

IP2: Image Processing in Remote Sensing6. Sensors I:Types of Sensors and Optical Systems

Summer Semester 2014
Benjamin Seppke

Agenda

- Overview of Sensor Types
 - Spectral Range
 - Acquisition methods
- Optical Sensors
 - Photographic film vs. electro optic systems
 - Construction
 - Multi- and Hyper spectral Sensors
 - High-Resolution Systems
 - Challenges for Image Processing

Passive vs. Active Systems

Categories of Remote Sensing Systems

EM Spectrum and the Atmosphere

Bands for Optical (Multispectral) Sensors

Bands for Microwave Sensors

Typical Satellite Sensor Requirements

- Robustness
 - Huge (!) accelerations
 - (Low) Temperature
 - Cosmic radiation/particles, Sun winds
- Maintenance-free
 - Nearly impossible in orbit
 - Example: Hubble Space Telescope
- Low Energy consumption
 - Solar panels
 - Onboard batteries

The more requirements met, the higher the lifetime of a satellite sensor!

Today: Optical Sensors

- Passive acquisition of EM-Radiation at ~ 400 700 nm
- Two major system designs
 - 1. Framing Systems
 - Photographische Systeme

Measure all pixels of an image synoptically (at same time) Examples:

- Photographic films
- CCD Cameras (e.g. Digital SLR at ISS)
- 2. Scanning Systems
 - Abtastende Systeme

Measure (all) pixels of an image sequentially

 Attention: Different System designs yield to different image properties!

Framing Systems Photographische Systeme

FIGURE 1.11 Framing system for acquiring remote sensing images.

- Acquisition through an objective (here: lens)
- Shutter to control exposure time of light on:
 - Photographic film
 - Luminous surface

 (which is sampled by a Return
 Beam Vidicon (RBV) scanner)
 - CCD-Array
- Sensor size proportional to image size

Photographic Process

- Many photographic films are based on the photo sensitiveness of silver ions (e.g. silver iodide)
- Silver sensitized paper: gelatin emulsion of $100~\mu m$ thickness with embedded silver layer of $10~\mu m$.
- Exposed material changes crystal aggregation of film (even for very short expositions):

$$Ag^+ Br^- \rightarrow Ag + \frac{1}{2} Br^2$$

A developer (chem.)
 resolves the exposed
 silver crystals to metallic
 (black) grains

Fig. 4.1. Schematic diagram showing the construction of a typical photographic film.

Optical Density

Schwärzung

- The dependency between exposure and the resulting optical density is given by the density curve
- A measure of the optical density is given by the ratio of the incoming light flux ϕ_0 and the transmitted flux ϕ :

$$D = \log\left(\frac{\phi_0}{\phi}\right)$$

- *D* is dimensionless and of logarithmic scale:
 - D=1 if 10% of the incoming light flux is transmitted
 - -D=2 if 1% of the incoming light flux is transmitted
- A small D is (always) present, even without exposure!
- D may not be proportional to the exposure at low and high exposures!
- Linear part of the density:
 - Derivative: Gradation
 - Location: Sensitivity

Gradation

 Gradation: Assignment of large or small density differences to object contrasts

• Measure: γ , the gradient of the linear part of the density curve ($\gamma = tan(\alpha)$)

• Distinguish between:

– soft ranges (γ <1): low contrast images

- standard ranges ($\gamma \approx 1$): "standard" contrast
- hard ranges ($\gamma > 1$): high contrast images

Relative Sensitivity of Monochrome Photographic Films

Note (for the human eye): Even without any filter, wavelengths < 400 nm are absorbed at the vitreous!

Example: Panchromatic and IR-Photography

Abb. 21: Panchromatisches und Infrarot-Luftbild: Langenburg (Württemberg)
Links: Panchromatisches Bild (mit einem Gelbfilter aufgenommen). Rechts: Infrarot-Bild
(mit einem Orangefilter aufgenommen). (Photo: CARL ZEISS, Oberkochen)

Conclusions: Film-based Photography

Advantages:

- exposed material is also storage medium
- Synoptical acquisition and storage on comp. small space and at low costs
- Pictures are easy to understand (for humans)
- Formerly: Highest possible resolutions

Disadvantages:

- Radiometric Calibration hard (depends on film)
- Photographic spectral range is restricted
- Unnecessary and inappropriate intermediate step for image processing
- Who gets/exchanges the films in orbit?

Electro Optic Systems: Return Beam Vidicon (RBV)

FIGURE 4.10 Return-beam vidicon system.

- Framing System:
 - Resolution at ground: 40 m
 - − EM-Spectrum: 500 − 750 nm
- Imaging like inverse Television:
 - 1. Lens projects light on sensitive layer
 - Electronic ray samples the layer(line wise).
 Intensity is proportional to the charge.
 - 3. Charges of layer are reset for next acquisition.
- Formerly better resolution than scanning systems
- Worse geometric and photometric properties

Acquisition using Scanning Systems

- In contrast to photographic acquisitions, only a small terrain element in monitored (scanned) w.r.t. the emitted radiation.
- To monitor a large area, many sub-measurements need to be combined
- Distinguish between technical setup:
 - Optomechanic scanners
 - Optoelectronic scanners
- Distinguish between spectral range
 - "single band" acquisition
 - multi spectral acquisition

Optomechanic Cross Track- or Whiskbroom Scanner

- Passive scanning System
- Used for visible and IR ranges (using filters)
- Rotating Mirror reflects light to the Sensor
- Image is composed of single "scan lines"
- Rectangular images
- Non-uniform pixel size

Optomechanic

Cross Track Scanner – Multispectral Setup

- Radiation is divided into bandspecific (single) signals. E.g.:
 - Filter
 - Prisms
 - Lattices
- One detector for each band
- Result: 3-dimensional image of size $w \times h \times c$, with:
 - width w, height h, and
 - channel/band count c
- Usually at least 1 band at infrared

Mirror

Abb. 34: Zerlegung der empfangenen Strahlung in einzelne Spektralbereiche (Nach KRAUS & SCHNEIDER 1988)

Teleskop

Motor

Optomechanic Circular Scanning System

- Passive scanning System
- Used for visible and IR ranges (using filters)
- Rotating Mirror reflects light to the Sensor
- Image is composed of single "scan lines"
- Non-rectangular images
- uniform pixel size

Seamless Image Creation for Optomechanical Scanning Systems

To ensure that the samples rows can be composed to an image without overlapping, the following must hold:

$$\Delta \alpha \cdot h \cdot f = v \implies \frac{v}{h} = \Delta \alpha \cdot f$$

with: $\Delta \alpha$ angle of aperture

of the scanner (IFOV)

h (flight) altitude

v platform velocity

f scanning frequency

IFOV: Instantaneous Field of View

Example for Scanning Systems: The Landsat Program

- Origin: Earth Resources Technology Satellites Program (ERTS),
 Renamed to Landsat in 1974
- First Satellite carried first multi spectral scanners (RBV, 1969)
- Formerly commercial, nowadays: many images are freely available at the Landsat Archive: http://landsat.usgs.gov/
- 8 satellites launched2 still operational
- Aim: Consistent longterm database
- Open Skies Policy
- Major efforts in promoting the Remote Sensing discipline

Table 1.	Landsat mission dates	S.	
Satellite	Launch	Decommissioned	Sensors
Landsat 1	July 23, 1972	January 6, 1978	MSS/RBV
Landsat 2	January 22, 1975	July 27, 1983	MSS/RBV
Landsat 3	March 5, 1978	September 7, 1983	MSS/RBV
Landsat 4	July 16, 1982	June 15, 2001	MSS/TM
Landsat 5	March 1, 1984	2013	MSS/TM
Landsat 6	October 5, 1993	Did not achieve orbit	ETM
Landsat 7	April 15, 1999	Operational	ETM+
Landsat 8	February 11, 2013	Operational	OLI/TIRS

The Landsat Program

Landsat 1 – 3 Setup

Landsat 4 – 5 Setup

Landsat Spectral Sensor Characteristics

TABLE 4.2 Characteristics of Landsat imaging systems

	Multispectral scanner (MSS)	Return-beam vidicon (RBV)	Thematic mapper (TM)	
Spectral region				
Visible and reflected IR	0.5 to 1.1 μ m	0.50 to 0.75 μ m	0.45 to 2.35 μ m	
Thermal IR (TM band 6)		_	10.5 to 12.5 μ m	
Spectral bands	4	1	7	
Terrain coverage				
East-west direction	185 km	99 km	185 km	
North-south direction	185 km	99 km	170 km	
Instantaneous field of view				
Visible and reflected IR	0.087 mrad	0.043 mrad	0.043 mrad	
Thermal IR (TM band 6)		_	0.17 mrad	
Ground resolution cell				
Visible and reflected IR	79 by 79 m	40 by 40 m	30 by 30 m	
Thermal IR (TM band 6)		_	120 by 120 m	
Number of picture elements				
Single band	7.6×10^6	6.1×10^{6}	39×10^6	
All bands	30.4 × 10 ⁶	6.1 × 10 ⁶	273 × 10 ⁶	

Landsat Thematic Mapper (TM)

TABLE 4.4 Thematic-mapper spectral bands

Band	Wavelength, μ m	Characteristics			
1 0.45 to 0.52		Blue-green—no MSS equivalent. Maximum penetration of water, which is useful for bathymetric mapping in shallow water. Useful for distinguishing soil from vegetation and deciduous from coniferous plants.			
2	0.52 to 0.60	Green—coincident with MSS band 4. Matches green reflectance peak of vegetation, which is useful for assessing plant vigor.			
3	0.63 to 0.69	Red—coincident with MSS band 5. Matches a chlorophyll absorption band that is important for discriminating vegetation types.			
4	0.76 to 0.90	Reflected IR—coincident with portions of MSS bands 6 and 7. Useful for determining biomass content and for mapping shorelines.			
5	1.55 to 1.75	Reflected IR. Indicates moisture content of soil and vegetation. Penetrates thin clouds. Good contrast between vegetation types.			
6	10.40 to 12.50	Thermal IR. Nighttime images are useful for thermal mapping and for estimating soil moisture.			
7	2.08 to 2.35	Reflected IR. Coincides with an absorption band caused by hydroxyl ions in minerals. Ratios of bands 5 and 7 are potentially useful for mapping hydrothermally altered rocks associated with mineral deposits.			

NASA | Landsat 8 Onion Skin [HD]

http://www.youtube.com/watch?v=CqRyhun96Po

Conclusions for Rotational Scanners

Have been proven to work reliably at first generation of EO satellites!

But, there are some disadvantages:

- Mechanics (motor) needed
- Maintenance needed (critical on unmanned platforms)
- Worse signal to noise ratio (SNR) compared to photographic acquisitions

Next development step:

Line-Array Cameras

Zeilenkameras

Optoelectronic Along Track- or Push broom Scanner

- The detector/sensor-array scans a complete line at once
- Sensors mostly: CCD
- Used in current satellites
 - SPOT
 - Ikonos
 - SeaWiFS
 - Aqua & Terra
 - **—** ...
- No mechanical parts needed!

Optoelectronic Along Track Scanner – Multispectral Setup

- The detector/sensor-array scans a complete line for each selected bandwidth
- Array of line arrays needed!
- Still: No mechanical parts needed!
- Similar properties than single channel along track scanners

Optoelectronic Along Track Scanner – Imaging Resolution

The resolution at ground can be set by the imaging optic:

- f focal length
- h_g (flight) altitude
- α aperture angle

The sensor array remains the same.

Lower resolutions

→ Larger coverage

Higher resolution

→ Smaller coverage

Dwell Time Verweilzeit

Dwell Time = $\frac{\text{Scan Rate per Line}}{\text{Number Cells per Line}} = \frac{2 \times 10^{-2} \text{ sec}}{2000 \text{ cells}} = 1 \times 10^{-5} \text{ sec} \cdot \text{cell}^{-1}$

A. CROSS-TRACK SCANNER.

B. ALONG-TRACK SCANNER.

Important for imaging intensity!

An Along Track Scanner allows a larger dwell time at same travelling speed.

Example 1: SPOT – Nadir and Off-Nadir Mode

Example 1: SPOT – Imaging Modes

Tabelle 8: Technische Daten der SPOT-Sensoren

	SPOT - HRV (XS-Mode) multispektral	SPOT - HRV (P-Mode) panchromatisch	
Betrieb	seit 1986	seit 1986	
Flughöhe	832 km	832 km	
Wiederholrate	26 Tage*	26 Tage*	
Pixelgröße	$20 \times 20 \text{ m}^2$	$10 \times 10 \text{ m}^2$	
Bildformat	$60 \times 60 \text{ km}^2$	$60 \times 60 \text{ km}^2$	
Spektralkanäle	1 0,50 - 0,59 μm	0,51 - 0,73 μm	
	2 0,61 - 0,69 μm	: Learner in a survey of the season of the	
	3 0,79 - 0,89 μm	100条,00000年曾经10000000000000000000000000000000	
	* Durch Neigung der Aufnahmerichtung kann ein bestimmtes Gebiet gezielt wesentlich häufiger aufgenommen werden		

Stereo Imaging via large inclination angle and multiple visits!

Example 1: SPOT – Resolution Comparison (Berlin)

Landsat MSS (80 m)

Landsat TM (30 m)

SPOT multi spectral (20 m)

SPOT panchromatic (10 m)

Example 2: Terra & Aqua

After successful test with the experimental EO-1 satellite:

Two Earth Observation satellites

- Orbit: Landsat-7 (temporal displaced!)
- Equator crossing:

- Terra: 10:30 h

- Aqua: 22:30 h

Synonyms:

Terra: EOS am

Aqua: EOS pm

Example 2: Terra & Aqua – Spectral Sensors

Table A.15. Aqua and Terra sensor characteristics and the sens

Instrument	Spectral Bands (µm)	IFOV (m)	Swath (km)	Dynamic (bits)	Range
MODIS*	0.620-0.670	250 × 250	2330	12	Repeat
	0.841-0.876	250×250	2330	12	
	0.459–2.155 (5 bands)	500 × 500	2330	12	
	0.405–14.385 (29 bands)	1000 × 1000	2330	12	
ASTER	0.52-0.60	15 × 15	60	8	
NOTER	0.63-0.69	15 × 15	60	8	
	0.76-0.86	15 × 15	60	8	
	0.76-0.86	15×15	60	8	
	(backward looking)				
	1.600-1.700	30×30	60	8	
	2.145-2.185	30×30	60	8	
	2.185-2.225	30×30	60	8	
	2.235-2.285	30×30	60	8	
	2.295-2.365	30×30	60	8	
	2.360-2.430	30×30	60	8	
	8.125-8.475	90×90	60	12	
	8.475-8.825	90×90	60	12	
	8.925-9.275	90×90	60	12	
	10.250-10.950	90×90	60	12	
	10.950-11.650	90×90	60	12	

Example 2: Terra ASTER at Phuket

- Images before and after the Tsunami 2004/12
 - 2002/11/15 (left)
 - -2004/12/31
- Data resolution: 15 m
- Image composed from ASTER bands
 - 3: Red
 - 2: Green
 - 1: Blue

Example 2: Terra MISR Instrument

Mission life:	6 years	
Instrument mass:	148 kg	2
Instrument power:	Approximately 117 W peak, 75 W average	
Data rate:	3.3 Megabits/second average, 9.0 Megabits/second peak	
Global coverage time:	Every 9 days, with repeat coverage between 2 and 9 days depending on latitude	
Crosstrack swath width:	360 km common overlap of all 9 cameras	-9
Nine pushbroom cameras:	Named An, Af, Aa, Bf, Ba, Cf, Ca, Df, and Da where fore, nadir, and aft viewing cameras have names ending with letters f, n, a respectively and four camera designs are named A, B, C, D with increasing viewing angle respectively	
View angles:	0, 26.1, 45.6, 60.0, and 70.5 degrees	
Spectral coverage:	4 bands (blue, green, red, and near-infrared)	
Detectors:	Charge Coupled Devices (CCDs), each camera with 4 independent line arrays (one per filter), 1504 active pixels per line	
Radiometric accuracy:	3% at maximum signal	
Detector (focal plane) temperature:	-5 ±0.1 degrees C (cooled by thermo-electric cooler)	
Temperature of main structure:	+5 degrees C	
Builder:	Jet Propulsion Laboratory, Pasadena, California, U.S.A.	

Source: http://www-misr.jpl.nasa.gov/Mission/misrInstrument/

Example 2: Terra MISR Demo

26 December 2004, Beach of Andhra Pradesh, close to the Godavari River Mouth Cloud "motion" results from apparent displacements due to parallax associated with their height.

Current Optical Satellite Image Resolutions

Commercially available images (Source: http://mirgeospatial.com, 2014)

	GeoEye-1	WorldView-1	WorldView-2	Pleiades	QuickBird	IKONOS
Resolution	0.5m	0.5m	0.5m	0.5m ⁽²⁾	0.6 m	1 m
Dynamic Range	8 or 16 bits	8 or 16 bits	8 or 16 bits	8 or 16 bits	8 or 16 bits	8 or 16 bits
Product Type	Panchromatic PanSharpened Multispectral Bundle	Panchromatic	Panchromatic PanSharpened Multispectral Bundle	Panchromatic PanSharpened Multispectral Bundle	Panchromatic PanSharpened Multispectral Bundle	Panchromatic PanSharpened Multispectral Bundle
Agility	Very/Stereo	Very/Stereo	Very/Stereo	Very/Stereo	Limited	Very/Stereo
	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Single Scan	Multi-scan
Image Accuracy Specification (1)	5 m (CE90)	5 m (CE90)	5 m (CE90)	5 m (CE90)	23 m (CE90)	15 m (CE90)

At nadir, exclusive of terrain distortions

Note that in general:

Res. Military < Res. Commercial < Res. Public avail. (e.g. Landsat)

⁽⁴⁾ Commercial product is being interpolated and resampled to 50cm (Original Panchomatic: 70cm, Multispectral: 2 m)

Task-dependent Minimum Image Resolution

- Johnson's experiments distinguish between:
 - 1. Discover Object
 - 2. Classify Object
 - 3. Identify Object
- Example: Tank Detection

Image source: http://www.turbosquid.com/3d-models/german-2-tank-panzer-iv-max/716550

Photography vs. Scanning Imagery

Aircrafts:

- Photography still results in highest resolutions.
- Analogue Cameras are replaced by CCD Cameras.
- Aircrafts are replaced by unmanned "drones".

Satellites:

- Scanning Systems are the systems of choice and are transmitted while or after acquisition.
- Resolution of scanner images is comparable to photographic images.
- Nowadays: Along-Track (Push broom) Scanner and special sensor setups (see Terra MISR).