structure and con-
tents of these ENCs can be found in (IHB, 1996). This is just one
of many possible knowledge sources – the framework should not
be restricted to this one.

3.1 Requirements for the framework

We now present the main ideas behind the development of the
framework by means of the requirements and their implications
into the development process. The main requirement is the mod-
ularity in conjunction with a fast first framework development
result. Thus, we need to consider agile and highly flexible object
oriented rapid prototyping design patterns (Dingsyr et al., 2010).

The basis of the framework should be flexible using prototype
classes for common tasks. The first prototype may integrate only
one knowledge source, but needs to be designed open to include
others in future. We do not reinvent the wheel but need to find and
integrate external libraries and extensions for commonly known
basic tasks into our framework. There are two main needs for ex-
ternal libraries: fast image processing algorithms, which we need
to apply even for large images and the import of higher scene
knowledge. The framework itself is considered to be freely avail-
able and platform-independent.

To conclude the framework’s requirements, we want to empha-
size the two main aspects: it should be easy to learn for end-
users and be easy to extend by developers. The first point yields
to a comprehensive graphical user interface, which should be
self-explaining and clearly designed. The second aspect yields
to well-designed modular and thus flexible source code of the
framework.

3.2 A first framework

Because of the good rapid prototyping performance, we have de-
cided to use the interactive Python programming language to im-
plement our framework. For different scientific calculations, the
scientific extension SciPy is used in conjunction with the numeric
array extension NumPy. This constellation has already proven
to be adequate for the processing of scientific tasks (Luszczek
and Dongarra, 2006). Due to the interactivity of the program-
ming language, new approaches or minor modifications of ex-
isting approaches can be tested interactively without restarting or
recompiling the program. We use the object-oriented approach of
classes in Python to abstract from concrete algorithms by provid-
ing prototypes for each snake setting. This makes the framework
highly extensible while maintaining the clarity and readability of
the source code.

Figure 2: The components of the first framework. Python in con-
junction with NumPy and SciPy forms the basis, Qt is used for
interaction, VIGRA and GDAL for external image and ENC ac-
cess. Data sources are highlighted italic bold and interchangeable
modules are filled with light blue color.

To meet the requirement of fast and reliable image processing al-
gorithms, like the building of a scale-space or the fast and ac-
curate calculation of image gradients, we use the current VI-
GRA 1.7.1 library. VIGRA stands for Vision with GeneRic Al-
gorithms and is a template based C++ library, which comes with
Python-NumPy bindings. The images are internally represented
by means of NumPy arrays. As a first knowledge source, we use
S-57 ENCs, which we read into the system using the geographical
data abstraction library (GDAL). The GDAL library also provides
a Python wrapper for interactive usage.

To give the user the opportunities of controlling the framework
graphically and performing visual inspection of the results, we
developed an interactive graphical uses interface (GUI) using the
Qt 4.7 framework and the corresponding Python bindings. This
allows for a platform independent implementation, at least on the
three most popular operating systems: Windows, Linux, Mac.
Figure 2 shows the different components of our framework. Note
that the light blue filled rectangles correspond to prototypes and
thus can easily be extended or be replaced. During the GUI de-
sign phase, we kept attention on two aspects: simplicity and clar-
ity. As it is shown in fig. 3, the controls on the left side are ordered
by their meaning and role in the process of coastline detection.
This provides a powerful but easy to use interface.

Figure 3: Overview of the current framework with controls on
the left and an interactive view (showing the island of Amrum)
on the right. After the optimization of the initial snake (red), all
optimization steps can be visualized using a slider widget.



(a) Gradient magnitude based external energy of eq. (5) (b) Gradient direction based external energy of eq. (6)

Figure 4: Two resulting views of the proposed framework using different external energy terms and and an initialization using S-57
ENCs. The zero-level waterlines are printed in white. The initial snake is printed in red, whereas the finally optimized snake is printed
in green. The positions of the control points are marked by circles, whereas lines visualize the user-defined normal directions at the
control points. The changing color along one contour is caused by the varying inner tension due to the inner energy definition of the
snake. Further information about the parameters are given in section 4.

4 RESULTS AND DISCUSSION

We will now present first results, which have been produced us-
ing the framework. The task is to accurately locate water/land
boundaries in intertidal flat areas like the “Wadden Sea” (see sec-
tion 1). We have selected the western coastal boundary of the
island of Amrum as a first example for this work, as it is depicted
in fig. 1. Because of the continuous flooding and dry-falling of
land during each tidal cycle, the coastline may largely vary due to
the time of the image acquisition. The image we used, was taken
about 15 minutes before low tide. showing some dry-fallen areas
at the eastern part of fig. 4, which have resulted in a minor radar
reflection than the surrounding sea surface.

For the initialization of the snake, we have used data of the S-57
ENC, namely the zero-level waterline, which is encoded by the
DEPCNT feature with a value VALDCO=0.0. The corresponding
feature lines are marked white in fig. 4. Another important ENC
feature is named COALNE and refers to coast lines. These lines
are highlighted yellow in fig. 3 but have been left out in fig. 4 for
a better visualization. Note that the current “coastline” by means
of a boundary between water and land is different to the coastline
of the ENC due to the low-tide conditions at which the scene was
acquired.

Our aim is to analyze the influence of the different external en-
ergy terms of eq. (5) and eq. (6) respectively. Therefore, we used
the same weighting values for the internal energy for both cases,
according to eq. (2):

Eint = 0.175Es + 0.175Ec

which results in lower weighting of the internal energy term. This
allows for a more flexible snake behavior. Additionally, we define
a target distance between the control points of the snake of 100

pixels. We use only one external energy per case, hence there is
no need for an external weighting factor α.

The optimization approach is the same for both test cases. We
have chosen a multi-grid gradient back step optimization approach,
which is working on 5 scales of the image. Each scale is derived
by a convolution of the image with a gaussian filter of correspond-
ing standard deviation σ. This has been performed iteratively to
save creation time. The scales are:

Sσ = {6, 12, 18, 24, 30}

The optimization is carried out by 25 iterations overall, which
results in 5 optimization steps per scale. Inside one scale s ∈ Sσ
we use a step size of s for the optimization and thus motion of the
snake.

The left panel of fig. 4 shows the result when using the gradient
magnitude based external energy term of eq. (5). We notice a
good detection of the longer western waterline on one hand, but
also see some erroneous localization on the northern and southern
tip of the island. These differences are caused by strong gradient
magnitudes at that areas. The gradient magnitudes are higher than
those of the land-water-boundary and thus attract the snake.

On the right panel of fig. 4 we see the result obtained when using
the gradient normal vector based external energy term of eq. (6).
The use of the gradient’s normal vector lead to a very accurate lo-
calization of the boundary. Contrary to the results of the gradient
magnitude based external energy, the snake has not been attracted
by gradients of high magnitude because of the different direction
of the gradient. We also recognize that the initialization of the
snakes using knowledge from ENCs is a very valuable feature
because it allows for automated approaches and does not lead to
error caused by the fine sampling of control points.



5 CONCLUSIONS AND FUTURE WORK

We presented the design of a modular and flexible framework,
from the task up to first results. The framework meets all require-
ments posed to it so far. Furthermore, it is not restricted to one
special task in a special domain, but allows for easy adaptation
to other domains. According to all the requirements described in
section 3.1, we only presented one possible implementation. It
might of course be possible to use other tools or programming
languages to fulfill the requirements.

The user can then try different approaches and compare the re-
sults visually. As all optimization states of the snake are stored,
it is easy to inspect the behavior of the snake or at least to figure
out when the snake did deviate too much from the desired result.
For further investigation, the user may look at the energies of the
snake at that optimization step and select other energy terms for
the next run.

The first results of the framework look very promising, and the
modular design of the framework supported the very short design
and implementation cycle. The framework assists in easy com-
parison and thus leads to a better understanding of the resulting
coastlines. For the future, we plan to implement and test other en-
ergy terms and optimization strategies. We will also perform tests
with newly acquired high resolution SAR data of coastal areas in
near future.
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