

IP2: Image Processing in Remote Sensing

2. Orbits, Acquisition Constraints and Missions

Summer Semester 2014 Benjamin Seppke

Agenda

- Orbital Computations
- Space borne Earth Observation
 - Orbits
 - Exemplary satellites
- Acquisition Constraints
 - Spatial and Temporal Coverage
 - Task-dependent Affordances
- Missions

Ikonos

Orbital Computations (1)

Shape:

- Computations are based on semi-major axis a and semi-minor axis b
- If the shape is given w.r.t. Apogee Ap and Perigee Pe:

$$a = \frac{1}{2}(Ap + Pe)$$
 arithmetic mean $b = \sqrt{Ap \cdot Pe}$ geometric mean

Attention:

— If altitudes are given for the orbits, the Earth's radius/ diameter needs to be added!

Orbital Computations (2)

• Orbital period *T*:

$$T = 2\pi \sqrt{a^3 (GM)^{-1}}$$

with $GM \approx 398600.4419 \text{ km}^3 \text{s}^{-2}$

- Velocities for an Orbit with semi-major a and eccentricity e
 - Max speed (at Perigee)

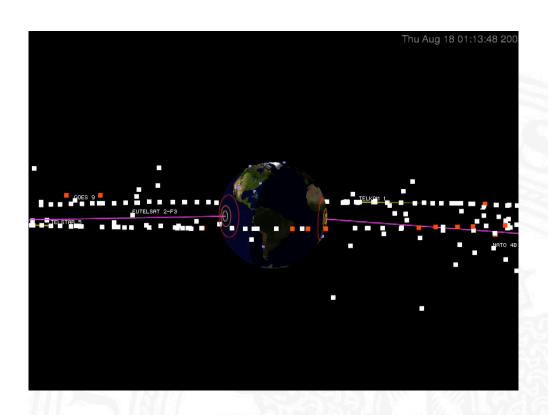
$$v_{\text{max}} = \sqrt{\frac{(1+e)GM}{(1-e)a}}$$

Min speed (at Apogee)

$$v_{\min} = \sqrt{\frac{(1-e)GM}{(1+e)a}}$$

Orbits of EO Satellites

- Geostationary
- Geosynchronous
- Molniya
- Sun synchronous
- GPS
- Altrimetric

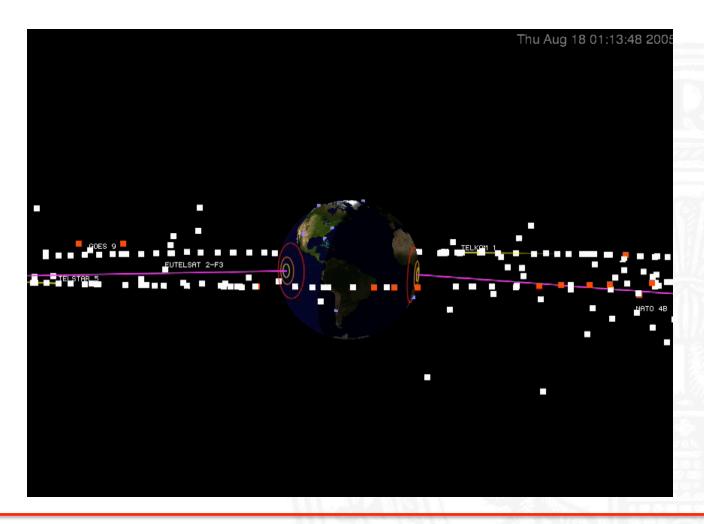


Geostationary Orbits

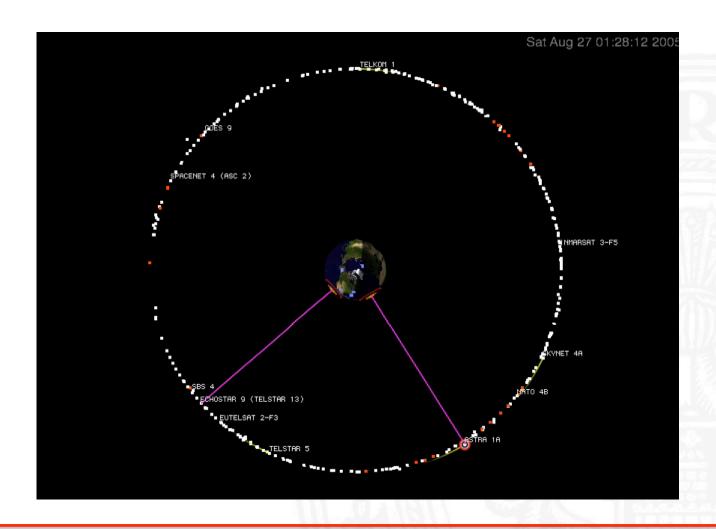
- Satellite stays over a fixed point above the equator.
 Used for:
 - Communication Satellites
 - Weather Satellites

Orbital Period of the Satellite needs to be equal to the Rotation Period of the Earth: $P_E = 86164 \text{ s.}$

Satellites on Geostationary Orbits (1)



Satellites on Geostationary Orbits (2)



Disadvantages of Geostationary Obits

- High orbital altitude → large distance to Earth, low resolution.
- Restricted to equatorial regions, poles cannot be monitored
- Typical radii of the observation circle are between 55°- 65°).

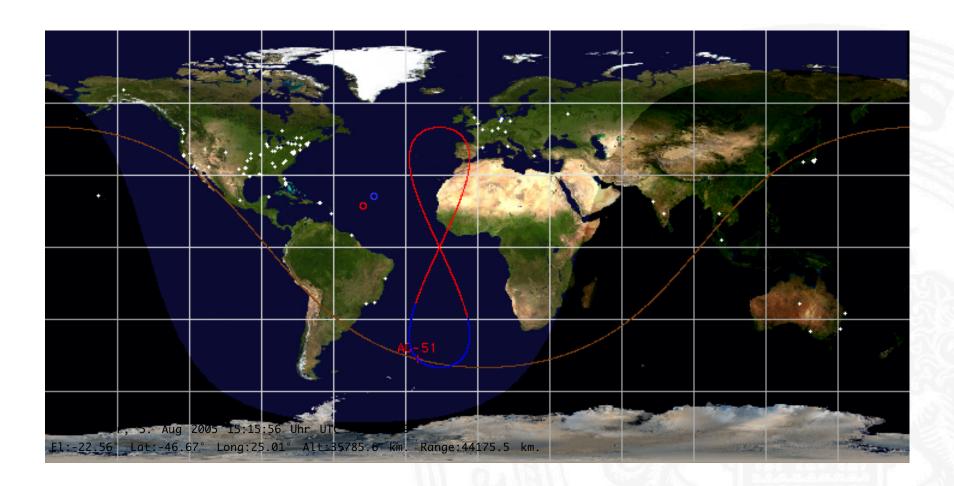
Geosynchronous Orbit

- Similar to geostationary orbit, but with an oribtal inclination w.r.t. the equator.
- Orbital period of the satellite is still equal to the rotation period of the Earth: $P_E = 86164 \text{ s}$.

a = 42170 km, 35800 km above the equator

 Geosynchronous satellites can monitor polar regions, since they meander between Northern and Southern Hemisphere of the Earth periodically.

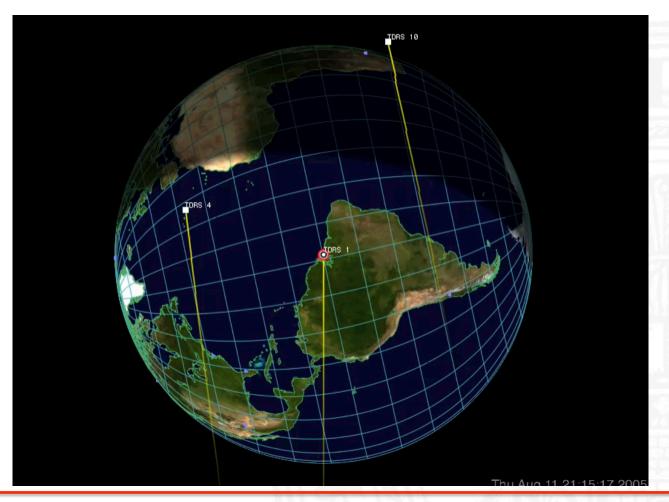
Ground-Track of a geosynchronous Satellite



Example of Geosynchronous Satellites:Tracking and Data Relay Satellite System (TDRSS)

- Consists of:
 - 3 geosynchronous satellites,(2 active, 1 reserved)
 - Distance by means of longitude ≥ 120°.
- Operation purpose:
 - Telemetry applications
 - Relay stations for other satellites, particularly Landsat.

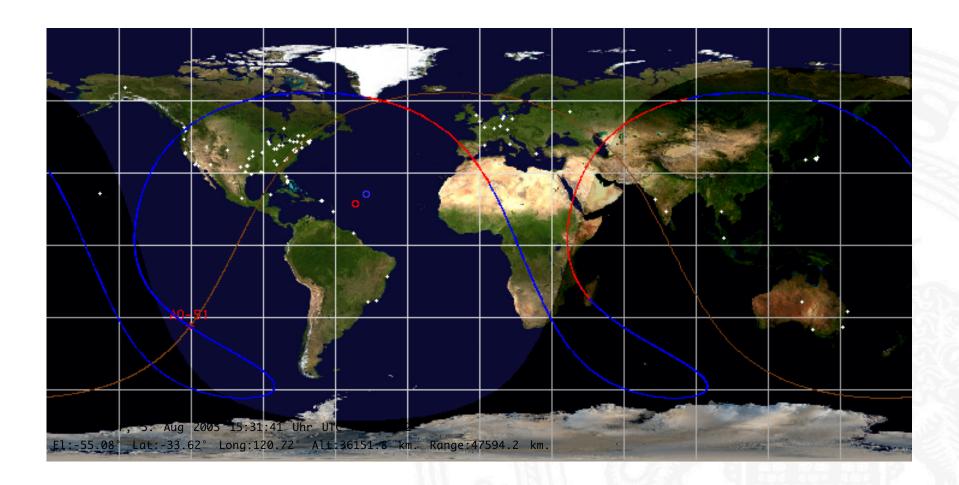
TDRSS Satellites in Orbital Motion



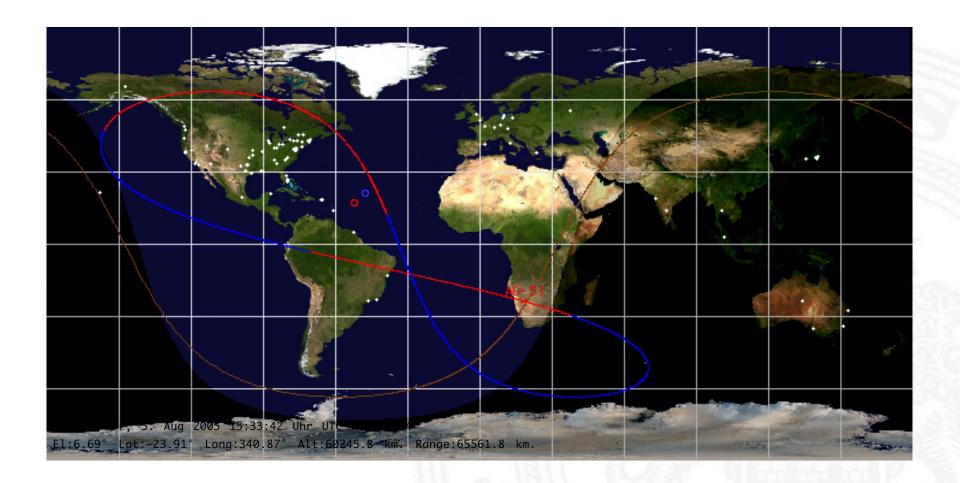
Molniya-Orbits

- From Russian: МОЛНИЯ, Flash
- Orbits for satellites to observe certain latitudes longer than others.
- Particularly used for communication satellites, military satellites like early-warning systems.
- Properties:
 - High eccentricity
 - Apogee above latitude to be monitored
 - Perigee above "uninteresting" latitudes

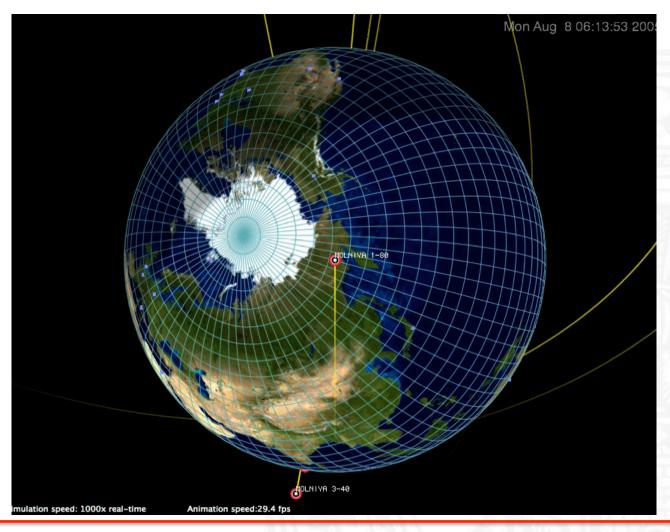
Molniya Orbit, P=1/2 day



Molniya Orbit, P=1 day (geosynchronous)



Orbital Motion of a Molniya Satellite



Non-rotating Orbit

If the apogee shall stay on the same (geographic)
 Latitude, than the length of the Perigee needs to be:

$$\omega = 0$$

$$\omega = \Omega \frac{1 - 5\cos^2(i)}{2\cos(i)}$$

$$\cos(i) = \frac{1}{\sqrt{5}}$$

Non-rotating Orbits have inclination angles of:

$$i = 63.4^{\circ} \text{ or } i = 116.6^{\circ}$$

Sun Synchronous Orbits

Motivation: Similar illumination on each visit of an area on the Earth's surface. Examples:

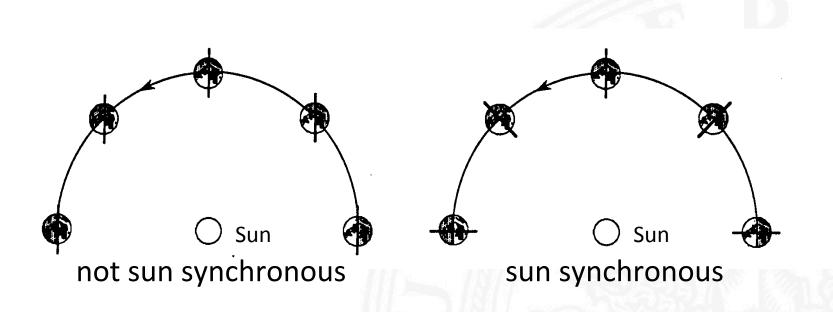
Light direction:

- From behind: Images without shadows
- From side, in front: high contrasts, use of shadows as indictor for the measurement of heights (e.g. mountain peeks)

Classification

- Same sun illumination makes observations comparable
- Easier image fusion (might be) sufficient

Sun Synchronous Orbits



Preconditions for Sun Synchronous Orbits

- Apparent angular velocity of the Sun *:
- scheinbare Winkelgeschwindigkeit

$$\Omega_{ss} = 360^{\circ} / year = 1.991 \times 10^{-7} s^{-1}$$

- Precession of the ascending node must be equal to the apparent angular velocity of the Sun
- Holds, if semi-major of the orbit a_{ss} fulfills:

$$\frac{a_{ss}}{1000 \, km}^{\frac{7}{2}} = -6624.6 \cdot \frac{\cos(i)}{\left(1 - e^2\right)^2}$$

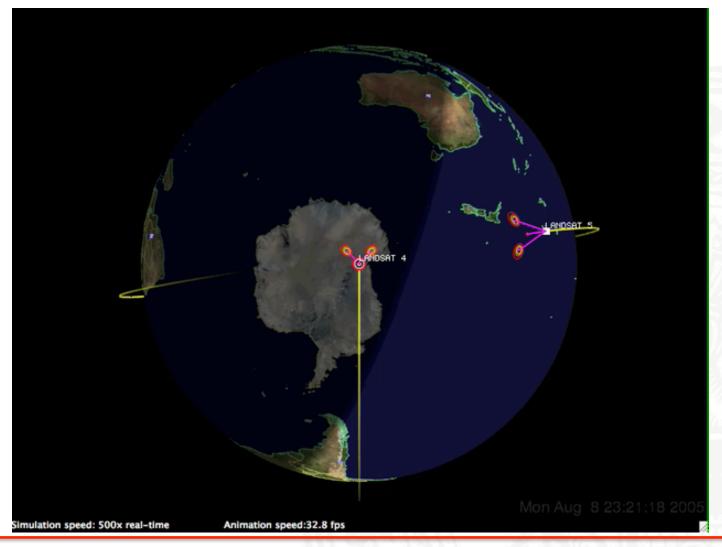
- E.g. $a_{ss} = 7878$ km, e = 0, $i = 102^{\circ}$
- Generally: Inclination ≥ 96°

→ also called: Polar Orbits

Sun Synchronous Satellite: Landsat 4

- Altitude: ca. 705 km,
- Inclination: 99.2°
- Sensors:
 - Thematic Mapper (7-Band, TM)
 - Multi Spectral Scanner (4 Band, MSS)
- Crosses the equator at 9:30 a.m. local time
- Civil Earth Observation:
 - Monitoring of Forests
 - Vegetation
 - Geology etc.

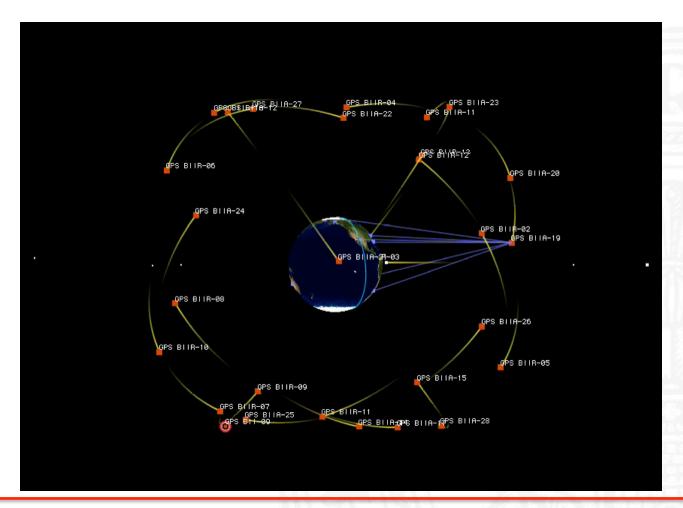
Landsat Ensemble: Sun Synchronous Orbits



GPS Orbits

- Setup:
 - 24 Satellites
 - 6 levels of altitudes, 4 satellites per levels
 - Inclination: 55°
 - (Lowest) altitude: 20200 km.
- Each Satellite is equipped with:
 - 2 Cesium clocks
 - 2 Rubidium clock
 - Detectors for nuclear explosions.
 - 710 Watt solar panel (Diameter 5.3 m)
- Planned lifetime: 7.5 years per satellite

GPS Ensemble: Orbital Motion

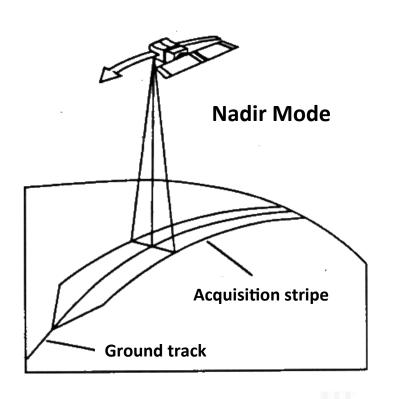


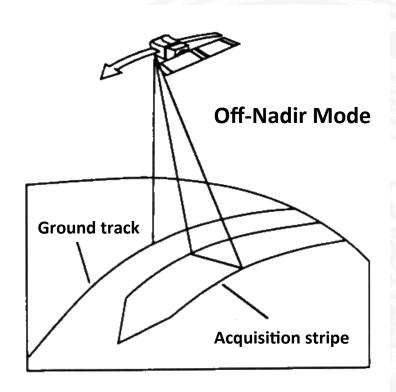
Requirements for EO tasks

Different earth observation tasks may need special:

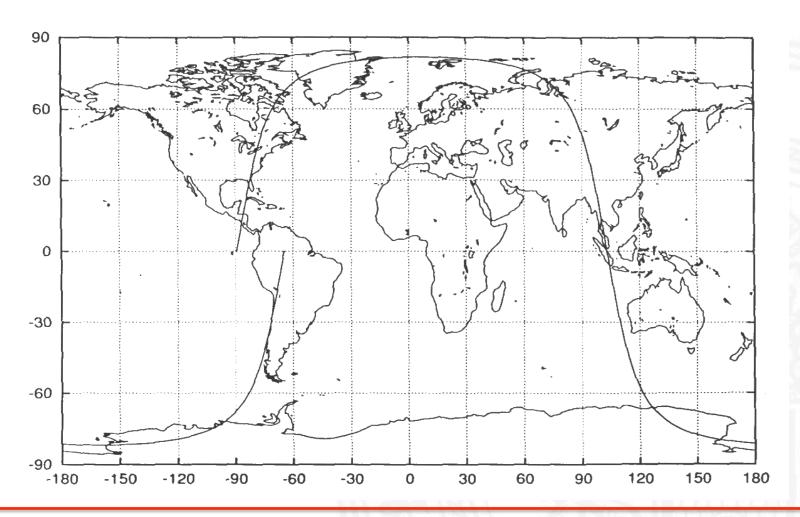
- resolution,
- Acquisition stripe
 - **—**Überdeckungsstreifen
- Repetition rates
 - Wiederholrate
- Sampling
- Crossing angles of ground tracks

Nadir and Off-Nadir Mode

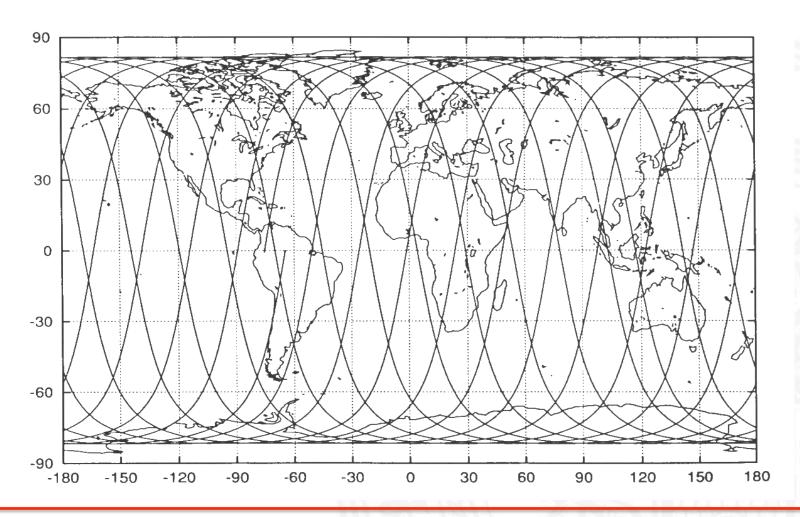




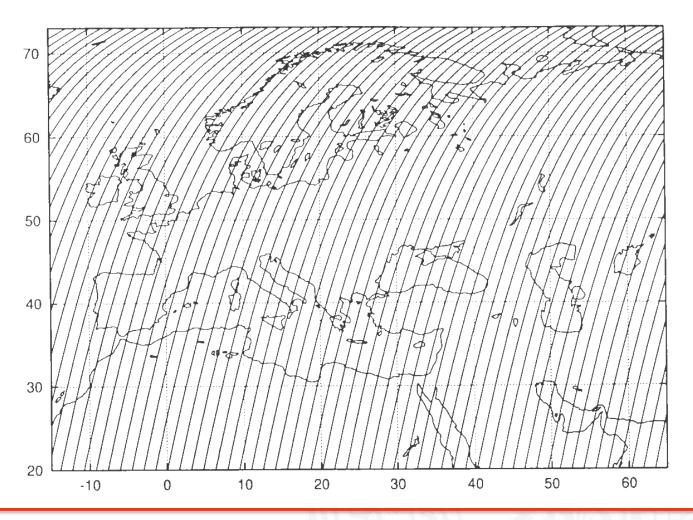
Landsat 4,5: Ground Track of one Orbit



Landsat 4,5: Ground Track of one Day



Landsat 4,5: All Ground Tracks of a Cycle



Exact Orbit Repetition

 If a certain location shall be monitored periodically, we will need an exact repetition of the ground track:

$$P_N(\Omega_e - \Omega) = 2\pi \frac{n_1}{n_2}$$

$$\Omega_e = \frac{2\pi}{P_E}$$
 Rotation velocity of the earth,

$$\Omega = \frac{2\pi}{P}$$
 Rotation velocity of the satellite

 n_1 Revisit time,

 n_2 Orbit count between two (re-)visits

 n_1, n_2 Coprime natural numbers, Teilerfremd

Example: ERS 1

 $a = 7153135 \, m, e = 0.00117, i = 98.5227^{\circ}$

$$\Omega = 1.997 \times 10^{-7} s^{-1}$$

$$P_N(\Omega_e - \Omega) = 6027.9 s$$

$$\frac{n_1}{n_2} = 0.06977 = \frac{3}{43}$$

$$n_1 = 3, n_2 = 43$$

- ERS-1 visits a given location each third day, after 43 Orbits
- "Neighbored" ground tracks are spaced by $360^{\circ}/43 = 8.4^{\circ}$.
 - At equator: 930 km,
 - At 60° latitude: 460 km
- The acquisition stripe needs to have a width of at least $930~{\rm km}$ to monitor the complete earth from that orbit.

Altrimetric Orbits

 To generate height measurements from space, the orbits of the (used) satellites should cross each other over the location to measure in a right angle:

$$\cot\left(\frac{\chi}{2}\right) = \cot(i) - \frac{2\pi\sqrt{a^3(GM)^{-1}}}{P_E\sin(i)}$$

- Example: $\chi = 90^{\circ} \Rightarrow i = 40^{\circ}$ or $i = 130^{\circ}$
- One should also take the revisit time into account!
 Particularly if the measured subject is periodically varying:
 e.g. sea surface height (tidal change)

Space Missions

- Rockets and energy requirement
- Data transmission/acquisition:
 - Ground stations,
 - Relay satellites
- Lifetime
- Big vs. small satellites

Rockets, Energy Requirements and Launch

Rocket Equation (at vacuum, without gravity):

$$\Delta V(m_i, m_f) = U \ln \left(\frac{m_i}{m_i - m_f}\right)$$

with

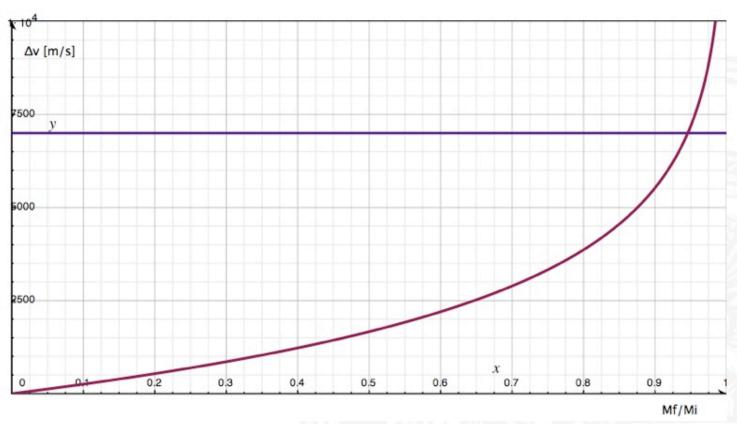
 m_i : (Overall) rocket mass

 m_f : Burned fuel

 ΔV : velocity acceleration

U: exit velocity of fuel

Rocket Equation



- Typical velocity in low altitude orbits 7km/s, U=2.4km/s,
- Rocket mass has to consist of fuel by 95%!

Example: Ariane 1

European Rocket for geosynchronous orbit launches with 7° inclination:

• First Start: 24.12.1979

Launch costs: \$ 32 Mil (1985)

Development costs: 2 Bil € (1986)

Payload: 1850 kg

4 Stages:

Stage	Gross mass [kg]	Empty mass [kg]	Thrust [kgf]	Burn Time [s]	Length [m]
1	160 000	13 000	282 660	145	18.4
2	37 130	3625	73 518	132	11.5
3	9 687	1 457	6 289	563	10.2
4	369	34	1 978	50	1.1

Lifetime of Satellites

- The lifetime of a satellite is restricted by:
 - Energy requirements:
 - If not all necessary energy can be produced by the solar panels
 - Orbital Altitude
 Atmosphere may slow down the satellite's velocity (highest effect at perigee)
 - Flexibility w.r.t. orbital maneuvers
 Each Orbit change vector costs valuable and finite fuel
- Plus: Other unexpected effects, like sun storms, particle/objects collisions etc.

Altitude Loss per Orbit Cycle: $\delta(a)$

$$\delta(a) = \frac{4\pi A a^2}{M} \rho(a)$$

with:

a: semi-major axis of the orbit

A: Effective cross section

Wirkungsquerschnitt

M: Satellite's mass

 $\rho(a)$: Atmospheric density

Approximate Lifetime: τ

• Lifetime τ is assumed to be proportional w.r.t. M and

A for a given orbit:

$$\tau = \frac{M f(h, e)}{A}$$

with:

h: Perigee height

e: Eccentricity

A: Effective cross section

Wirkungsquerschnitt

M: Satellite's mass

