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Agenda

* The Classification task
— Photointerpretation
— Quantitative Analysis

e Supervised Classification

— Maximum Likelihood
— Minimum Distance
— Context Classification

* Unsupervised Classification

— (Basic) Clustering
— Hierarchical Clustering
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The Classification Task

e Origin: Photointerpretation

— Remote Sensing Experts “visually inspect” air/space borne
images

— Search for “meaningful objects”
 Computer based: Quantitative analysis

— Vision system classifies image areas and/or meaningful objects
automatically

— No classification expert needed = Decision based on the
software results
* |n practice: Computer-aided/assisted classification

— Image processing / Computer Vision Software predicts potential
areas of interest

— Expert focuses on proposed regions
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Photointerpretation vs. Quantitative Analysis

Photointerpretation (by human experts) | Quantitative analysis (by computer)

On a large scale relative to the pixel size At individual pixel level

Inaccurate area estimates Accurate area estimates possible
Only limited (visible) spectral analysis Can perform true multispectral analysis

Can assimilate only a limited number of Can make use of all available brightness
distinct brightness levels (say 16 levelsin  levels in all features (e.g. 256, 1024, 2048)
each feature)

Shape determination is easy Shape determination involves complex
software decisions

Spatial information is easy to use in a Limited techniques available for making

gualitative sense use of spatial data

from Richards, 2006
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Example: Photointerpretation

Fig. 3.1. Formation of a Landsat multispectral scanner false colour composite by displaying
the infrared band as red, the visible red band as green and the visible green band as blue

from Richards, 2006
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Example: Quantitative Analysis

LIl Each pixel has a particular

brightness value in each band
Band 3 r’/
fenci2 Water Wheat

Band 1 / W W

=
=

— Probability of pixels Each class modetled by a
Satellite image data Map of labels belonging to each normal distribution
Classification (called a thematic map) class specified by a mean vector
and a covariance matrix
Fig. 3.7. The role of classification in labelling pixels in remote sensing image data
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Decision boundaries

Vegetation
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infrared

Fig. 3.8. Two dimensional multispectral space with the spectral classes represented by Gaus-
sian probability distributions

from Richards, 2006
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Classification Techniques

e Supervised Classification
— Maximum likelihood classifiers
— Minimum distance classification
— Context based approaches
— Machine learning approaches

* Unsupervised Classification (Clustering)

— “Greedy” Clustering (migrating means)
— k-Means clustering

— Hierarchical clustering
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Steps in Supervised Classification

1. Decide the set of ground cover types into which the image is to be
segmented. Exemplary classes: Water, urban regions, farmland etc.

2. Choose representative/prototype pixels from each of the desired set
of classes. These pixels are said to be the training data. If compact, the
range of the training data is referred to as training field. (< 1% of data)

3. Use the training data to estimate the parameters of the particular
classifier to be used. The set of parameters is said to be the signature
of that class.

4. Use the trained classifier to label/classify each pixel in the image with
one of the desired ground cover types. (> 99% of the data)

5. Produce tabular summaries or thematic maps of the classification
Assess the accuracy of the final result using a labeled test data set.
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Maximum Likelihood Classification

 Most common supervised classification method w.r.t
Remote Sensing data.
* Based on Bayes’ classification:
— Let the spectral classes for an image be represented by:
w, i=1,..M

— The determination of a class for a pixel vector X is based on the
conditional probabilities:
p(w1%), i=1,..M

— The classification is performed based on:
X€w, if Vpo |5c’)>p(a)j |5c')
1]

* Main problem: The conditional probabilities p(w, %)
are unknown!
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Maximum Likelihood Decision Rule

* Assumption: Sufficient and representative training data

* Estimate probability from training data: The chance of finding
a pixel of class w, at x :
p(ilwi)

* The desired conditional probabilities can be derived using

Bayes’ theorem:
p(xlw;)p(w,)
p(%)

* Using this, the classification rule can be rewritten as:
X€Ew, if V.p(?cIa)l.)p(a)l.)>p(fcla)j)p(a)j)

=] >

, 1=1,...M

p(w,1%)=

! o Discriminant functions g; and g;.
& (X)=In(...) g;()=In...) Usually in log-space!

* Note: p(w;) still has to be determined by expert knowledge!
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Multivariate Normal Class Models

* Assumption: All probability distributions are Gaussian

- Mathematical simplifications and well known properties for
multivariate models

* The chance of finding a pixel of class w, at x is now:

) —
>‘ {El{ No influence on discriminant functions
* The resulting discriminant function is:
gi(5c’)=ln(p(a)l.))—lln( ) )—l(*-ﬁi)ngl(x’_gi) t; Mean vector
2 2 2, Covariance Matrix

* Since p(w,) is (often) the same for all i and
can thus be removed:

=3 n((E) -5 (-a) = (F-a)

2i
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Decision Surfaces and Thresholds

* Two discriminant functions are (pairwise) equal at
decision surfaces:
g:(x)-g;(x)=0

* Due to the quadratic construction of multivariate normal
distributions = decision surfaces are parabolas!

* To dismiss pixels with comparably low decision values,
thresholds are introduced:
X€w, if Vg (¥)>g,(¥) r &(¥)>T,
i=]

 Thresholds may be derived according to the used probability
distribution. An example for multivariate normal distribution
can be found in Richards 2006
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Example: Thresholds

wy

(O} w)

Fig. 8.1. a Illustration
of poor classification for
patterns lying near the
tails of the distribution
functions of all spec-

x
tral classes; b Use of a

threshold to remove poor

|

Unclassified regions

ifi b lassification
Classitied as w ?Zsesgﬁguﬁ:;’ s
{questionable) g
Classified as wy
(reasonable)
plx)l
Tables give
f otx) dx
e ie proportion of population with x 2 greater
than a specific value
X' X
Fig. 8.2. Use of the x “ distribution for obtaining classifier thresholds from Richards, 2006
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Minimum Distance Classification

e Effectiveness of maximum likelihood depends on reliable estimates
of the mean vector and covariance matrix (for multivariate normal
distributions):

— Problems may arise if too few training samples are available
— Reason: Covariance matrix can not be estimated reliable
* Alternative: Rely on the estimates of the means!
- Minimum distance to class means classifier
- Only class means are trained
— Decision on class dependency is due to the closest mean

* Note:
— Much faster technique
— Less powerful w.r.t. maximum likelihood classification

— Does not model any asymmetry, all classes are assumed to be
hyper spheres in feature space
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Minimum Distance Discriminant Function

e Starting with the squared Euclidian distances of a point to the
class mean:

d(% i) =(3- i) (3-i)=(3-1) (3- i)

 Expanding the product gives:
d(%, i) =X X201, ¥+ i, i,

 (lassification is based on:
F€w, if V(i) <d(fu)

e Since the square of the point itself is common to all distances,
it may be removed. The discriminant function is:
X€ow, If V.gi(';é)>gj(5é)

—

with: &, (55) =20 X- U U
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Remarks on Minimum Distance Classification

It can be shown, that the minimum distance classification is a
degraded maximum likelihood classification with degraded
(constant) standard deviation: 1 - 0

0 o 1

Zl. =0
Decision surfaces are present where two class centers have
the same distance to the point:

2(/’71"ﬁj)'f_(ﬁi'ﬁi‘ﬁj'ﬁjFO

defines a linear surface, thus the decision surfaces are given
as hyper planes

Thresholds can be defined by means of minimum (squared)
distances to a class mean.
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Context Classification

* Concept of a spatial context
— So far only classifications “per pixel”
— But: Sensor acquired portions of energy from adjacent pixels, too!
— Spatial neighborhoods may not be neglected

* Context sensitive methods make use of this spatial pixel
neighborhoods for classification!

* Methods may become context sensitive by adding:
— Pre-processing (e.g. median filter)
— Post classification filtering (e.g. 3x3 window decision function)
— Probabilistic label relaxation

* More complex

* Logical consistent integration of region properties w.r.t. classification process
possible!

01.07.14 Benjamin Seppke, IP2: Remote Sensing, University of Hamburg, Dept. Informatics
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Basic Context Classification Algorithm |

e Starting point: Classification already finished:
— Each pixel is assigned to one class (of e.g. max likelihood)
— Assignment probabilities for other classes are existing. Let p,,(®;)
denote the set of prob. For a pixel m:
pm(a)l.) i=1,...M
— Additionally, all probabilities for a given m should sum up to 100%:

M
m‘vE’I ;pm (wi)=1

* Define a (simple) neighborhood around a pixel m:

Examples:

4-connected: - 8-connected: L

01.07.14 Benjamin Seppke, IP2: Remote Sensing, University of Hamburg, Dept. Informatics 18
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Basic Context Classification Algorithm i

* Neighborhood function

— Describes the influence of neighbored pixels by means of a

neighborhood function. Influence of neighbors is given by:
P ()0, (@;)

> 0)0.(0)

— |s often applied iteratively.

P ()= i=1,..M

* Choice of the neighborhood function
— Compatibility of two assignments: p, .

— Here: Probability that w, is the correct label for pixel m if w;is the
correct label for pixel n.

— Sum up all neighbor contributions to compute the arithmetic mean:

0, (w,)= gdnzpmn(a)i ij)pn (wf)

01.07.14 Benjamin Seppke, IP2: Remote Sensing, University of Hamburg, Dept. Informatics 19
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Basic Context Classification Algorithm Il

* How to determine the coefficients for p, ?
— Spatial region model may be available (e.g. field/acre sizes)
— Compute values from Ground Truth

* When to stop the iterative process?

— Many (> 500) iterations = very time consuming. Really needed?
— No! Observations:

* Most change in the first few iterations

* Changes are vanishing later
— Embed controlling mechanisms:

e Stop on Ground Truth correspondence
* Stop on propagation limits, based on non-local decorrelation
e Stop on change measure

— Alternative: Reduce the neighbors’ influence with iteration.




Lecture 10: Image Processing | — Classification and Segmentation

Context Classification: Basic Example

initial labelling

ground truth
Pukl | L)'= G.8F7
Pmn(2[1) = 0.183
Pwa(2|2) = 0.750
1=0 2=0
. " 1 15

number of iterations of relaxation

Fig. 8.9. Simple demonstration of pixel relaxation labelling from Richards. 2006

Benjamin Seppke, IP2: Remote Sensing, University of Hamburg, Dept. Informatics 21
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Context Classification: Landsat MSS
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Fig. 8.10. a Ground truth for the left-hand side of the image in Fig. 3.1. The symbols are:
= dry bare soil, + = early vegetation growth, X = mixed bare soil, —

- = red soil, * = cotton crop, 0 = bare soil (low moisture), I
= bare soil (moist or ploughed). b Result of a maximum likelihood classification

of Landsat MSS data. ¢ Result of applying relaxation labelling to the result in b, incorporating a reduction in the neighbour weights with iteration

from Richards, 2006
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Other Methods for Supervised Classification
(which will not be covered here)

* Linear discriminant functions
— Perceptron Learning as training approach
— Threshold decider

» Support Vector approaches

— Basic case: Classes are linear separable
— Use of Kernel-tricks for non-linear decisions

Classifier Networks
— Neural Networks
— Multilayer perceptrons + Back propagation learning rule

Classifier Cascades
— Homogenous vs. heterogeneous classifiers
— Sort-Out-Early to save computation time
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Classification Techniques

e Supervised Classification
— Maximum Likelihood Classifiers
— Minimum Distance Classification
— Context based approached

— Machine Learning Approaches

* Unsupervised Classification (Clustering)

— “Greedy” Clustering (Migrating Means)
— k-Means Clustering
— Hierarchical Clustering

01.07.14 Benjamin Seppke, IP2: Remote Sensing, University of Hamburg, Dept. Informatics
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Fundamentals of Unsupervised Classification

* Successful application of the maximum likelihood approach
depends on:

— Correct delineation of spectral classes
— Unimodal normal distributions

 What if these requirements are not met?
— Multimodal distributions are complicated to model
— Clustering approaches are a good alternative

e Similarity metrics and clustering criteria
— Clustering takes place in (high-dimensional) spectral/feature space

— Criteria for clustering needed:
* Distance measure (e.g. Euclidean) is commonly used
* Compare with “Minimum Distance Classification”

— Accuracy control: Sum of the squared error over all clusters
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Greedy Clustering Algorithm

If the maximum distance to the cluster centers is known:
1. Assign an arbitrary point in feature space to the first cluster

2. For each (unassigned) point:

1. Compute the distance to all cluster means

2. If distance is below threshold t:

1.  Assign it to the cluster of min. distance and
2.  Update the clusters mean.

3. If no point was assigned to a cluster:

1. If all points are assigned: done!
Else:
1. Select the point with the max. distance to all cluster means and
2. Assign it to a newly introduced label

3. Proceed with (2.)
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Example: Greedy Clustering Algorithm

01.07.14 Benjamin Seppke, IP2: Remote Sensing, University of Hamburg, Dept. Informatics
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Summary: Greedy Clustering Algorithm

* Advantages:
— Only maximum cluster distance needed

— Fast approach, even for high-dimensional feature spaces
with a lot of features

— Easy to implement

* Drawbacks:
— Strong dependency on the order of feature points
— No correction step
— Maximum cluster distance my be hard to determine
— Does not take advantage of the sum of squared errors
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k-Means Clustering Algorithm

If the count of clusters & is known:

1. Assign k arbitrary points in feature space to
represent cluster

2. For each point:
1. Compute the distance to all cluster means
2. Assign it to the cluster of min. distance

3. If assignments have not changed: done!

4. Else: For each cluster:

1. Compute the new cluster (arithmetic) mean
2. Proceed with (2.)
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Example: k-Means Clustering Algorithm

es 0
®pen

1) k initial "means" (in this
case k=3) are randomly
generated within the data
domain (shown in color).

0o0®

00O

S

N R&\D-

2) k clusters are created by 3) The centroid of each of the 4) Steps 2 and 3 are repeated

associating every observation k clusters becomes the new until convergence has been
with the nearest mean. The mean. reached.

partitions here represent the

Voronoi diagram generated

by the means.

from Wikipedia, 2014
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Summary: k-Means Clustering Algorithm

e Qutperforms greedy algorithm in many cases

* But:
— k may be unknown
— Higher time complexity than greedy algorithm
— Still some dependency to starting point selection
— Euclidean Distance = spherical cluster model
— Converges, but not necessary to the global minimum:
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from Wikipedia, 2014
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Agglomerative Hierarchical Clustering

* First: Start with an over segmentation
— At Pixel level
— Pre-Clustering

* Then: Systematically merge hierarchically until only one
cluster remains

e OQutput: “History” of merging, typically displayed on a fusion
dendrogram:
— Long vertical sections: stable (equal) groups
— Small vertical sections: unequal (unnatural) groups
 Two variations are used:

— Agglomerative: Bottom-Up
— Divisive: Top-Down
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Example: Agglomerative Hierarchical Clustering

Fusion dendrogram
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Comparison with Image Segmentation

* Presented clustering and classification techniques:
— Defined in feature space
— Often sparse results

* Image segmentation techniques:
— Defined in(usually 2D) image space
— Often complete subdivision as results

* |dea —related to Agglomerative Hierarchical Clustering:

|”

— Determine “superpixel” by image segmentation techniques

— lterative Merging of superpixel to form regions

* Merging may be based of different region properties

— Cancellation/Stopping criterion
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Example: The Watershed Transform

e |dea: Find “watersheds” of the image gradient

* Implementation:
— Dipping of the image function into water (Vincent & Soille)
— (Fast-) Union-Find approach (Roerdink & Meijster)

— Subpixel-based approach (Meine und Koethe)

01.07.14 Benjamin Seppke, IP2: Remote Sensing, University of Hamburg, Dept. Informatics 35
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j "

Example erglng usmg Watersheds

"8 V '-ﬁ _e'!
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Example Merglng usmg Watgrsheds

8" 95 ‘.e'l
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