

IP2: Image Processing in Remote Sensing

3. Electromagnetic Radiation I: Waves and Basic Principles

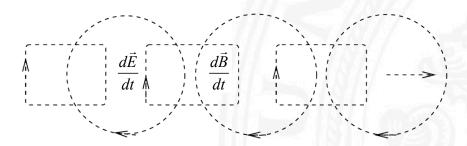
Summer Semester 2014 Benjamin Seppke

Agenda

- Electromagnetic Waves
- Harmonic Oscillation
- Interaction with Transmission Medium
- Wave packages
- The Doppler Effect
- Other Relativistic Effects

Electromagnetic Radiation

- EM Radiation is the most important transmission medium for Remote Sensing applications
- Consists of electric and magnetic fields (Maxwell's Equations)
- Creation of spatial EM waves:
 - A temporal varying electric field creates a magnetic field
 - A temporal varying magnetic field creates an electric field
 - → A traversal wave is created.



E: electric field strength

elektrische Feldstärke

B: magnetic field intensity

magnetische Feldstärke

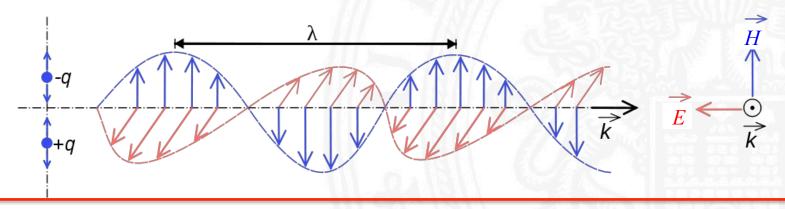
EM Spatial Waves

A planar EM wave consist of:

- An electric field, which oscillates perpendicular to the travelling direction k. It is described by the vector of electric field strength E.
- A magnetic field, perpendicular to the electric field and oscillating perpendicular to the travelling direction k. It is described by the vector of magnetic field intensity H.

Characterization of the EM wave:

- Wavelength: λ
- Frequency: ν
- Velocity: $v = \lambda v$ (at vacuum: c)



Maxwell's Equations

Following Rees, 1990:

$$\nabla \cdot \vec{E} = 0$$

$$\nabla \cdot \vec{\mathbf{B}} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{\boldsymbol{B}} = \frac{\mu_r \varepsilon_r}{c^2} \frac{\partial \vec{\boldsymbol{E}}}{\partial t}$$

with:

Inductivity: $\vec{B} = \mu_0 \mu_r \vec{H}$

and material properties:

Dielectric constant: ε

 \blacksquare Dielektrizitätskonstante: arepsilon

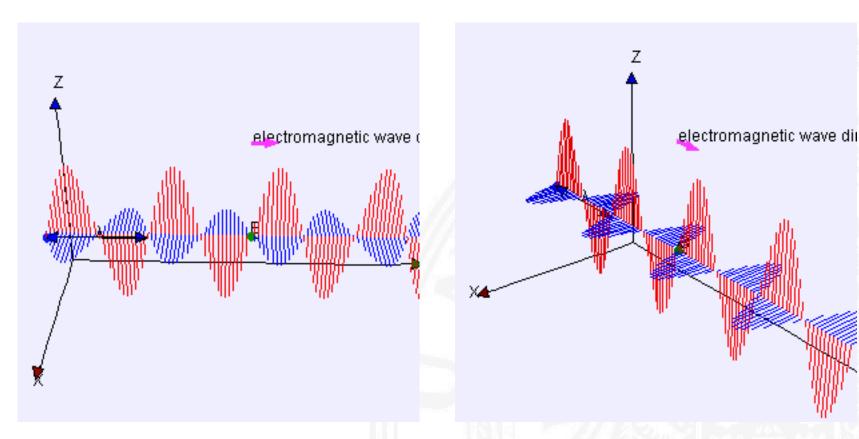
Permeability: μ

— Permeabilität: μ

Notation for material property coefficients:

- Inside vacuum: $\varepsilon_{ heta}$, $\mu_{ heta}$
- Inside a medium (relative to vacuum): ε_r , μ_r or: ε , μ

Maxwell's Equations: Live-Demo



Created with:

https://dl.dropboxusercontent.com/u/44365627/lookangEJSworkspace/export/ejs_users_sgeducation_lookang_emwavewee.jar

General Properties of EM Waves

- Die planar spatial wave is a transversal wave.
- The electric field E is perpendicular to the magnetic field H(B) the travelling direction of the wave $E \times H(E \times B)$ and is perpendicular to both fields
- The oscillation plane of the *H*-vector is called polarization plane of the wave.
- The oscillation plane of the *E*-vector is called oscillation plane of the wave..
- The vector $E \times B$ is called Pointing vector S.
- The energy transport of the wave in performed in the direction of S:

 $|S| = E \cdot B$ gives the energy, which is transported perpendicular to the travelling direction. (in time units per area units).

Planar EM Waves Equation

Given as a solution of Maxwell's Equations in homogeneous isotropic, non-magnetic media with the following wave equations:

$$\nabla^2 \vec{E} - \mu_0 \varepsilon_0 \mu_r \varepsilon_r \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

$$\nabla^2 \vec{B} - \mu_0 \varepsilon_0 \mu_r \varepsilon_r \frac{\partial^2 \vec{B}}{\partial t^2} = 0$$

with (partial) spatial derivatives:

$$\nabla^2 \vec{E}, \nabla^2 \vec{B}$$

and (partial) temporal derivatives:

$$\frac{\partial^2 \vec{\boldsymbol{E}}}{\partial t^2}, \frac{\partial^2 \vec{\boldsymbol{B}}}{\partial t^2}$$

Note: Temporal change of a wave at a location yields to a change of the wave in travelling direction.

Harmonic EM Waves (1)

For harmonic waves, the wave equation is given by:

$$\nabla^{2}\vec{E} - \frac{\omega^{2}}{c_{r}^{2}}\vec{E} = 0$$
 with:
$$v = c_{r} = \frac{c_{0}}{\sqrt{\mu_{0}\varepsilon_{0}\mu_{r}\varepsilon_{r}}}$$

$$c = c_{0} = \frac{1}{\sqrt{\mu_{r}\varepsilon_{r}}}$$

Using Euler's Formula, we can express the wave function complex-valued:

 $\vec{E} = \vec{A}e^{i(kr - \omega t + \phi)}$

and:

with:

- \vec{A} Amplitude
- ω Complex angular frequency
- *t* Time point
- k Wave vector at medium
- ^r Space point
- ϕ Phase

Euler's Formula

$$\cos x = \frac{1}{2} \left(e^{ix} + e^{-ix} \right)$$

$$\sin x = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right)$$

- $k = \frac{2\pi\sqrt{e_r}}{\lambda}$
- $\lambda = \frac{2\pi c_0}{\omega}$ Wavelength
- $v = \frac{\omega}{2\pi}$ Frequency

Harmonic EM Waves (2)

Another definition: The wave can be described by a sine in a three dimensional space: The electric field strength E is parallel to the x-axis, the vector B is parallel to the y-axis, the travelling direction of the wave z.

with:

$$\vec{E}_{y} = \vec{E}_{z} = 0$$

$$\vec{E}_{x} = \vec{E}_{0} \cos(\omega t - kz)$$

$$\vec{B}_{x} = \vec{B}_{z} = 0$$

$$\vec{B}_{y} = \vec{B}_{0} \cos(\omega t - kz)$$

$$\omega = 2\pi v = \frac{ck}{n}$$
 Angular frequency $k = \frac{2\pi}{\lambda}$ Wave number $v = \frac{c}{\lambda n}$ Frequency $v = \lambda v = \frac{c}{n}$ Phase velocity $n = \sqrt{\varepsilon \mu}$ Refractivity Brechungsindex

- E_0 , B_0 are amplitudes of field intensities
- kz space dependent variation of field intensity
- ωt space dependent variation of field intensity

The Transmission Medium

- General properties
- Impedance
 - Wellenwiderstand, Impedanz
- Dielectric constant
 - **—** Dielektrizitätskonstante
 - Absorbing media
 - Dispersing media
 - Plasma

Transmission Medium: General properties

- c_r (or v) denotes the phase velocity of a wave inside the medium,
- c_0 (or c or C) = 2.99792458×10⁸ m/s the phase velocity of a wave inside vacuum.
- The permeability μ_r (usually) equals 1 (for non-magnetic media)
- The dielectric constant ε_r (usually) varies between 1 to 80. [Elachi, 1987]
 - ε_r is a function of the frequency \rightarrow dispersion!

Transmission Medium: Impedance

- The electric and the magnetic field intensity are oscillating with same phase, thus the ratio of both field intensities (the impedance) remains constant.
- The impedance Z is a characteristic constant of a medium.
- Z_0 denotes the "impedance at vacuum".

$$Z = \frac{E}{H} = \frac{E}{B} \mu_r \mu_0 = \frac{E_0}{B_0} \mu_r \mu_0 = v \cdot \mu_r \mu_0$$
$$= \sqrt{\frac{\mu_r \mu_0}{\varepsilon_r \varepsilon_0}} = Z_0 \sqrt{\frac{\mu_r}{\varepsilon_r}}$$
$$Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 377\Omega$$

• Impedance is inverse proportional to the phase velocity of the wave: The higher the impedance, the slower the wave!

Transmission Medium: Dielectric constant

• **Remember:** The phase velocity v of a spatial wave depends on the dielectric constant ε of the medium:

$$v = \frac{c}{n}, \quad n = \sqrt{\varepsilon \mu}$$

- Assuming $\mu = 1$ it follows that $n = \sqrt{\varepsilon}$
- Attention! Only valid for lossless transmission media the wave needs to pass the medium without loss of energy.

Dielectric Constant in Absorbing Media

• In absorbing media, the dielectric constant ε is complex valued:

$$\varepsilon = \varepsilon' - i \cdot \varepsilon''$$

And so is the refractivity:

$$n = n' - i \cdot \kappa$$

• Alternate notation (with $tan(\delta)$ - loss tangent):

$$n = \varepsilon' \Big(1 - i \cdot \tan(\delta) \Big)$$

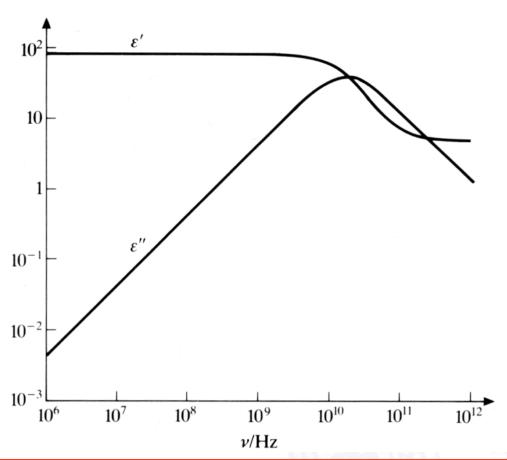
Verlusttangens

Dielectric Constant in Dispersive Media

- In non-polarizing media, ε and ε are constant.
- If the medium is polarizing, ε and ε are (as well as the refractivity n) depending on the frequency of the wave.
 - → Dispersion, e.g. water, glass
- The frequency dependency of dispersive media is expressed by the Debye Equation (resonance effects, see Rees 1990)
- In electrically conducting medias, the imaginary component of the refraction index depends on the conductivity of the material.

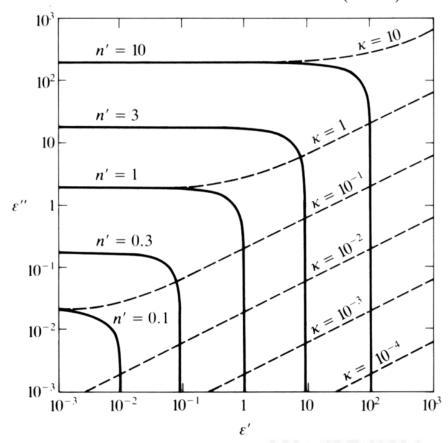
Example: Refraction Index of Water

Fig. 2.2. The real and imaginary parts of the dielectric constant of pure water at 20 °C.



Dielectric constant vs. refraction index

Fig. 2.3. The relationship between dielectric constant $(\varepsilon' - i\varepsilon'')$ and refractive index $(n' - i\kappa)$.



Dielectric Constant in Plasma

- In plasma (e.g. inside the Ionosphere) all atoms are ionized.
- Let:

N be the count of ions per volume unit m be the mass of the particles:

$$\varepsilon = n^2 = 1 - N \frac{e^2}{\varepsilon_0 m \omega^2}$$

Observations:

- *n* is real valued for high frequencies and imaginary valued fro low frequencies
- ε may become smaller than 1.
 - \rightarrow The phase velocity becomes larger than c (speed of light)!

Waves Packages

Wellengemische, Wellenpakete

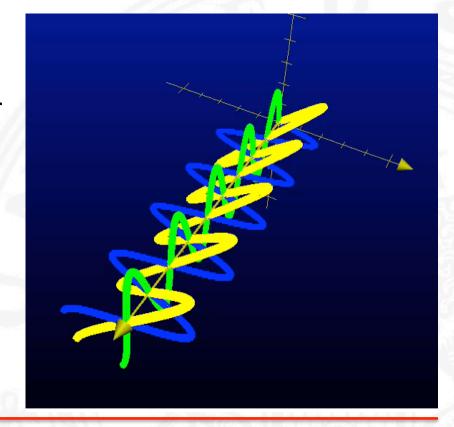
From single waves \rightarrow wave packages:

- Polarization
 - Linear
 - Circular
 - Elliptic
- Coherence
- Wave packages' velocities
 - Phase velocity
 - Group velocity

Linear Polarization

An EM wave is linear polarized, if the electric field E oscillated within a fixed plane.

- Horizontal Polarization:
 The vector *E* is perpendicular to the plane of incidence of the radiation.
- Vertical Polarization:
 The vector *E* lies within the plane of incidence of the radiation.

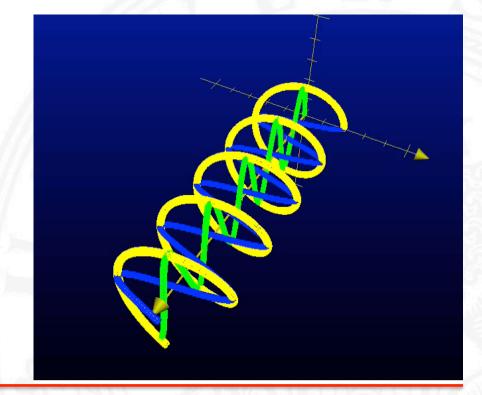


Circular Polarization

The superposition of two polarized waves of **equal** phase and wavelength yields to a new **linear polarized** wave. The polarization plane is given by the addition of both electric

fields.

 The superposition of two linear polarized waves of different polarization and phase yields to a circular polarized wave, with a rotating direction of the electric field



Further Polarization Properties

- The relative phase of both components determines if the resulting wave is:
 - Circular (shape of the helix is a circle)
 - Elliptic (shape of the helix is an ellipse) polarized
- Depending on the rotational direction is the wave called:
 - Left-hand (LHC) polarization (counterclockwise)
 - Right-hand (RHC) polarization (clockwise)
- Radiation is named non-polarized, if the polarization randomly varies
- Some sensors are only sensitive to certain polarization schemes, e.g. H- and V-Glasses for 3D movies at cinema

Coherence

The coherence of a wave package is the time, which passes between the amplitudes of strong correlations. More precisely:

• For two waves with frequencies v and $v + \Delta v$ the coherence time Δt is defined as the amount of time, after which the phases are shifted one cycle at each other:

$$v \Delta t + 1 = (v + \Delta v) \Delta t$$

$$\Rightarrow \Delta v \Delta t = 1$$

$$\Rightarrow \Delta t = \frac{1}{\Delta v}$$

The coherence length is defined as:

$$\Delta l = c \, \Delta t = \frac{c}{\Delta v}$$

Phase and Group Velocity

• The phase velocity v_p of a wave is the velocity at which the phase of the wave propagates in space:

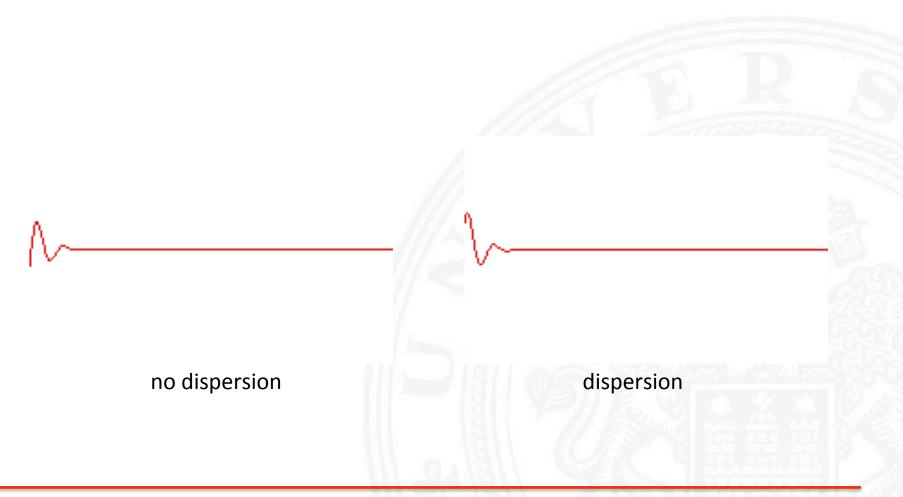
 $v_p = \frac{\omega}{k}$

• Sensors (often) do not measure the phase velocity but the group velocity v_g , which is the velocity of pulses, which are modulated on carrier waves:

 $v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k}$

- The modulations results in additional frequencies. In dispersive media $v_g < v_p$ holds.
- v_g is the velocity, which is used to transport energy. Thus $v_g \leq c$ holds, too.

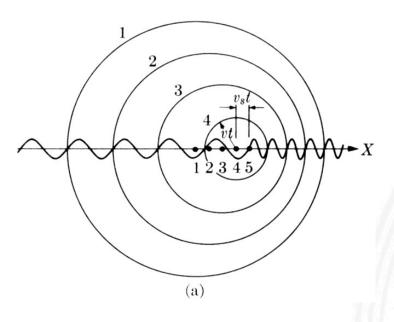
Phase and Group Velocity (2)



Doppler Effect

- The result of the observation of a wave's frequency depends on the velocity and direction of the observer, the sender and the transmission medium:
 - Moving sender
 - Moving observer
 - Moving reflecting, scattering body
- For large velocities (close to c), the Doppler Effect needs to be computed with the equations of the special relativity.
- For spatial EM waves, the Doppler effect depends only on the relative velocity between observer and sender
- For acoustic or surface waves other equations may be used for computation, depending on the motion of observer or sender or both.

Moving Sender



- The apparent wavelength is shortening in motion direction.
- The apparent wavelength is increasing opposite to the motion direction.
- Reason: velocity of sender adds to the velocity of the wave.
- For an observer from the side, only the velocity component of the sender in direction to the observer is "visible".

Doppler Effect for EM Radiation

High velocities require relativistic formulas:

$$\frac{v'}{v} = \frac{\sqrt{1 - \frac{V^2}{c^2} \cos^2(\Theta)}}{1 - \frac{V}{c} \cos(\Theta)}$$

with: *v* emitted frequency

v ' observed frequency

V relative velocity of sender S and observer O

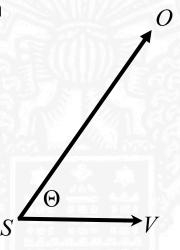
Θ Angle between motion and observation direction

(Very) small velocities: non-relativistic formula:

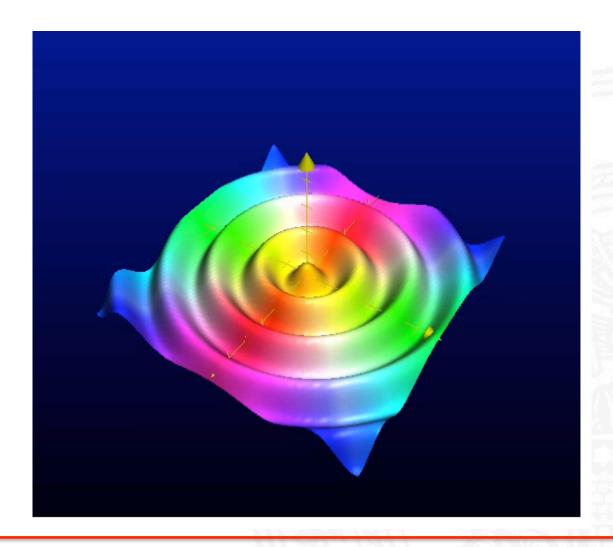
$$\frac{v'}{v} = 1 + \frac{V}{c}\cos(\Theta)$$

Example:

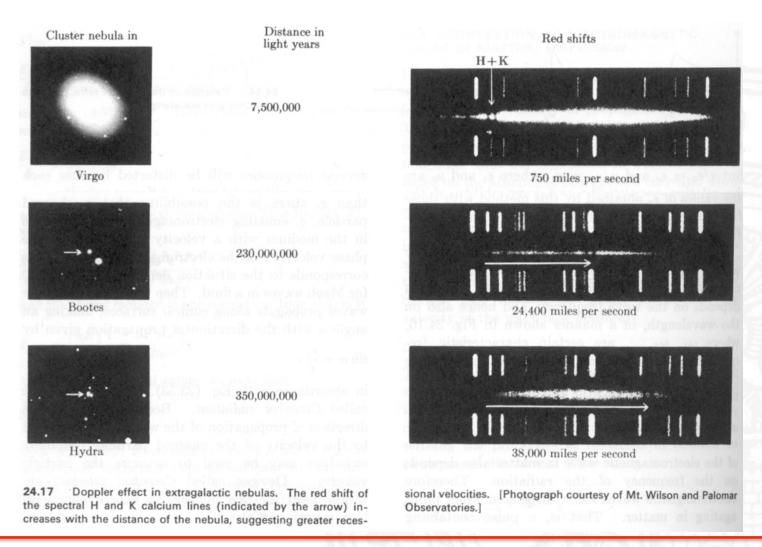
Satellite V = 7 km/s, $\Theta = 5^{\circ}$, $v = 5 \text{GHz} \rightarrow v - v' = 116 \text{ kHz}$



Doppler Effect: 0.1c - 0.9c

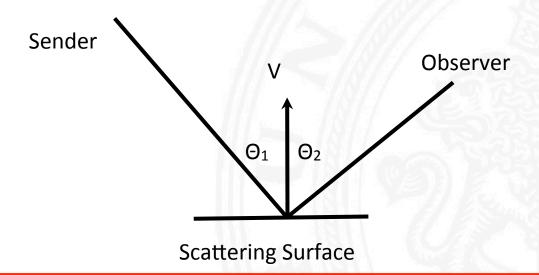


Relativistic Doppler Effect: The Expanding Universe



Moving Reflector and Scattering (1)

- The Doppler Effect also appears, if neither the signal source nor the sensor is moving!
 Precondition: the wave is scattered by a third object or is directly reflected from a moving object!
- Typical situation in RADAR-based Remote Sensing



Moving Reflector and Scattering (2)

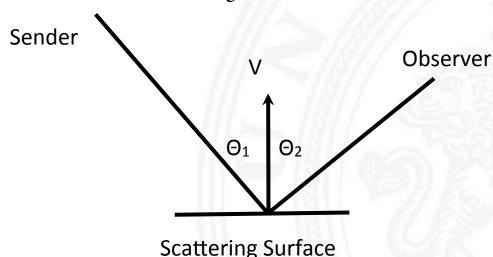
Computation of the increasing rate of the frequency vd

Observer and sender at different locations:

$$vd = v(\cos(\Theta_1) + \cos(\Theta_2))\frac{v}{c}$$

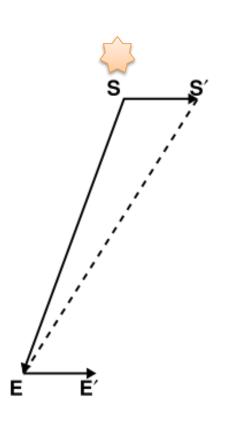
Observer and sender at the same location:

$$\Theta_1 = \Theta_2 = \Theta \Rightarrow vd = 2v\cos(\Theta_1)\frac{v}{c}$$



Aberration of Light

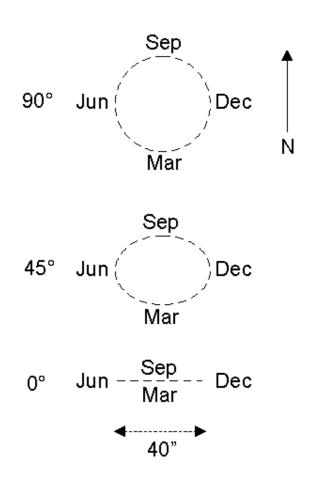
Abberation des Lichts

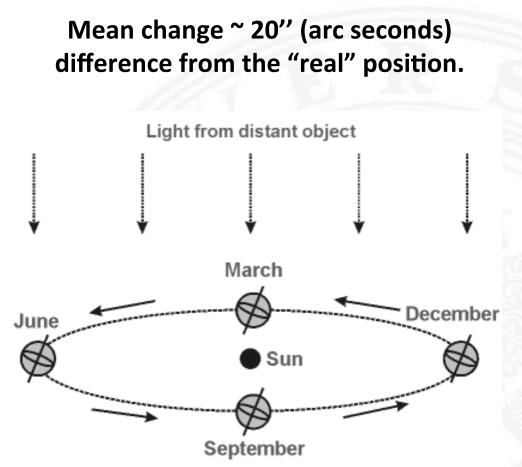


If observer and light source are moving relative to each other:

- not only the apparent frequency is changing but
- the apparent position of the light source is changing, too!

The Seasonal Aberration





Time of Flight

- For position measurements at large distances, the time of flight (of light) needs to be taken into account.
- We measure the position at the time of their emission, not at the arrival of the light.
- This can yield to large effects w.r.t. planetary space probes:
- Exemplary Runtimes:
 - Earth → Moon: ca. 1 second
 - Earth \rightarrow Sun: ca. 8.2 minutes