

MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS)

IP2: Image Processing in Remote Sensing 7. Sensors II: **Microwave Sensors and SAR Systems**

Summer Semester 2014

Benjamin Seppke

Agenda

- General Microwave Sensors
 - Passive Systems
 - Active Systems
 - Altimeter
 - Scatterometer
- SAR-Sensors
 - Design
 - From Low- to High-Resolution Systems
 - Challenges for Image Processing
- Other Sensors

Microwave Systems

- Strong differences in Imaging compared to former (visible light and infrared) sensors!
- Nearly no interference when passing the atmosphere and some atmospheric phenomena:
 - Clouds
 - Dust
 - Smoke
 - Snow
 - Light rain
- Allows (nearly) weather independent observation
- Wavelengths are between 1 mm 1 m, which corresponds to 300 GHz – 300 MHz

Passive Microwave Sensors

- (Main) emit of the earth at microwave wavelengths: material temperature
- Signals at these spectral ranges may contain information about
 - Snow coverage
 - Soil moisture
 - Soil composition
- But: Signals are of low intensity!
 - Low geometric resolution (mainly Push Broom Scanners) No Synoptical image generation
- High construction efforts to enhance signal to noise ratio (SNR)

Example: SMOS

- SMOS = Soil Moisture and Ocean Salinity
- ESA Satellite launched on 2009/11/02
- Sensor: MIRAS (Microwave Imaging Radiometer using Aperture Synthesis)
 - a radiometer that operates between 1400-1427 MHz (L-band).
 - central structure and three deployable arms
- There are 69 antenna elements the socalled LICEF receivers, which are equally distributed over the three arms and the central structure.
- The signal is then transmitted to a central correlator unit, which performs interferometry cross-correlations of the signals between all possible combinations of receiver pairs.

SMOS Satellite: ESA's Water Mission

http://www.youtube.com/watch?v=Kw0umICWXuU

	A	

Active Microwave Systems

- Categorization:
 - Real vs. Synthetic Aperture Radar (SAR)
 - Push broom vs. Side looking
 - Single vs. Multi/Cross-Polarization
 - Single vs. Multi-Band Systems
- Active Systems!
 - Formerly high energy consumption -> additional batteries needed
 - Nowadays: Solar panel power sufficient!
- Different bands for different observations
- Not every configuration available:
 - currently not multi-band SAR in orbit
 - some systems allow cross- or single polarization

Satellite based Altimetry

- Typical applications:
 - Earth surface height
 - Ocean water level/distribution (important climate parameter)
- Push broom/point wise measurements
- System design down-facing:
 - 1. Emit Microwaves of certain power
 - 2. Measure backscattered energy and runtime
 - 3. Derive Altimetry from measured data
- Note:
 - Measured altitude needs to be normalized w.r.t the earths geoid (gravity distribution is non-uniform)
 - IFOV (Footprint) size/resolution depends on aperture size of the antenna
 - Typical Sensors achieve low spatial but high measurement precision!

Example: TOPEX/POSEIDON

- Successful Altimeter: 1992 2006
- Technical details:
 - Bands: Ku- and C-Band
 - Footprint: 3 5 km
 - Precision: 3.3 cm!
 - Distance between two measures: 8 km
- Mainly ocean topography measurements
- Problems at coastal regions
- Large efforts in different disciplines:
 - Climate Research
 - Hurricane Forecasting
 - El Niño & La Niña Forecasting
 - Ship Routing
- Yet, over 2100 publications based on the data!

Sea Surface Height Maps from RADAR Altimetry http://www.youtube.com/watch?v=F8zYKb2GoR4

Satellite based Scatterometry

- Backscattering of emitted microwave radiation allows a measurement of related phenomena.
- Example: Wind velocity and direction over sea surface:
 - Estimation indirectly over the sea surface roughness
 - Through small (ripple) waves modulation of ~ 1 cm
 - Waves become visible through Bragg-Resonance:

heta Incidence angle

- λ_r RADAR wavelength
- λ_{s} Wave's wavelength

Example: QuikSCAT

- NASA Scatterometer 1999 2009
- Main purpose: Wind measurement (over sea surface)
- Sensor characteristics:
 - 2 rotating dish antennas: 1 m aperture with a circular sweep
 - Resolution: 25 km
 - Measurement height: 10 m above sea surface
 - Wind-speed measurements of 3 to 20 m/s (accuracy: 2 m/s)
 - Wind-direction with an accuracy of 20°
 - Swath width: 1800 km
 - Band: Ku-Band
- Collected much more wind measurements than ground stations!

Example: Hurricane Katrina (2005)

RADAR vs. Photometric Resolution

The angular resolution depends on: $-\lambda$ the wavelength $\delta = \frac{\lambda}{D}R$ D the aperture and *R* the distance: Example: *D*=3 m, *R*=900 km – Visible Spectrum (λ =7 10⁻⁷ m): $\delta = 0.21 \text{ m}$ - RADAR (λ =7 10⁻² m): $\delta = 21000 \text{ m}$ Worse angular resolution compared with spectral imaging methods!

λ

D

δ

R

Side Looking RADAR (SLAR)

- From "basic" RADAR to imaging radar!
- Side looking (incidence angle θ) is necessary for image creation/range resolving.

• Azimuth resolution is:

$$\delta_a = \frac{\lambda}{D}R$$

Scan Direction

 The shorter the pulse and the larger the antenna, the higher the resolutions! Antenna

Transmitted Pulse

Ground

Resolution Ceil

From Real to Synthetic Aperture I

- Unrealistic to have either large antennas or very short pulse lengths!
- Example: ERS-Satellite (R=850 km, λ =5.5 cm, D=10 m)
 - To achieve an azimuth resolution of 10m, a 5 km large antenna is needed!
 - At a pulse length of τ =20 µs and inclination angle θ =35°, the range resolution is \approx 5227 m
- Two different problems:
 - Shorter impulses (practically) cannot carry as much energy
 - Larger antennas not possible in orbit

SAR-Technique has been developed to simulate a large antenna!

From Real to Synthetic Aperture II

Step 1: Solving the pulse length problem:

- Use pulse compression instead of a single pulse
- Also called (by its sound) chirp
- Instead of a single wavelength λ,
 a complete bandwidth is used: B_c
- Procedure
 - 1. Emit chirp
 - 2. Reconstruct the response by correlation with the "chirped" signal

- Advantages: Compression factors of ~ 600 in praxis
- Example of last slide:
 - Range resolution changes!
 - Formerly 5227 m, with pulse compression 8 m!
- At the cost of higher processing!

From Real to Synthetic Aperture III

Step 2: Enhancing the azimuth resolution:

- Idea: Make the RADAR system work coherently. Knowledge needed about phase shifts between
 - sender and receiver and
 - pulse to pulse
- Repeat measurements along-track and "synthesize" the short antennas to a large antenna!
- SAR synthesis step requirements
 - exact knowledge of position and
 - exact orientation of the sender.

From Real to Synthetic Aperture IV

Step 2: Enhancing the azimuth resolution:

• Recall the RADAR azimuth resolution equation: $\delta_a = \frac{\lambda}{D}R$

From Real to Synthetic Aperture V

Step 2: Enhancing the azimuth resolution:

- To resolve the synthetic aperture the Doppler shift is used:
 - Assumption: Moving Satellite and non-moving objects
 - Equation on last slide: result of Doppler Bandwidth and signal theory

Note: the SAR azimuth resolution is independent of the microwave's wavelength and altitude!

- Real aperture RADAR: Larger Antenna, better resolution
- Synthetic aperture RADAR: smaller Antenna, better resolution

Properties of Synthetic Aperture RADAR (SAR) Systems

- **Remember:** Microwave Imaging ≠ Photometric Imaging!
- Classical Radar: Target vs. Clutter
- SAR: No equivalent to clutter but point and area objects → normalized backscatter coefficient σ₀
- Multiple scattering/reflection of microwaves
- Direct backscattering on metal/artificial objects
- Length distortion in range direction
- SAR: Coherent Imaging → Coherent pixel value assignment
 → Speckle "Noise"

Speckle "Noise"

- Speckle seems to cover the interesting measurements, e.g. the characteristic backscatter coefficient of an area class.
- Two strategies to decrease the speckle:
 - 1. Multi-Look processing

2. Image filters

Note: Speckle is the signal!

А

Speckle Filters as Moving Window Filters

- Definition by means of "Moving Window Filters":
 - The filtered value is computed based on the surrounding window
 - Window size has to be determined by the user

$$\forall \qquad \forall \qquad \forall \qquad I'(x,y) = f(W_{x,y})$$

- Important values (for most filters):
 - Variance and mean of the intensity inside the current window (can be computed easily)

$$c_I^2 = \frac{\operatorname{var}(W_{x,y})}{\left(\overline{W}_{x,y}\right)^2}$$

 Variance and mean of the speckle (unknown, has to be approximated)

$$c_u^2 = \frac{\operatorname{var}(u) \approx n^{-1}}{\overline{u}^2 \approx 0.523^2}$$

• Non-linear/adaptive behavior (due to non-linear speckle)

Median, Lee & Kuan Filters

- The Median Filter is an adaptive (edge-preserving) filter!
 - Easy to understand and to implement
 - No statistics of the speckle need to be known
 - But: Sorting has to take place for each window!
- Lee & Kuan Filter are quite similar $f(W_{x,y}) = I(x, y)w + (\overline{W}_{x,y})(1-w)$

Lee:
$$w = 1 - \frac{c_u^2}{c_I^2}$$
 Kuan: $w = \left(1 - \frac{c_u^2}{c_I^2}\right) / \left(1 + c_u^2\right)$

weighting coefficient is a function of local target heterogeneity measured with the coefficient of variation.

Gamma MAP Filter

- The Gamma Filter is a Maximum A Posteriori (MAP) Filter
 - based on a Bayesian image statistics analysis.
 - Assumption: the radar reflectivity and the speckle noise follow a Gamma distribution.
 - The superposition of these distributions yields a K-distribution:

$$f\left(W_{x,y}\right) = \frac{l\,\overline{W}_{x,y} + \sqrt{\left(\overline{W}_{x,y}\right)^2 l^2 + 4\alpha n \overline{W}_{x,y}}}{2\alpha}$$

- with:
$$\alpha = \frac{1 + c_u^2}{c_l^2 - c_u^2}$$
 and: $l = (\alpha - n - 1)$

Note: The K-distributions are recognized to match a large variety of radar return distributions of land and ocean targets.

The Frost Filter

- Can be considered as an adaptive Wiener Filter:
 - Fixed window size
 - Convolution of the image with an exponential function:

$$f(W_{x,y}) = \frac{\sum_{x,y \in W_{x,y}} I(x,y)w(x,y)}{\sum_{x,y \in W_{x,y}} w(x,y)} \quad \text{with:} \quad w(x,y) = e^{-kc_I^2 d(x,y)} \\ d(x,y) = \sqrt{\left(x - \frac{f_w}{2}\right)^2 + \left(y - \frac{f_h}{2}\right)^2}$$

- Observations: Response is depending on
 - The position inside the window,
 - The ratio of the mean (squared) and variance of the window and
 - The free parameter k.

Examples of Speckle Filtering: Median Filter

Median Filter (Filter size: 5x5)

Lee Filter (Filter size: 5x5)

Kuan Filter (Filter size: 5x5)

Gamma MAP Filter (Filter size: 5x5)

Frost Filter (k=1, Filter size: 5x5)

Example on Doppler-Effects: Ship-off-Wake (Alpers et al. 2008)

Seasat SAR image of a fast traveling ship crossing the English Channel

- Ship speed *u* can be computed from:
 - v satellite speed over ground
 - h altitude of the satellite
 - d displacement to the closest point of the extrapolated wake in azimuth direction
 - θ incidence angle
 - α angle between ship's heading and range direction

$$u = \frac{d \cdot v}{h \cdot \cos(\theta) \cdot \cos(\alpha)}$$

But: only possible when the ship speed is very high (typically larger than 12 m/s)

Overview of SAR Systems

German (DLR) SAR Systems

Issues for High-Resolution SAR Imagery

- New SAR Systems achieve resolutions of < ¹/₂ m!
- Formerly unknown details become visible
- Direct backscattering "paints" the scene
- Huge impact on observation of man-made scenes, like:
 - Cities / Buildings
 - Ships
 - Infrastructure
- Weather independent observation of these structures is of high military interest
 - → German Bundeswehr: SAR-Lupe (5 equal hi-res SAR)

Example: High-Resolution SAR Imagery Stadium in Barcelona

Interferometric SAR (InSAR)

- Uses the phase instead of using the magnitude image
- Distance between two acquisitions: baseline
- Requirements of the baseline
 - needs to be small for a high correlation of the "persistent" scatterers!
 - needs to be large enough to actually determine phase shifts!
- Former: Use of two or more different satellites!
- Now: Special configurations allow the derivation of InSAR images with comparable sensors or with a single platform.
- Basic measurement: (Changes in the) Terrain of the surface

Phase Unwrapping

- Phase Information is given at
 0 ... 2π or -π ... π
- 1D example is shown at right images
- But: 2D-variant needed for InSAR images!
- Ill-posed problem!
- Many (heuristic) algorithms exist
- Still a lot of research on this topic!
- Digital Elevation Model (DEM) is fused in some algorithms!

Example 1: Earthquake Monitoring

Example 2: Traffic Monitoring

Operational: TerraSAR-X Traffic Processor (TTP) ©DLR, 2014

Mount Etna InSAR Time Series Animation http://www.youtube.com/watch?v=6qAu-NHudp4

RANGE DISPLACEMENT (cm) -10 TIME LINE 1998 2001 1992 1995