
Efficient Applicative Programming Environments for
Computer Vision Applications

Integration and Use of the VIGRA Library in Racket

Benjamin Seppke
University of Hamburg

Dept. Informatics
Vogt-Kölln-Str. 30

22527 Hamburg, Germany
seppke@informatik.uni-hamburg.de

Leonie Dreschler-Fischer
University of Hamburg

Dept. Informatics
Vogt-Kölln-Str. 30

22527 Hamburg, Germany
dreschler@informatik.uni-hamburg.de

ABSTRACT
Modern software development approaches, like agile soft-
ware engineering, require adequate tools and languages to
support the development in a clearly structured way. At
best, they shall provide a steep learning curve as well as
interactive development environments. In the field of com-
puter vision, there is a major interest for both, general re-
search and education e.g. of undergraduate students. Here,
one often has to choose between understandable but compa-
rably slow applicative programming languages, like Racket
and fast but unintuitive imperative languages, like C/C++.
In this paper we present a system, which combines the best
of each approaches with respect to common tasks in com-
puter vision, the applicative language Racket and the VI-
GRA C++ library. This approach is based on a similar
Common Lisp module and has already proven to be ade-
quate for research andr education purposes [12]. Moreover,
it provides the basis for many further interesting applica-
tions. For this paper we demonstrate the use in one research
and one educational case study. We also make suggestions
with respect to the design and the needs of such a module,
which may be helpful for the generic extension of applicative
programming languages into other research areas as well.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming—Allegro Common Lisp, SBCL, Racket ;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—modules and interfaces, software libraries;
I.4.8 [Image Processing and computer vision]: Scene
Analysis

General Terms
Applicative Programming, Racket, Language Interoperabil-
ity, Computer Vision, Image Processing

1. INTRODUCTION
Although applicative programming languages have a long
tradition, they still do not belong to the scrap heap. In-
stead, they have proven to support state-of-the-art devel-
opment approaches by means of an interactive development
cycle, genericity and simplicity. The influence of applicative
programming paradigms is even observable in modern lan-
guages, like Python, Dart and Go. However, there are some
research areas, which are computationally of high costs and
are thus currently less supported by applicative program-
ming languages.

In this paper, we select the research field of computer vision
and show how to connect applicative languages to a generic
C++ computer vision library called VIGRA [5]. The inter-
operability is achieved by two similar modules, VIGRACL
for Allegro and SBCL Common Lisp and VIGRACKET for
Racket. Both are using a multi-layer architecture with a
common C wrapper library. In contrast to [12], where we
describe the architecture on the C/C++ and the Common
Lisp side in more detail, we focus on the Racket extension in
this paper. We also present useful applicative programming
language additions for a seamless Racket integration.

Although C++ can lead to very efficient implementations,
it is not capable of interactive modeling. Applicative pro-
gramming languages like Lisp and derivatives on the other
hand support symbolic processing and thus symbolic rea-
soning at a higher abstraction levels than typical imperative
languages. Common Lisp has e.g. proven to be adequate for
solving AI problems since decades. There are extensions for
Lisp like e.g. description logics, which support the processes
of computer vision and image understanding. Thus, the inte-
gration of computer vision algorithms has the potential to re-
sult in a homogenous applicative programming environment.
Besides research tasks, the steep learning curve makes ap-
plicative programming languages interesting for educational
purpose. To demonstrate this, we present two case stud-
ies for the application of the VIGRACKET module. The
research case study shows the implementation of a state-of-
the-art image processing algorithm. The other case study
shows the use in an educational context by means of in-
terpreting a board game from its image. The second case
study has been performed with undergraduate students of
computer science at the University of Hamburg.

2. RELATED WORK
The name VIGRA stands for “Vision with Generic Algo-
rithms”. Its main emphasis is on customizable generic algo-
rithms and data structures (see [6], [7]). This allows an easy
adaption of any VIGRA component to the special needs of
computer vision developers without losing speed efficiency
(see [5]). The VIGRA library was invented and firstly im-
plemented by Dr. Ullrich Köthe as a part of his PhD the-
sis. Meanwhile, many people are involved to improve and
extend the library. Moreover, the library is currently be-
ing used for various educational and research tasks in Ger-
man Universities (e.g. Hamburg and Heidelberg) and has
proven to be a reliable testbed for low-level computer vi-
sion tasks. The VIGRA library follows a current trend in
computer vision. Instead of providing large (overloaded)
libraries, smaller, generic and theoretically founded build-
ing blocks are defined and provided. These building blocks
may then be connected, combined, extended and applied for
each unique low-level computer vision problem. To demon-
strate the need of an interactive and dynamic way of using
this building block metaphor, VIGRA comes with (highly
specialized) interactive Python-bindings. Other computer
vision software assist the user by visualizing the building
blocks metaphor and really let the user stack components
together visually, e.g. MEVISLab [8].

Despite this trending topic, there are currently no compet-
itive computer vision libraries for interactive development
with Racket. For Common Lisp, few systems are still exist-
ing, but most of them are no longer maintained. Referring
to the survey of Common Lisp computer vision systems in
[12], beside VIGRACL [10] currently only one system “op-
ticl” (the successor of ch-image) is still maintained [4]. In
contrast to other systems, our proposed module is generic,
light-weight, and offers advanced functionality like image
segmentation or sub-pixel based image analysis.

Our aim is a generic interface to the VIGRA library, that
allows the use of many other languages and programming
styles. This generic approach is reflected in the program-
ming languages (Racket, SBCL and Allegro Common Lisp)
as well as in the platform availability (Windows, Linux or
Mac). The only requirement on the ”high-level” program-
ming language is, that a foreign function interface needs to
be existent. The interface has to support shared memory
access of C-pointers and value passing. These interfaces,
Common Lisp UFFI or Racket FFI, in conjunction with a C
wrapper library called VIGRA C [11], yield computationally
demanding tasks to the compiled wrapper library. Figure 1
illustrates the scheme of each applicative library. Besides the
Common Lisp and Racket bindings, we provide bindings for
other interactive development environments, too.

3. DESIGN OF VIGRACKET
We will now present the embedding of the VIGRA algo-
rithms into Racket. In contrast to [12], we will not discuss
the multi-layer design of the extension, but focus on the
specific extensions, which are needed for Racket and the use
of the module in this language. Since Racket already has
extended capabilities in visualizing and displaying graphics,
we will also give an overview of the seamless integration of
VIGRACKET [9] into Racket’s GUI.

C++

Applicative
languages

C

Foreign function interface

Figure 1: Schematic view of the connection between
applicative languages and C++ by using FFI and a
common C-library as applicative abstraction layer.

3.1 Data Structures for Images
At the lower layer of the VIGRACKET library, we need to
select an appropriate data type for images. Since we assume
digital images to be two-dimensional grid-aligned data, a
two-dimensional array data structure is the first choice. Ad-
ditionally, the array type needs to have access to a shared
C-ordered memory space, where the computations of the im-
age processing algorithms are carried out by means of the
VIGRA C wrapper library. Unlike Common Lisp, where the
built-in 2d arrays are mostly capable of using a shared ad-
dress space (cf. [12]), Racket provides only 1d arrays with
shared memory: cvector. Thus, in a first step, we extend
these cvectors to n dimensions, and rename this newly de-
fined type carray. We also provide fast copying operations
for carrays, constructors, accessors and a list conversion.

Since the VIGRACKET should be able to analyze multi-
band color images, we construct an image based on the in-
troduced data type as carrays of type float:

• For single-band (gray value) images:
(list gray_carray)

• For multi-band images images:
(list ch1_carray ch2_carray ... chN_carray)

This implementation favors genericity by means of a fast
single-band access, but may yield in slower simultaneous ac-
cess of one pixel’s band values. For RGB-images, we get:

’(RED_carray GREEN_carray BLUE_carray)

The interface functions use the FFI included in Racket to
pass the arguments as well as the carray’s pointers to the
VIGRA C library. The C wrapper mostly implements band-
wise operations, which can be identified by the suffix -band.
To work on images of any number of bands, most image
processing functions use the map function to apply a band-
defined operation on each band of an image. For instance,
the gaussian smoothing of an image is defined of the gaussian
smoothing of all the image’s bands:

(define (gsmooth image sigma)
(map (curryr gsmooth-band sigma) image))

3.2 Applicative Extensions
Besides the new data types and the interaction of the li-
brary with the VIGRA C library through the Racket FFI,
we provide a set of generic and flexible high order functions,
which assist in the practical development of computer vi-
sion algorithms. These functions refer to both images and
image bands. They can be seen as extensions to the well-
known high-order functions, but tailored to the data types
of images and image bands.

The first set of functions corresponds to the map function
for lists. We define array-map, array-map!, image-map and
image-map! for this purpose. These functions may be used to
apply a function to one or more images (bands) to generate
a result image. The functions with a bang at the end of
the function name override the first given image instead of
allocating new memory for the resulting image. Although
this saves memory, it introduces side-effects and should only
be used carefully. An an example for the applicative variants
without side-effects, the absolute difference of two images
may be computed by:

(image-map (compose abs -) img1 img2)

We also define folding operations for bands and images:
array-reduce and image-reduce. These functions can be used
to derive single values from bands or a list of values for im-
ages, like the maximum intensity of an image:

(apply max (image-reduce max 0 img))

Here, the inner term derives the band-wise maximum by
applying the maximum function to each band array. Since
the result is a list of maximal values, we get the overall
maximum by applying the max function to the result.

Further, we introduce image traversal functions, which fur-
ther support the development of own algorithms:

• array-for-each-index,

• image-for-each-index and

• image-for-each-pixel.

These functions call any given function of correct signature
at at position of the array or image. The signature is specific
for each function. Examples of the use of these functions are
given in the second case study.

3.3 Racket-specific Extensions
Unlike other applicative languages, Racket was designed to
be an easy to learn beginner’s language. One way to support
the learning of a language is to learn programming by design
(see [3]). To support the drawing and other GUI function-
ality, Racket offers a variety of different packages. However,
the main package for the applicative programming of shapes,
image creation and drawing is still 2hdtp/image.

Since the VIGRACKET should benefit from the existing
drawing capabilities, we provide conversion functions for the
different formats of the 2hdtp/image module (for 1-band gray-
and 3-band RGB-images).

These conversion functions are defined as:

• image->racket-image

for the conversion from shared memory to 2hdtp/image,

• racket-image->image

for the conversion from 2hdtp/image to shared memory.

This conversion is often necessary, since it allows to present
the (processed) image without saving it to disk. However,
Racket’s native interface only allows to read from or to write
to a device context. This interface results in very slow con-
versions for moderate and large image sizes. In order to
enhance the execution speed, we re-implemented this con-
version at machine level on the shared memory VIGRA C
side. Instead of drawing onto a device context, we rearrange
the list of carrays for display purpose to the byte pattern,
which is needed for construction of an object of class %bitmap

(ARGB order). Compiled in machine-code, this is performed
within milliseconds. This allows us to switch from one side
to the other whenever needed without notable delays.

3.4 Preliminaries and Automatic Installation
To make the VIGRACKET accessible to a wide range of re-
searchers as well as teachers and (undergraduate) students,
only few preliminaries exist. The Racket module has already
proven to run stable on Windows, Linux and Mac OS under
32- and 64-bits, depending on the Racket version installed.

Since Windows is missing a powerful package manager, the
necessary binaries are bundled inside the installation pack-
age, and thus no further preliminaries exist. Although this
is a very efficient and simple approach, it is not favored
for Mac OS and Linux, since they provide powerful package
managers, like dpkg, rpm or macports [13]. Thus, under
Mac OS and Linux, you need to have a C++ compiler in-
stalled as well as a current version of the VIGRA library.
Note, that the Racket installation must be of the same ar-
chitecture as the VIGRA installation (32bit or 64bit). After
checking this, the only preliminary is, that the“vigra-config”
script must be accessible from within your shell.

If all preliminaries are met, the VIGRACKET installation
package needs to be unzipped and the “install.rkt” needs to
be executed. This calls the automatic installation routine
of the VIGRACKET module. This routine looks up the
OS and the environment and builds the VIGRA C wrapper
library for Mac OS and Linux or copies the correct binaries
for Windows. A typical output is:

Searching for vigra using ’vigra-config ...
-------------- BUILDING VIGRA-C-WRAPPER ...
cd bin && gcc -I/src ‘vigra-config --cpp ...
gcc ‘vigra-config --libs ‘ ‘vigra-config ...

Afterwards, all needed files and the created or copied shared
object or dynamic linked library of the VIGRA C wrapper
are copied into the user’s collects directory. It may then be
used like any other Racket module by calling:

(require vigracket)

The provided demos in “examples.rkt” may help in getting
a first impression of this module.

Figure 2: Resulting images of the coherence enhancing shock filter using the parameters: σ = 6, ρ = 2, h = 0.3.
From left to lower right: original image, result after 5, 10, and 20 iterations.

4. CASE STUDIES
To demonstrate the use of the VIGRACKET module, we
choose two different scenarios: the first case study describes
the use by means of implementing a state-of-the-art algo-
rithm for anisotropic image diffusion. The second case study
is an example of an undergraduate task during a Bachelor
practice at the University of Hamburg.

4.1 Coherence Enhancing Shock Filter
In [14], Weickert et al. describe a coherence enhancing shock
filters. Shock filters are a special class of diffusion filters,
which correspond to morphological operations on images.
They apply either a dilation or an erosion, depending on
the local gray value configurations. Weickert et al. refer to
these configurations as “influence zones”, which either corre-
spond to a minimum or a maximum of the image function.
The aim of the filter is to create a sharp boundary (shock)
between these influence zones. The main idea of [14] is to use
the Structure Tensor approach [1] for determining the ori-
entation of this flow field instead of the explicitly modeling
the partial differential equations of the diffusion equation.
The Structure Tensor at scale σ of an image is defined by:

STσ(I) = Gσ ∗
(

I2x IxIy
IxIy I2y

)
(1)

where I is the image function and Ix and Iy are the partial
derivatives in x- and y-direction. Gσ is a Gaussian at scale
σ and ∗ is the convolution operation. To derive the main
direction, in which the filter should act, the eigenvalues and
eigenvectors of the Structure Tensor need to be computed.
Additionally the Hessian matrix of the second partial deriva-
tives of the image needs to be computed:

H(I) =

(
Ixx Ixy
Ixy Iyy

)
(2)

According to [14], the following equation indicates whether
a pixel will be eroded or dilated:

D = c2Ixx + 2csIxy + s2Iyy (3)

where w = (c, s)T denotes the normalized dominant eigen-
vector of the Structure Tensor of I. The sign of D(I) is
then been used in a morphological upwinding scheme to de-
termine if an erosion or a dilation has to be performed. This
approach is designed in an iterative way. Fortunately, many
of the mathematical operations are already included in the
VIGRA and in the VIGRACKET module.

Besides the parameter σ, we need an additional parameter
ρ to define the inner derivative of the Structure Tensor as
well as a parameter h, which controls the intensity of the
morphological operations. Thus, the implementation of the
shock filter begins with:

(define (shock-image image sigma rho h iter)
(if (= iter 0)

image

This ensures that the image is given back after the last iter-
ation. Otherwise the filtering needs to be performed. Thus,
the following lines mainly show a straight-forward applica-
tion of the former equations:

(let*
((st (structuretensor image sigma rho))
(te (tensoreigenrepresentation st))
(hm (hessianmatrixofgaussian image sigma))
(ev_x (image-map cos (third img_st_te)))
(ev_y (image-map sin (third img_st_te)))

Note that the third element of the tensoreigenrepresentation

function is the angle of the largest eigenvector. To derive the
image D of Eq. 3, we use the image-map function:

(d (image-map (lambda (c s I_xx I_xy I_yy)
(+ (* c c I_xx)

(* 2 c s I_xy)
(* s s I_yy)))

ev_x ; <= c
ev_y ; <= s
(first hm) ; <= I_xx
(second hm) ; <= I_xy
(third hm)))) ; <= I_yy

The resulting image D can now be used as the sign image
in the unwinding morphological operation. Since this oper-
ation was not originally included in the VIGRA, it has been
implemented by means of the VIGRA C wrapper library
and a corresponding Racket function was implemented, too.
Thus, we end up with the recursive scheme for the last func-
tion call:

(shock-image (upwindimage image d h)
sigma rho h (- iter 1)))))

The results of the application of this filter to the famous
Lenna image are shown in Fig. 2.

Figure 3: Detection of the game board from the image (left). Upper row, from left to right: thresholding
results for t = 25, t = 50 and t = 100. Lower row, from left to right: results for the Canny algorithm at scale
σ = 3 with (edge) thresholds t = 0, t = 1 and t = 2.

4.2 Board Game: Reversi
For the second case study, we selected the task of an under-
graduate student practice. The results were achieved by a
team of students during one term (13×4 hrs) in a Bachelor
practice. The participants had few experience in applicative
programming an no knowledge in image processing or com-
puter vision. However, the aim of this practice is to teach
both, applicative programming as well as computer vision
at once. After the first two weeks, where the students par-
ticipate in guided exercises, they select a board game. The
selected game will be photographed at some states for each
team. To pass the practice, the students have to perform
the following tasks using DrRacket and VIGRACKET:

1. Retrieve the game state from the image,

2. Write a GUI to visualize the game state,

3. Implement the game logic and

4. Extend the GUI to continue the game.

Since we focus on the VIGRACKET integration in this pa-
per, we present the retrieval of a game state from the image.
The game is Reversi (also known as Othello), which can be
considered as a prototypical example for this task. The re-
trieval may further be divided into the separation of the
board from the background and the derivation of the game
state from the sub-image.

Figure 3 (left) shows a typical image of the initial state.
The board is slightly rotated and comparably brighter than
the dark background. To determine the bounding box (Fig.
4, left) of the board, the boundaries between board and
background need to be estimated.

One naive approach is to classify each pixel by its gray value
(intensity), e.g. at the red band. This thresholding may be
expressed by the following function:

(define (threshold v t)
(if (< v t) 0.0 255.0))

To apply the threshold for t = 50 to the red band of img, we
can use the image-map function:

(define img_gray (image- >red img))

(define thresh_img50
(image-map (curryr threshold 50)

img_gray))

The application of different thresholds yields different re-
sults, which are shown in Fig. 3 (upper row). Note that
the missing of the green game token does not influence the
detection of the outer boundaries of the game board.

Another possibility is to use edge detection, since the strongest
edges in the image may correspond to the boundaries of the
game board. Here, we decided to use the Canny edge detec-
tor [2] at a scale of σ = 3 using various thresholds. To apply
the detector for t = 2 to the red band of img and mark each
edge pixel by 255.0, we can call the Canny implementation
of the VIGRA directly:

(define canny_img2
(cannyedgeimage img_gray 3.0 2.0 255.0)

The application of the Canny algorithm at different thresh-
olds yields different results, which are shown in Fig. 3 (lower
row). At low thresholds many edges are detected due to the
image noise but vanish at a threshold of t = 2.

Figure 4: Extraction of the game board from the image. From left to right: estimated bounding box (green),
cropped image, rotation corrected image, cropped rotation corrected image.

The next step is to derive the bounding box of the game
board from either the threshold or the canny resulting image.
We first define a bounding box as a four element vector (left,
upper, right, and lower position). Then the derivation of the
box at an image position ca be expressed as:

(define (findBBox x y col bbox)
(when (> (car col) 0.0)

(begin
(when (> x (vector-ref bbox 2))

(vector-set! bbox 2 x))
(when (< x (vector-ref bbox 0))

(vector-set! bbox 0 x))
(when (> y (vector-ref bbox 3))

(vector-set! bbox 3 y))
(when (< y (vector-ref bbox 1))

(vector-set! bbox 1 y)))))

The initial state of the box depends on the update scheme
of the above function and is given by:

(define bbox
(vector (image-width img) (image-height img)

0 0))

We can now use the iteration/traversal framework of the
VIGRACKET to iterate over each pixel of the canny image
and call the findBBox function at each coordinate x, y with
the color list col at that position:

(image-for-each-pixel
(curryr findBBox bbox)
canny_img2)

This updates the bounding box to contain the minimal and
maximal coordinates. For this example, we use the results
of the canny approach to proceed with the next steps. Fig.
4 (left) shows the procedure after the determination of the
first bounding box.

The next step it to crop, the image according to the bound-
ing box bbox. Since VIGRACKET does not provide such
a functionality, we use the Racket interface and import the
2htp/image module. However, to resolve name conflicts, we
have to restrict the require command by:

(require
(rename-in 2htdp/image

(save-image save-plt-image)
(image-width plt-image-width)
(image-height plt-image-height)))

After importing this module, we use the Racket’s crop func-
tion to perform the cropping:

(define (cropimage img ul_x ul_y lr_x lr_y)
(let ((w (- lr_x ul_x))

(h (- lr_y ul_y)))
(racket-image- >image

(crop ul_x ul_y w h
(image- >racket-image img)))))

(define cropped_img
(cropimage img

(vector-ref bbox 0)
(vector-ref bbox 1)
(vector-ref bbox 2)
(vector-ref bbox 3)))

The cropped image is shown in Fig. 4 (second image). One
can observe that the image is still not adequately cropped,
since it is rotated around the new image center. To esti-
mate this rotation, we search for the position of leftmost
and rightmost marked pixel at the first line of the box of
the edge image using a helper function:

(define (findFirstPixelInRow img x1 x2 row)
(let ((intensity

(apply max (image-ref img x1 row))))
(if (= intensity 0)

(if (= x1 x2)
#f
(findFirstPixelInRow

img
(+ x1 (sgn (- x2 x1))) x2 row))

x1)))

To get the leftmost position relative to the beginning of the
bounding box, we call the function and pass the extracted
positions as parameters:

(define canny_left
(- (findFirstPixelInRow canny_img2

(vector-ref bbox 0)
(vector-ref bbox 2)
(vector-ref bbox 1))

(vector-ref bbox 0)))

To find the rightmost marked pixel, the second and third
parameter of the findFirstPixelInRow need to be swapped.
Both positions are then used to compute the arithmetic
mean position on the first line.

Finally, due to the rounded borders of the game board, a
constant correction factor is added. Let pos be the corrected
position, bbox_width be the width of the bounding box. Then
the rotation angle can be derived as:

(define angle
(/ (* (atan (- bbox-width pos) pos) 180)

pi))

To correct the rotation of the cropped image, we use the
rotation function provided by the VIGRACKET module.
Its arguments are the angle (in degrees) and the degree of
the interpolation function used (here: bilinear):

(define croped-rotated
(rotateimage cropped_img (- angle) 1))

The result of this rotation correction is shown in Fig. 4
(third image). To crop this image, to get the final result,
we repeat the former steps. Thus the edge image has to be
cropped and rotated in the same manner as the image of the
game board:

(define cropped_canny2
(cropimage canny_img2

(vector-ref bbox 0)
(vector-ref bbox 1)
(vector-ref bbox 2)
(vector-ref bbox 3)))

(define cropped-rotated_canny2
(rotateimage cropped_canny2 angle 1))

After these operations, the bounding box has to estimated
again to crop the rotated image. This may be written as:

(define bbox2
(vector (image-width cropped-rotated_canny2)

(image-height cropped-rotated_canny2)
0 0))

(image-for-each-pixel (curryr findBBox bbox2)
cropped-rotated_canny2)

(define cropped_img2
(cropimage cropped-rotated

(vector-ref bbox2 0)
(vector-ref bbox2 1)
(vector-ref bbox2 2)
(vector-ref bbox2 3)))

The result of this application, the image cropped_img2, is
shown in the rightmost image of Fig. 4. It does only contain
the game board. The next step is to extract the game state
from this cropped image. This is done by sampling the image
at the center positions of every possible token location. Since
there are 8×8 fields, the extraction of a color value for a place
x, y ∈ {0, 1...7} is performed by:

(define dx (/ (image-width cropped_img2) 8))
(define dy (/ (image-height cropped_img2) 8))

(define (board_pos- >color image x y)
(image-ref image

(inexact- >exact
(round (+ (/ dx 2) (* x dx))))

(inexact- >exact
(round (+ (/ dy 2) (* y dy))))))

'((empty empty empty empty empty empty empty empty)

 (empty empty empty empty empty empty empty empty)

 (empty empty empty empty empty empty empty empty)

 (empty empty empty red green empty empty empty)

 (empty empty empty green red empty empty empty)

 (empty empty empty empty empty empty empty empty)

 (empty empty empty empty empty empty empty empty)

 (empty empty empty empty empty empty empty empty))

Figure 5: Sampling of the cropped image using an
equally spaced rectangular grid. Left: grid super-
imposed to the cropped image, right: the resulting
symbolic representation superimposed on the grid.

The sampling scheme is depicted in Fig. 5 (left). Depending
on the extracted color, a classification to the tokens red,
green or empty has to be made. If we assume, that red
dominates the intensity for a red token, green dominates
the intensity for green tokens but is comparably darker, we
may express this as:

(define (classify-color col)
(let* ((val (/ (apply + col) (length col))))

(if (> (first col) (* 2 val))
’red
(if (> (second col) (* 1.5 val))

’green
’empty))))

Using these functions, we can now retrieve a list of lists to
represent the game state from the image using two nested
recursions, one for the rows and one for the columns of the
locations of the tokens:

(define (board_rows image x y)
(if (> y 7) ’()

(cons (board_cols image x y)
(board_rows image x (add1 y)))))

(define (board_cols image x y)
(if (> x 7) ’()

(cons (classify-color
(board_pos- >item image x y))

(board_cols image (add1 x) y))))

(define state (board_rows cropped_img2 0 0))

Since we have 8 positions per row and 8 rows, we end up with
a list of 64 items in total. The resulting list is shown in Fig.
5 (right). Note that this is only one possible way of classi-
fication. Alternatively, one could switch from RGB into a
HSV (hue, saturation, value) colorspace for classification.

Based on the extracted game state, the team members im-
plemented a graphical user interface using the world frame-
work, which is part of Racket’s 2htdp/universe module and
wrote the game logic. As a result, they are able to continue
the game, which was captured in the picture. Although this
requires the knowledge of modeling graphical user interfaces
and game logics, it can be implemented without using the
VIGRACKET module.

5. CONCLUSIONS
We have motivated the need for interactive development
methods in the field of computer vision w.r.t. research and
education purposes. For many years, applicative program-
ming has been used to solve higher AI tasks. But with a
computer vision extension of such languages like Racket or
Common Lisp, we are now able to offer a homogeneous, gen-
eral, and highly interactive environment.

As a demonstration, we presented some of some functionali-
ties of the VIGRACKET module in research and educational
contexts. Since the extension uses a multi-layer architecture
to grant access to the computer vision algorithms that are
provided by the VIGRA library, a corresponding VIGRACL
module (tested with Allegro Common Lisp and SBCL) is
also available. We demonstrated the efficiency of the mod-
ule in different aspects:

• An intuitive interface to images using shared memory,

• Generic approaches of the VIGRA, which provide great
fundamental building blocks,

• High-order functions which support the development
of own algorithms and

• A seamless integration into Racket by means of the
built-in GUI and data types.

We have shown that the integrated high-order functions
for images are really helpful in practice, since they provide
wrappers for common tasks, like mapping a function on a
complete image or traversing over an image in a clearly de-
fined way. These functions in conjunction with the generic
approach of the VIGRA and the easy automated installation
routine make the VIGRACKET a valuable tool, not just for
researchers but for teachers, too.

At the University of Hamburg, we use the VIGRACKET
module as well as the VIGRACL module for research to
experiment with low-level image processing tasks that have
to be performed before the symbolic interpretation of the
image’s content.

The VIGRACKET module is also used and improved on
a regular basis for a Bachelor practice at the University
of Hamburg. Here, the steep learning curve and interac-
tive experience with images and algorithms helps the un-
dergraduate students to learn applicative programming in
conjunction with computer vision during a single term. In
the educational context, we found that the use of applica-
tive programming encourages the students to understand
the underlying algorithms better when compared with typ-
ical imperative low-level languages like C. This yields to an
increased overall interest in computer vision.

This interest gaining of students has already resulted in
many excellent Bachelor theses. In the last four years, a to-
tal of over 100 students successfully passed the practice and
rated it A+. The only drawback, which has been mentioned
by the students, is the limited performance of computer vi-
sion algorithms written in pure Racket.

It needs to be mentioned that, although the examples in
chapter 4 where realistic, this paper cannot be more than
an introduction into the interesting field of computer vision.
Additionally, only a very small subset of the functionality
of VIGRACKET module has been shown here. However,
the examples clearly demonstrate how easy the functions of
the VIGRA can be used within Racket or Common Lisp by
means of the generic common VIGRA C interface.

6. REFERENCES
[1] J. Bigün, G. Granlund, and J. Wiklund.

Multidimensional orientation estimation with
applications to texture analysis and optical flow. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 13(8):775 –790, aug 1991.

[2] J. Canny. A computational approach to edge
detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 8(6):679–698, November 1986.

[3] M. Felleisen. How to Design Programs: An
Introduction to Programming and Computing. MIT
Press, 2001.

[4] C. Harmon. opticl - an image processing library for
common lisp: https://github.com/slyrus/opticl.

[5] U. Köthe. The vigra homepage:
https://github.com/ukoethe/vigra.

[6] U. Köthe. Reusable Software in Computer Vision,
pages 103–132. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1999.

[7] U. Köthe. Generische Programmierung für die
Bildverarbeitung. Books on Demand GmbH, 2000.

[8] F. Ritter, T. Boskamp, A. Homeyer, H. Laue,
M. Schwier, F. Link, and H.-O. Peitgen. Medical
image analysis. Pulse, IEEE, 2(6):60–70, Nov 2011.

[9] B. Seppke. The vigracket homepage:
https://github.com/bseppke/vigracket.

[10] B. Seppke. The vigracl homepage:
https://github.com/bseppke/vigracl.

[11] B. Seppke. The vigra c homepage:
https://github.com/bseppke/vigra_c.

[12] B. Seppke and L. Dreschler-Fischer. Tutorial:
Computer vision with allegro common lisp and the
vigra library using vigracl. In Proceedings of the 3rd
European Lisp Symposium, 2010.

[13] The MacPorts team. The macports project:
https://www.macports.org.

[14] J. Weickert. Coherence-enhancing shock filters. In
Lecture Notes in Computer Science, pages 1–8.
Springer, 2003.

