

## IP2: Image Processing in Remote Sensing

# 1. Introduction and Gravitational Astronomy

Summer Semester 2014
Benjamin Seppke

## **Agenda**

- Organizatorial Issues
- Definition of "Remote Sensing"
- History
- Applications
- Affordances
- Challenges
- Motivation for Image Processing
- Gravitational Astronomy at a glance

## **Organization of this Course (1)**

- 11 lectures, covering Remote Sensing fundamentals and image processing applications
- 6 exercises, 1 per week
  - Given out: Tuesday after pre-discussion in lecture
  - Due to: Monday of next week (8 am)
  - Mail to: germer@informatik.uni-hamburg.de
  - First 4 exercises: Traditional (theoretic) questions
  - Last 2 exercises: Practical exercises on PCs
- Slides and exercise sheets will be available at Stine and at <a href="http://kogs-www.informatik.uni-hamburg.de/~seppke">http://kogs-www.informatik.uni-hamburg.de/~seppke</a> (plus additional information)

## **Organization of this Course (2)**

#### Topics:

Introduction and Gravitational Astronomy
 1 Lecture

Orbits, Acquisition Constraints and Missions
 1 Lecture

– EM Radiation2 Lectures

Earth's Atmosphere1 Lecture

EO Sensors2 Lectures

Image Processing in RS3 Lectures

Knowledge Based Interpretation and Exam preparation
 1 Lecture

#### Language issues:

Special notation:



**Himmelsmechanik** 

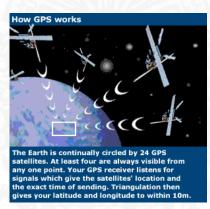
EM: ElectromagneticEO: Earth observationRS: Remote Sensing

#### **Measurements and Observations**

- Three different types:
  - Direct measurement
  - Remote measurement
  - Remote Sensing
- Example: Distance Measurements:

Direct measurement




http://www.mt-online.de

Remote measurement



http://www.augsburger-allgemeine.de

#### Remote sensing



http://www.news.bbc.co.uk

#### **Remote Sensing**

#### Fernerkundung

Remote sensing is the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation.

T. M. Lillesand & R. W. Kiefer, 1987

- Refinements for this course:
  - Only objects at (or close to) the Earth's surface
  - High-altitude of sensor (above the object)
  - Measuring method is based on EM Radiation

## **Motivation**ESA Living Planet Symposium 2013 (Edinburgh)



#### Historical Outline 400 B.C. - 1850

4<sup>th</sup> century B.C.:

Camera obscura

Early 19<sup>th</sup> century:

1801: Johann Wilhelm Ritter: Discovery of

**Ultraviolet Radiation (UV)** 

Herschel: Discovery der Infrared Radiation (IR)

1839: Invention of Photography: Wedgewood, Talbot,

Daguerre und Niepce (1839 first picture)

1840: Arago, Director of the Paris' Observatory

propagates photography for field survey.

1849: Colonel Aimé Laussedat: Photography for the creation

of topographical maps.

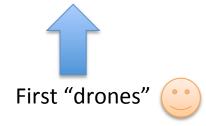
#### Historical Outline 1850 - 1900

1858: Gaspard Felix Tournachon: first aerial photography

(Balloon, 80m altitude)

1880: Aerial photography from Kites

1863: Formulations of Maxwell's Equations


1887/88: Heinrich Hertz: Experimental proof of the existence of

electromagnetic waves.

1889 Heinrich Hertz shows that solid bodies reflect radio waves

1890: Batut: First textbook, which covers aerial photography

1900: Aerial photography from pigeons at altitudes >100m



## Historical Outline

1903: Invention of the airplane

1909: Wilbur Wright takes first picture from an airplane

(Centocelli, Italien).

ca. 1935: Color-Photography, Infrared-Photography, RADAR-

systems for discovering and monitoring of objects

WWar II: Research on spectral signatures w.r.t stealth-technology,

various RADAR enhancements.

1946: Photography from V2-Rockets

1956: Colwell: First investigations for the classification of

vegetation by means of aerial photography

ca. 1955: First imaging RADAR systems

#### Historical Outline 1955 - 2000

ca. 1955: First hi-resolution Synthetic Aperture Radar (SAR) in

high altitudes from airplanes (military)

Civil use: from ~1965

1960: Development of the Laser

(used in Remote Sensing since ~1980)

1960: Tiros I, first meteorological satellite. On board: Low-

resolution System, TV, 5-ch.Radiometer, Bolometer

Thermical Measurement

1961: Unmanned Mercury MA 4-Flug, first color picture from

Orbit

>1965: NASA starts analyzing the combined use of

multispectral and infrared imagery

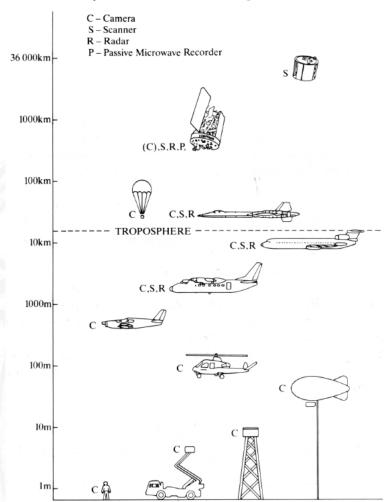
⇒ Landsat-Program (after 1972).

## **Today**

- Satellites provide a privileged viewpoint on the Earth
- Many Satellites in Orbit
  - Carrying different sensors for different tasks
  - Civil, Military
- Hi-Resolution is present!
- Large Infrastructures
  - European Space Agency
  - NASA
- Some Satellite Data even comes free of charge
  - → Landsat-Archive

## Pros and cons (1)

- Advantages of Remote Sensing
  - Synoptical measurements
    - Synoptische Messungen
    - Large areas on the Earth's surface can be acquired at once and at high velocity
  - Imaging of (otherwise) inaccessible parts of the Earth
  - High availability (yet)


## Pros and cons (2)

- Disadvantages of Remote Sensing
  - Measurements are restricted (close to) the surface
  - High technical efforts and huge budget needed
    - Typical development and start costs: ~ \$ 150 Mil
  - Cost-benefit ratio is hard to determine
  - Only privileged countries can afford satellites.
     (Industrial + few emerging countries, like India)

### **Observation Platforms**

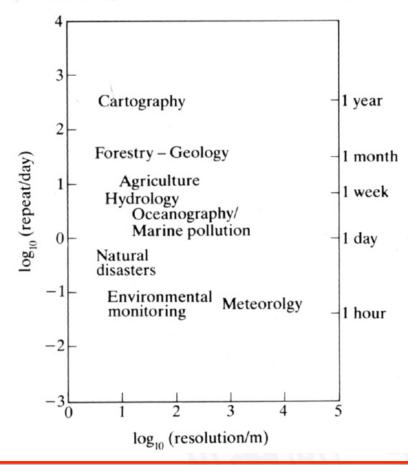

- Ground-based:
  - People,
  - Poles,
  - Captive balloons
    - Fesselballons
- Air-borne:
  - Aircrafts
  - Balloons
- Space-borne
  - Satellites
  - Space probes

Fig. 9.1. Remote sensing platforms, by height (schematic). (Reproduced by courtesy of the National Remote Sensing Centre, UK.)



## Affordances vs. Applications

Observational requirements (resolution and repeat period) for various disciplines. (Adapted from Fraysse, 1984.)



## **Applications for Earth Observation (1)**

#### Meteorology:

Measurement of air-temperature, pressure, humidity, wind velocity and direction

#### Oceanography:

Measurement of currents, temperature, altitude, wave spectra

#### Glacier science:

Monitoring of ice fields and sea ice

#### Geology, Geomorphology and Geodesy:

Classification of soil and rocks, observation of tectonic movements, measurement of the earth's properties (axis, size, gravitational field etc.)

## **Applications for Earth Observation (2)**

#### Topography and Cartography:

Digital Terrain/Elevation Models (DEM), high-precision maps

#### Agriculture and Forestry:

Prediction of harvest, spreading of vermin, forest lost

#### • Hydrology:

Monitoring of water reservoirs, prediction of (snow) melts

#### Climate Change:

Combination of Remote Sensing results with climate models, predict world climate change

## **Applications for Earth Observation (3)**

#### Disaster Control:

Prediction of earthquakes, warning for sand and dust storms, avalanches, floods, spreading of poisons in the air, monitoring of disasters in unreachable areas

#### Planning:

Creation of land use maps, finding acre and mining areas, traffic monitoring

#### Military applications:

Early warning systems, monitoring of vehicles and troops, terrain analysis

**Example for Disaster Control: Phuket (1)** 

#### **Phuket (Thailand)**

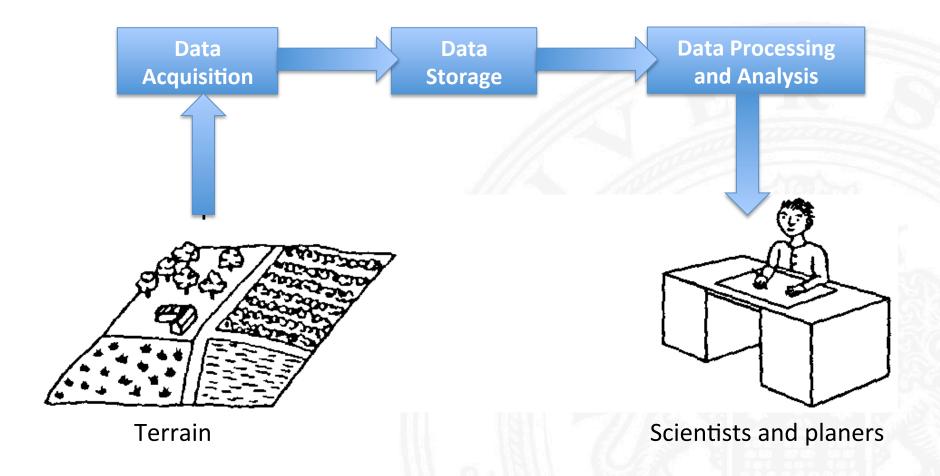
• Left: 2002/11/15

• Right: 2004/12/31

Satellite: Terra

Sensor: ASTER multi-

spectral radiometer


Resolution: 15m



## **Example for Disaster Control: Phuket (2)**



## Scheme of a Remote Sensing System



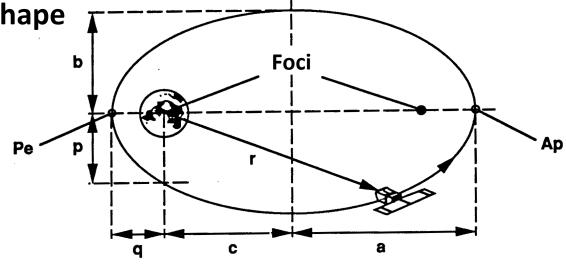
### **Challenges**

- High-resolution images → Big Data handling
- Sensor-Fusion of multi-modal sensors
- Large-scale vs. small scale features
- Availability of satellite data
  - Commercial interests
  - Available satellites
- Prediction instability
  - Global warming?
  - Climate change!

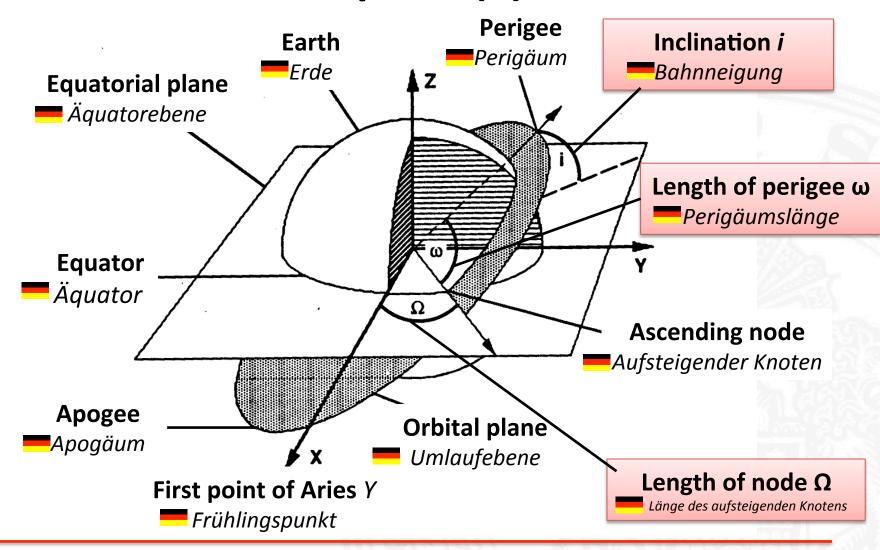
#### Literature

- Albertz, J. (2007). Einführung in die Fernerkundung: Grundlagen der Interpretation von Luft- und Satellitenbildern. Wissenschaftliche Buchgesellschaft, Darmstadt, 3. edition.
- Lillesand, T. M., Kiefer, R. W., and Chipman, J. W. (2008). Remote Sensing and Image Interpretation. Wiley, Hoboken, NJ, 6th edition.
- Richards, J. (2009). Remote sensing with Imaging Radar. Springer.
- Richards, J. A. and Jia, X. (2006). Remote Sensing Digital Image Analysis.
   Springer Verlag, Berlin Heidelberg New York, 4 edition.
- Floyd S. Sabins (2007): Remote Sensing: Principles and Interpretation.
   Long Grove, 3<sup>rd</sup> Edition, Waveland Press
- W. G. Rees (2012): Physical Principles of Remote Sensing, Cambridge Press

## **Gravitational Astronomy**


- EO Satellites are artificial systems, which move without permanent thrust for longer time periods on an orbit around the Earth.
- As a first approximation, this motion can be described by means of the two-body problem Zwei-Körper-Problem
  - → determine the motion of two point particles that interact only with each other.
- Simplifications needed:
  - Earth's mass is spherically symmetric
  - Mass of Satellite is negligible
  - Gravitation is the only (external) force affecting the Satellite
  - → **Kepler's laws** become applicable.
    - Die Kepler`schen Gesetze

### **Kepler's Laws for EO Satellites**


- 1. The orbit of every EO satellite is an ellipse with the Earth at one of the two foci.
- 2. A line joining an EO satellite and the Earth sweeps out equal areas during equal intervals of time.
- 3. The square of the orbital period of an EO satellite is proportional to the cube of the semi-major axis of its orbit.

**Orbital descriptors (1): Shape** 

- Semi-major axis a
- Semi-minor axis b
- Numerical Eccentricity e
- Orbital Period T
  - **U**mlaufzeit



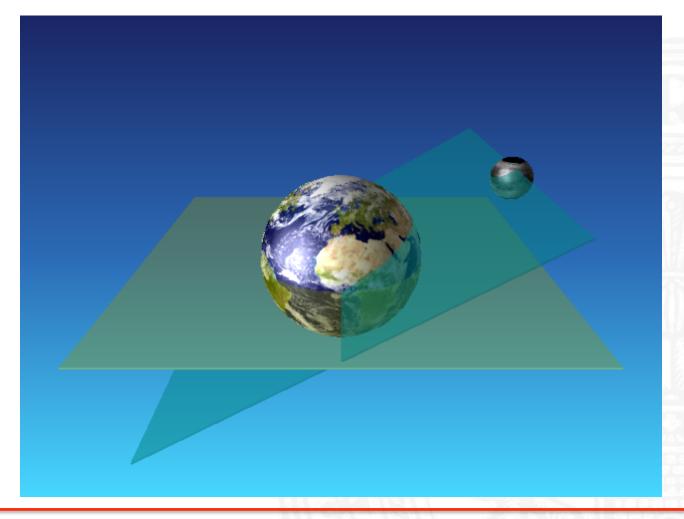
### **Orbital descriptors (2): Position**



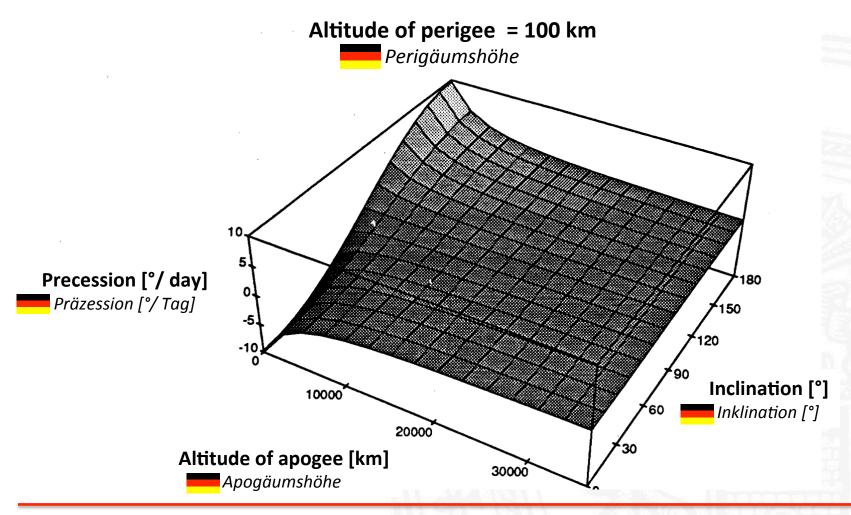
## Orbital descriptors (3): Reference planes and Epochs

- The reference planes of the equator and ecliptic vary periodically due to precession and nutation
- The first point of Aries travels through each sign of the zodiac each ~25800 years
- Orbital elements and other position indices are useless, unless we know about the specific epoch, which defines the reference planes of:
  - Celestial equator
    - **Himmelsäquator**
  - Ecliptic
    - **E**kliptik

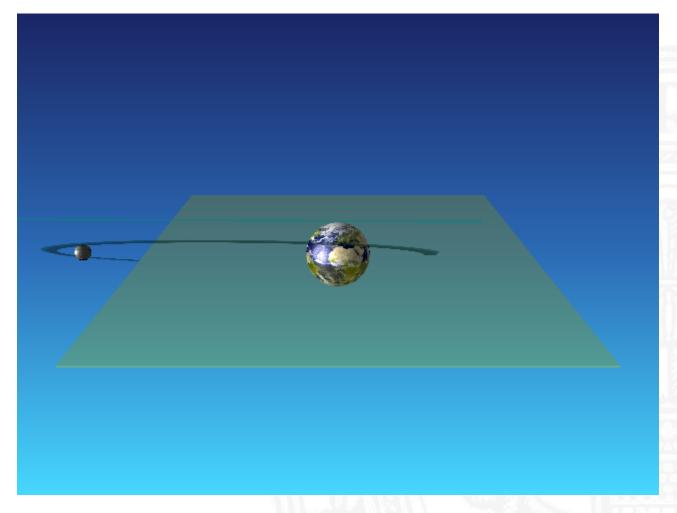
## Precession of the First Point of Aries Platonic Year



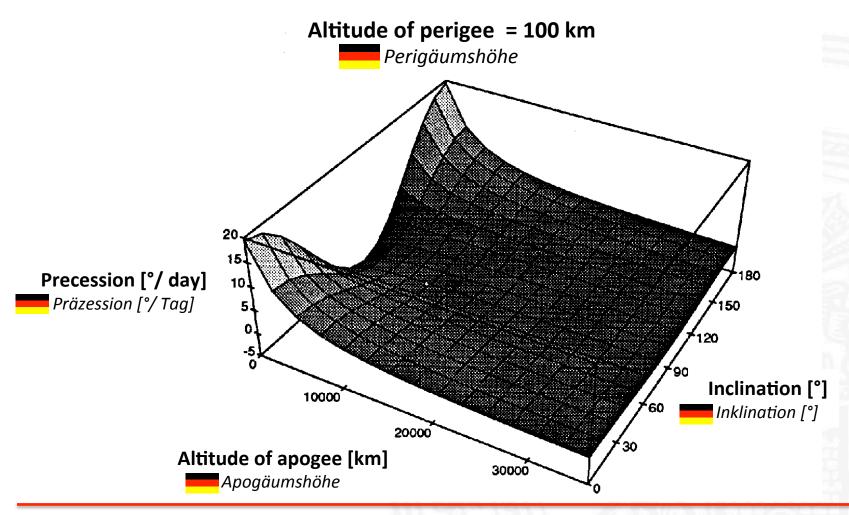

#### **Perturbation**




- Satellite Orbits often deviate (widely) from gravitational definition. Perturbation may caused by:
  - Unequal mass distribution of the Earth
  - Rests of the Earth's atmosphere
  - The sun, the moon and other planets
- Effects:
  - Precession of the ascending node
  - Precession of the perigee
  - Extension of the draconian obital period


## Perturbation (1): Precession of the Ascending Node




## Perturbation (1): Precession of the Ascending Node



## Perturbation (2): Precession of the Perigee



## Perturbation (2): Precession of the Perigee



### **Earth's Gravity Field**

