
Fast Interactive Functional Computer Vision with Racket

A Demonstration using Racket and the Kinect Sensor

Benjamin Seppke
University of Hamburg

Dept. Informatics
Vogt-Kölln-Str. 30

22527 Hamburg, Germany
seppke@informatik.uni-hamburg.de

Leonie Dreschler-Fischer
University of Hamburg

Dept. Informatics
Vogt-Kölln-Str. 30

22527 Hamburg, Germany
dreschler@informatik.uni-hamburg.de

ABSTRACT
Functional programming languages, like Lisp or Racket are
known to be general purpose languages with a steep learn-
ing curve and wide range of applications. They can be used
interactively to solve problems and have inspired other com-
parably new languages with respect to functional extensions
(e.g. Python or Swift). In this work, we will demonstrate the
use of the Racket programming language with respect to fast
interactive computer vision. Based on the VIGRACKET
module, which combines the best of the compiled and in-
teractive worlds with respect to common tasks in computer
vision, Racket and the VIGRA C++ library (see [4]), we
will present the a (near-) realtime computer vision demo.
For this demo we have selected the Microsoft Kinect Sensor
as the continuous the image source. We present the connec-
tion to the sensor by means of image transfer to Racket and a
case study: a natural pointer interface for human computer
interaction.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming—Allegro Common Lisp, SBCL, Racket ;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—modules and interfaces, software libraries;
I.4.8 [Image Processing and computer vision]: Scene
Analysis

General Terms
Functional Programming, Racket, Language Interoperabil-
ity, Computer Vision, Image Processing, Human-Computer-
Interaction, Realtime processing

1. INTRODUCTION
In [4] we have presented how well functional programming
and computer vision approaches may be combined by means
of the VIGRACKET library. Like other state-of-the-art in-
teractive development environments, functional language in-
terpreters natively offer an interactive development cycle,
generic modeling and even powerful garbage collectors. So,
instead of using a new language with functional extensions,
like Swift, Python or others, why not simply use well-known
functional languages like Lisp or Racket?

The main aim of this paper is to demonstrate the use of the
extended VIGRACKET module with respect to the Kinect
sensor as a data source. Since the VIGRACKET module
has been developed to introduce computer vision to Racket,

neither to support interactive realtime processing nor to sup-
port fast functional development interfaces or fast visualiza-
tions, some optimizations were additionally needed. For sake
of clarity of this demo, these optimization steps can be found
elsewhere (see [3]). Herein, we present how to connect with
the Kinect sensor to Racket, acquire images and to use the
acquired images by means of an interactive natural pointing
device interface.

2. PRELIMINARIES
To run the demonstration, some preliminaries need to be ful-
filled. Besides Racket, the VIGRACKET module needs to
be downloaded and installed from the author’s GitHub ac-
count: https://github.com/bseppke. Depending on the tar-
get’s operating system, this module may require additional
dependencies, which are described in [4].

Since the VIGRACKET module is not an acquisition library,
it does not support real-time acquisition devices. For this
demonstration, we have selected the Microsoft Kinect sensor
as the acquisition device, and the OpenKinect libfreenect li-
brary for accessing the sensor. Unfortunately, this library
does provide interaction layers for Python and Java, but
none for Racket (see [5]). Based on a low level USB-interface
(via the libusb), the libfreenect library allows access to all
the necessary data. In order to avoid concurrent asynchronous
calls and callbacks, we use the synchronous grabbing access
API. Finally, it is necessary to download and install the
“rackinect” Module from the same GitHub account as men-
tioned above.

3. CONNECTION TO THE KINECT
Since the image formats of the raw data, which are used
by the libfreenect library, are not compatible with the im-
age representation of the VIGRACKET module, we need
to introduce another small Racket/C-wrapper, to which we
refer to as “rackinect”. On the Racket side of this wrap-
per we define grabbing functions for the acquisition of the
raw data. The function (grabdepth) grabs the depth data
(in mm) and stores it inside a newly allocated one channel
VIGRACKET image. The function (grabvideo) grabs the
current RGB image and stores it by means of a new three
channel VIGRACKET image. Finally the (grabdepth+video)

grabs both data and stores it by means of new a four chan-
nel VIGRACKET image, where the first channel contains
the depth data (in mm) and the last most three channels
contain the RGB data.



Figure 1: Image taken out of the sequence we get by calling (animate live-view-combined). Left: RGB
image, center: current tick and refresh counter, right: depth image. Since the depth values are normalized
to millimeters, there is one overflow each 25.5 cm. Black parts of the depth image denote unknown depth.

As a first demonstration, we present the use of both func-
tions for a near real-time depth and video display GUI. Here
we use the animate functionality of Racket’s 2htdp/universe

module (see [1]). It takes a function with one argument and
a Racket bitmap as a result type and calls the given func-
tion 28 times per second using an increasing argument t and
updates the images every fourth frame. An example output
is shown in Fig. 1.

(define dp (grabdepth+video))
(define d (image- >bitmap (list (car dp))))
(define p (image- >bitmap (cdr dp)))

(define (live-view-combined t [update_each 4])
(when (= (modulo t update_each) 0)

(begin
(set! dp (grabdepth+video))
(image- >bitmap (list (car dp)) d)
(image- >bitmap (cdr dp) p)))

(beside p (status t update_each) d))

(animate liveview-combined)

4. NATURAL POINTER INTERFACE
The computer mouse has probably been the most common
pointing device for human-computer interaction for decades.
Due to the electronic mobile revolution with tablets and
smartphones, we are now able to use our fingers directly as
pointing devices, e.g. by means of (multi-) touch displays.
Although this is closer to the “natural pointing” metaphor,
it is still artificial and might not be well applicable for gen-
eral virtual environments. The main limitation is the two-
dimensional interface, since virtual worlds are usually not as
flat as the displays’ touch surfaces.

The Microsoft Kinect sensor with its depth image stream
provides another alternative for a more natural pointer in-
terface by tracking your fingers movements (cf. [2]). To sim-
plify the finger detection, we make the following assumptions
for this case study:

1. Only a certain range of the depth data is allowed to
contain the image of the finger.

2. A finger pointer is defined as the top- and left-most
point, which is found within this range.

Under these assumptions, it is quite clear, that we will detect
one pointer position if any object is inside the depth interval
of interest. Since it is the top- and left-most position, it is
not necessary, that the finger is put in front of other objects,
but above them. The first necessary step is to threshold
the raw depth image accordingly to the range of the depth
interval.

(define (closerThan depth_img [t 800])
(image-map!

(lambda (val) (if (< 0 val t) 255.0 0.0))
depth_img ))

In this function we are able to use the in-place method
image-map! to save allocation costs, because the original
depth values are no longer needed in the further processing.
To find the top-left part of the thresholded depth image, we
may apply the function above while the result is true. The
first false coordinate denotes the pointer position. Experi-
ments have shown, that this approach works stable at about
5 frames per second (see [3]).

5. REFERENCES
[1] M. Felleisen. How to Design Programs: An Introduction

to Programming and Computing. MIT Press, 2001.

[2] P. Premaratne. Human Computer Interaction Using
Hand Gestures. Cognitive Science and Technology.
Springer Singapore, 2014.

[3] B. Seppke. Near-realtime computer vision with racket
and the kinect sensor. Technical report, University of
Hamburg, Dept. Informatics, 2016.

[4] B. Seppke and L. Dreschler-Fischer. Efficient
applicative programming environments for computer
vision applications: Integration and use of the vigra
library in racket. In Proceedings of the 8th European
Lisp Symposium, 2015.

[5] The OpenKinect team. The OpenKinect project.
Retrieved February 19, 2016 from:
https://openkinect.org.


