
Interactive Functional Medical Image Analysis
A demonstration using Racket and the vigracket library to detect sickle-cell anaemia

Benjamin Seppke
University of Hamburg

Dept. Informatics
Vogt-Kölln-Str. 30

Hamburg, Germany 22527
seppke@informatik.uni-hamburg.de

Leonie Dreschler-Fischer
University of Hamburg

Dept. Informatics
Vogt-Kölln-Str. 30

Hamburg, Germany 22527
dreschler@informatik.uni-hamburg.de

ABSTRACT
�is article demonstrates the functional application of Computer
Vision methods by means of a prototypical process chain. For
this demo, we have selected the application area of medical im-
age analysis, in detail the classi�cation of blood cells using micro-
scopic images. We further focus on the task of detecting abnormal
sickle-shaped red blood cells, which are an indicator for a relatively
common disease in countries around the equator: the so-called
sickle-cell anaemia. From the functional languages, we have cho-
sen Racket and the vigracket Computer Vision library [3]. Although
this demo just scratches the surface of medical image processing, it
provides a good motivation and starting point.

CCS CONCEPTS
•Computingmethodologies→Image segmentation; •So�ware
and its engineering →Functional languages; •Applied com-
puting →Bioinformatics;

KEYWORDS
Functional Programming, Racket, Medical Image Processing, Com-
puter Vision, Language Interoperability
ACM Reference format:
Benjamin Seppke and Leonie Dreschler-Fischer. 2017. Interactive Functional
Medical Image Analysis. In Proceedings of European Lisp Symposium 2017,
Brussels, Belgium, April 2017 (ELS’2017), 2 pages.

1 INTRODUCTION
Functional programming and functional languages have a long
tradition in research and teaching at the Department of informat-
ics at the University of Hamburg. Since 8 years, we successfully
combine the Computer Vision library vigra [1] with functional
programming languages. As an example in [4] we have presented
how well Computer Vision approaches may be introduced into
the Racket programming language. To reach a broader range of
users, it shall not be unmentioned that the used C-wrapper library
in platform-independent and has been tested and proven to work
under Windows, Mac OS X and Linux.

A�er the latest optimisations, the Computer Vision wrapper
libraries are even more powerful with respect to performance and
image segmentation tasks [2]. Functional languages natively o�er
interactive development cycles, generic modelling and probably
the most powerful garbage collectors.

ELS’2017, Brussels, Belgium 2017.

Figure 1: Blood sample of a patient with sickle-cell anaemia.
�e sickle-shaped cells occur among the regular, circle-
shaped cells. (©Getty Images/Photoresearchers)

2 DEMONSTRATION
Sickle-cell anaemia or sickle-cell disease is genetic disease occurring
in many parts of Africa and other countries. Besides its negative
e�ects, there also seems to be a protective e�ect against Malaria. A
comprehensive report on the sickle-cell disease and on the research
progress can be found in [5]. We have chosen the detection of
the sickle-cell disease for this demonstration as it requires shape
detection and description of red blood cells on microscopy images.
As an example, Figure 1 shows a typical image of a patient’s red
blood cells. For this demonstration we will distinguish between the
main working phases of the process chain in logical order:

2.1 Loading images
Before loading images, it might be useful to de�ne a working folder.
By changing this folder, we can easily adapt our demo to di�erent
users or other folders. �e image is then be loaded by vigracket in
a three element list containing arrays of foreign memory for the
red, green and blue channel.

(require vigracket)

(define dir (current-directory ))
(define img (loadimage (build-path dir "cells.jpg")))

2.2 Preprocessing
�e �rst step for the analysis of the di�erent imaged blood cells is
the division of the image contents into foreground (the cells) and
background. �is can e.g. be achieved by applying a threshold to
one or more channels of the image.



ELS’2017, April 2017, Brussels, Belgium Benjamin Seppke and Leonie Dreschler-Fischer

Table 1: Semantics of the columns for RGB region-wise fea-
ture extraction. Each row corresponds to one segment.

Columns Features
0 segment size

1, 2 upper le� x and y-coordinates of segment
3, 4 lower right x and y-coordinates of segment
5, 6 mean x and y-coordinates of segment
… other statistics of segment

�e threshold is then used to pre-classify the pixels of the image
into foreground (grey value = 255) and background pixels (grey
value = 0). Here, we have chosen the red-channel and a �xed
threshold of 222 to generate the mask, described above. A�er the
thresholding we apply a morphologic opening �lter to suppress the
in�uence of smaller artefacts:
(define mask (image-map (λ(x) (if (< x 222.0) 255.0 0.0))

(image- >red img)))
(define omask (openingimage mask 1.0))

2.3 Divison in segments
To analyse the single cells’ properties, we have to divide the fore-
ground into corresponding segments. If we de�ne a segment as
a connected component of (masked) pixels, we can assign unique
labels for each segment. �e #t tells the function to use eight-pixel
connectivity for the component detection and 0.0 denotes the back-
ground value:
(define labels (labelimage omask #t 0.0))

Instead of 0 and 255, this function assigns increasing values
from 1 to the number of connected components found for each
foreground classi�ed pixel.

2.4 Segment analysis and classi�cation
To decide whether a segment represents a sickle-cell or an circle-
shaped cell, we need to get statistics, also called features, for each
segment. �is process can be automised by vigracket’s latest func-
tional extensions. We use the extractfeatures method to derive
RGB-based statistics using the image and the label image.
(define stats (extractfeatures img labels ))

�e result, stats, is also an image, but with slightly changed
semantics. Each row represents on regionwith its extracted features.
�e semantic with respect to the columns is shown in Table 1.
For this demonstration, we �nd it su�cient to check whether the
dimensions of each segment are roughly circle-like. We further use
the aspect ratio of each region’s bounding box plus one threshold,
to accept a circle-like structure.
(define (circle-like? segment threshold)

(let* [(width (- (image-ref stats 3 segment 0)
(image-ref stats 1 segment 0)))

(height (- (image-ref stats 4 segment 0)
(image-ref stats 2 segment 0)))

(a (max width height ))
(b (min width height ))]

(< (/ a b) threshold )))

Figure 2: Classi�cation result of Figure 1 using the demon-
strated approach. Red: classi�ed sickle-cells, green: classi-
�ed circle-like cells, black: background.

2.5 Extraction and usage of results
Using the circle-like? function, we are now able to classify each
region. Since the classi�cation is a binary decision, we may simply
�lter the list of all segments:
(define maxlabel (image-reduce max 0.0 labels ))
(define label-ids (build-list maxlabel values ))
(define filtered-ids (filter (curryr circle-like? 4/3)

label-ids ))

Now filtered-ids contains the ids of all segments which are circle-
like (aspect ratio below 4/3) and thus not correspond to sickle-cells.
�is list can be used to quantify the ratio of di�erent cell-types, to
mark them in the image (see Figure 2) or to derive special statistics
like color for these cells. Although the resulting classi�cation leaves
still place for improvements.

3 CONCLUSIONS
We demonstrated the use of interactive functional Computer Vi-
sion in a medical context. Although this demonstration has been
performed using Racket and the vigracket library, it might also be
performed by means of Common Lisp and the vigracl library.

Due to the limitations of this demo, the quality of the results is
limited, too. However, this should not be seen as a comprehensive
and best-possible segmentation and classi�cation approach for the
selected application area. Instead, it should be a motivation for all
readers to utilise the power and simplicity of functional program-
ming languages and powerful libraries for interdisciplinary areas of
research. Although imperative languages are very popular at these
�elds at the moment, many tasks can be solved using functional
languages while bene��ing from their advantages, too.

REFERENCES
[1] Ullrich Köthe. 2017. �e VIGRA homepage. Retrieved January 30, 2017. (2017).

h�p://ukoethe.github.io/vigra/
[2] Benjamin Seppke. 2016. Near-Realtime Computer Vision with Racket and the

Kinect sensor. Technical Report. University of Hamburg, Dept. Informatics.
[3] Benjamin Seppke. 2017. �e vigracket homepage. Retrieved January 30, 2017.

(2017). h�ps://github.com/bseppke/vigracket
[4] Benjamin Seppke and Leonie Dreschler-Fischer. 2015. E�cient Applicative

Programming Environments for Computer Vision Applications: Integration and
Use of the VIGRA Library in Racket. In Proceedings of the 8th European Lisp
Symposium.

[5] Graham R. Serjeant. 2010. One hundred years of sickle cell disease. British
Journal of Haematology 151, 5 (2010), 425–429. DOI:h�p://dx.doi.org/10.1111/j.
1365-2141.2010.08419.x

http://ukoethe.github.io/vigra/
https://github.com/bseppke/vigracket
http://dx.doi.org/10.1111/j.1365-2141.2010.08419.x
http://dx.doi.org/10.1111/j.1365-2141.2010.08419.x

	Abstract
	1 Introduction
	2 Demonstration
	2.1 Loading images
	2.2 Preprocessing
	2.3 Divison in segments
	2.4 Segment analysis and classification
	2.5 Extraction and usage of results

	3 Conclusions
	References

