

### IP2: Image Processing in Remote Sensing

# 11. Knowledge Based Interpretation and Exam Preparation

Summer Semester 2014 Benjamin Seppke

#### **Agenda**

- Kinds of knowledge
  - Further data and scene knowledge
  - Common Sense and expert knowledge
- Knowledge representation
  - Implicit
  - Explicit
- Description Logics as a common modeling base
  - Exemplary models
  - Reasoning
  - Challenges
- Open challenges
- Exam preparation

### **Knowledge? Knowledge!**

- Knowledge may show up in different ways, compare with IP2 – Part 1!
  - Geometric knowledge
  - Topologic knowledge
  - Temporal knowledge
- Knowledge may be given by
  - (potentially) incomplete facts
  - Common sense knowledge
  - Domain expert knowledge
- Usually more factual data than expert knowledge!

#### Sources of Remote Sensing Knowledge

- Image analysis/interpretation
- Cartographic data (e.g. provided by local agencies)
  - Street maps
  - Land-use maps
  - Oceanographic data: nautical, tidal, current charts etc.
- Derived data:
  - Sea surface (anomaly) height
  - Earth gravity field
  - Atmospheric data
- Expert interviews
- Physics (e.g. of fluid dynamics)
- Common sense (e.g. spatio-temporal) knowledge

## Challenges for the Use of Remote Sensing Knowledge

- Each data source may introduce another data format, standardized (but) only to its domain!
- Usually large amount of data too large for most reasoning systems!
- Highly heterogeneous data:
  - Dense knowledge vs. sparse (point-like) knowledge
  - Raster vs. polygonal knowledge
  - General knowledge between facts
- Derived data may not be appropriate and erroneous!



Development of Black (processing) Box systems in former times!

### **Implicit Knowledge Use**

- Some expert knowledge is "hard wired" into an usually black box system
- Scene analysts use the system by
  - 1. Importing an image
  - 2. Set the appropriate thresholds / other values
  - 3. Let the systems produce (1-click) results
  - 4. Interpret the results
- Drawbacks
  - Implicitly modeled knowledge neither visible nor interchangeable
  - Thresholds may follow expert knowledge → not modeled!
  - Interpretation step mostly unassisted / purely manual
- Example for such a system: ENVI

#### **Explicit Knowledge Use**

- Idea: All sources of knowledge shall be combined with respect to:
  - Expert knowledge
  - Common sense knowledgeto derive automated scene interpretations!
- Need for:
  - Good knowledge modeling (large factual database!)
  - Appropriate knowledge representation and reasoning systems:
    - Expressiveness
    - Speed
    - Logical correctness
- Currently no "Remote Sensing"-tailored system, but eCognition® provides at least:
  - Image segmentation + decision tree semantics
  - Called: "Semantic classification"
- But: Many logic systems with reasoning service available!

### Example: Explicit Knowledge Modeling Revisiting the Derivation of Sea surface currents



#### **Logics for Knowledge Representation**

- Propositional Logic Aussagenlogik
  - Low expressivity
  - Easy understandable (in form of truth tables)
  - Decidable
- Predicate Logic
- **P**rädikatenlogik
- High expressivity
- May be hard to understand (models need to be fulfilled)
- In general: not decidable!
- Description Logic **Beschreibungslogik** 
  - Decidable subsets of Predicate Logics
  - Highly optimized reasoners
  - Modeling tools available (e.g. Protégé)

#### **Description Logics I**

- Family of knowledge representation languages:
  - originated from early attempts in the 1970s to model knowledge with concept-or class-based structures.
  - Nowadays: the semantic basis for the Semantic Web (e.g.,OWL DL is basically a description logic).
- Most contemporary DLs can be considered as subsets of firstorder logic
  - → The inference services are well defined here!
  - → (comparably) fast reasoning algorithms exist.

#### **Description Logics II**

- Knowledge in DL systems comes in two disguises:
  - class- or concept-based knowledge, → Stored in T-Box
  - individual-specific knowledge
     → Stored in A-Box
- Binary relations for the Individuals (called roles).
   If R is such a role, and C and D are concept descriptions:

```
concept ::= atomic-concept \mid top \mid bottom
concept ::= (and C D) \mid (or C D) \mid
(some R C) \mid (all R D) \mid
(not C)
```

#### **Description Logics III**

 The denoted set of individuals in the domain of discourse is specified inductively by means of a so-called Tarski-style interpretation function I:

```
I((and \ C\ D)) = I(C) \cap I(D)
I((or \ C\ D)) = I(C) \cup I(D)
I((some \ R\ C)) = \{i \mid \exists j \in \Delta : j \in I(C), (i, j) \in I(R) \}
I((all \ R\ C)) = \{i \mid \forall j \in \Delta : (i, j) \in I(R) \Rightarrow j \in I(C) \}
I((not \ C)) = \Delta \setminus I(C)
```

• I(C) is also called the extension of C (w.r.t. an interpretation).

#### **Description Logics IV**

- A concept C is said to be satisfiable or consistent iff there is at least one interpretation function and non-empty domain  $\Delta$  such that I maps C to a non-empty subset of  $\Delta$ ;
- An interpretation, which satisfies C is also called a model of C.
- An important relationship between concepts is the subsumption relationship:
  - It is said that C is subsumed by D if the extension of C is a subset of the extension of D in all models of C and D.
  - Then, C is called the more specific, subsumee, and D the more general concept or subsumer

#### The Description Logic System Racer Pro

- Implements the expressive description logic *SHIQ(Dn)*:
  - Transitive, functional and inverse roles,
  - Role specialization hierarchies,
  - Reasoning with data types (e.g., strings, reals, integers, Booleans), and
  - Some additional concept constructors (e.g. qualified number restrictions of OWL2)
- Offers many advanced proprietary features, such as:
  - (Grounded) First-order queries, rules,
  - Programmatic "server-sided" scripting,
  - extensibility, and
  - some innovative inference services (such as abductive query answering).
- More than 10 years of continuous improvements → one of the fastest A-Box reasoning system
- An ideal basis for knowledge-intensive applications which require A-Box reasoning and A-Box query answering
- Has already proven to fit well for reasoning by means of computer vision scene interpretation [4].

### Case Study: Description Logic Modeling for the validation of derived sea surface currents



#### Qualitative vs. Quantitative Modeling

 The high expressivity of Racer allows quantitative modeling of a motion vector FV due to the closed domain of numbers by:

```
(constrained FV V alx FVx)(constraints (= V alx x))(constrained FV V aly FVy)(constraints (= V aly y))(constrained FV V alu FVu)(constraints (= V alu u))(constraints (= V alv v))
```

Classical approach: Define qualitative measures for knowledge:

(instance FV (and measuredcurrent

(some has-direction west)

(some has-velocity moderate)))

With:

Direction concepts: northwest, north, northeast, east,

southeast, south, southwest, west

Velocity concepts: slow, moderate, high

Localization roles: touches, is-next-to, is-far-away-from

Which kind of representation shall be used?

### **Time Comparison of Reasoning Tasks**

#### **Quantitative Representation**

#### Quantitative nepresentation



#### **Qualitative Representation**



- Favoring the qualitative approach for large number of individuals
- Need to define the ontology appropriate to the task!
- Automatic creation must know the semantics of the qualities to map from real values to qualitative values

#### Manual Modeling of the T-Box Smoothness Constraints

Propagating localization roles to ensure smoothness:

```
(implies (some has-velocity slow)(all touches (all has-velocity slow-tp)))(implies (some has-velocity slow)(all is-next-to (all has-velocity slow-np)))(implies (some has-velocity slow)(all is-far-away-from (all has-velocity slow-fp)))
```

- Use propagates rules to define erroneous concepts
  - For velocities and the touching localization rule:

Combine for all localization rules:

### Manual Modeling of the T-Box Look-Alike Detection

Ships on ship routes may yield to look-alikes

```
(equivalent shiproute-problem (and measured current (or (some touches shiproute) (some is-next-to shiproute))))
```

Motion estimates may be unreliable close to coastal areas:

```
(equivalent coastal-problem (and measuredcurrent (or (some touches land) (some is-next-to land))))
```

Combine both as look-alike problems

(equivalent lookalike-problem (or shiproute-problem coastal-problem))

### Manual Modeling of the T-Box Other error concepts

- For the research on sea surface current estimation, the following errors have been modeled by means of the T-Box:
  - Intra-smoothness errors
  - Look-Alike errors
  - Deviation from (numeric) model results of the sea surface currents
  - Deviation from wind measurements
- Each error concept is defined by its unique set of role / concept relationships
- The most general problem concept is then defined by:

```
(equivalent problem (or lookalike-problem modelledcurrent-problem currentsmoothness-problem) wind-problem)
```

More precise description may be derived using subsumption!

#### **Automatic A-Box Creation**

- Number of vectors is reduced by clustering algorithm
- For each vector:
  - Create an instance of the vector in the A-Box
  - Map from real to symbolic values and combine via roles with the created vector instance:
    - Vector velocity
    - Vector direction
    - Cluster standard deviation
      - > vector smoothness constraint
  - Query the geographical database for additional facts located within max (is-far-away) range.
  - If found create concepts and connect to the vector via appropriate roles

#### **Example: A-Box for Sea Surface Currents**

Consider the following A-Box:

```
(instance i (and measuredcurrent
                      (some has-direction southwest)
                      (some has-velocity moderate)))
(instance i (and measuredcurrent
                      (some has-direction south)
                      (some has-velocity high)))
(instance l land)
(instance m
                (and modelledcurrent
                      (some has-direction west)
                      (some has-velocity high)))
(instance s
                shiproute)
                (and windcurrent
(instance w
                      (some has-direction southeast)
                      (some has-velocity high)))
```

```
(related i j touches)
(related i m touches)
(related i s is-next-to)
(related i w is-far-away-from)
(related j l is-next-to)
```

## Detected Smoothness Violations of Feature based Results w.r.t the KB (Baltic Sea)



#### **Example: Questioning Racer Pro**

Using the new Racer Pro Query Language (nRQL):

```
? (retrieve\ (?x)\ (?x\ problem))
> (((?x j)) ((?x i)))
? (retrieve (?x) (?x lookalike-problem))
> (((?x j)) ((?x i)))
? (retrieve (?x) (?x shiproute-problem))
> (((?x i)))
? (retrieve (?x) (?x coastal-problem))
> (((?x j)))
? (retrieve (?x) (?x modelledcurrent-velocity-problem))
> (((?x i)))
? (retrieve (?x) (?x currentsmoothness-velocity-problem))
> (((?x j)) ((?x i)))
? (retrieve (?x) (?x wind-problem))
> (((?x i)))
? (individual-direct-types i)
> ((currentsmoothness-velocity-problem) (modelledcurrent-velocity-problem)
   (wind-problem) (shiproute-problem))
```

## **Knowledge Based Analysis: Open Research Challenges**

- Knowledge modeling (in Remote Sensing) is still under research!
- Main questions:
  - How to get from data- to knowledge base?
  - How to perform reasoning in small/appropriate time?
  - How to model geographical dependencies efficiently for large (e.g. raster) data
  - What about missing information?
    - Concepts
    - Dependencies between concepts
    - Missing roles?
  - Sensor-Fusion or knowledge fusion
  - How to deal with different granularities?
- And many many more...

## Knowledge Based Analysis: Starting Points for Further Research

• J. Roddick, M. Egenhofer, E. Hoel, D. Papadias, and B. Salzberg:

Spatial, Temporal and Spatio-Temporal Databases—Hot Issues and Directions for PhD Research

SIGMOD Record

Mehul Bhatt:

Reasoning about Space, Actions and Change – A Paradigm for Applications of Spatial Reasoning

R. Möller, V. Haarslev and C. Lutz:

Spatiotemporal Reasoning Based on Inferences: The ALCRP(D)-Approach

... and much more work from Ralf Möller!

#### **Exam Preparation**

- The oral exam (up to 30 minutes, overall time including IP2- High level vision) may cover all the fields of the lecture series:
  - Gravitational Astronomy
  - Orbits, Acquisition Constraints and Missions
  - Fundamentals of EM-Radiation
  - Remote Sensing Sensors
  - Image Processing:
    - Image Characteristics and Preprocessing
    - Classification and Segmentation
    - Edge Detection and Motion Estimation
  - Knowledge based Image Interpretation
- The next slides collect some possible questions...

### **Introduction and Gravitational Astronomy**

- What were the main discoveries, which formed the basics for Remote Sensing?
- Give a definition of Remote Sensing!
- Give a typical workflow for Remote Sensing processing!
- Describe Kepler's laws and their importance to spacebased earth observation!
- Why are reference planes and epochs of importance?
- Explain the effect of perturbation and how it can help with orbit design!

#### **Orbits and Acquisition Constraints**

- Give at least four different types of orbits and explain them!
- Where on a Molniya orbit is the observing time high, where low?
- Which orbits do weather satellite typically have and why?
- Which orbits do EO satellites usually have?
- Give advantages of sun-synchronous orbits?
- What has to be considered if one wants to take spaceborne stereo images?
- How much of a rocket's mass has to be fuel?

#### **EM-Radiation: Waves and Basic Principles**

- How can EM waves be created?
- Explain the correspondence between magnetic and electric field w.r.t. EM waves!
- How fast are EM waves at vacuum?
- Explain the influence of the dielectric constant e.g. for waves which hit water!
- What does "polarization" mean?
- What are wave packages and coherence?
- Explain the Doppler effect!

#### **EM-Radiation: Interaction with Matter**

- Distinguish the radiometric from the spectrometric and photometric system!
- What are black bodies and what may be described by their radiation?
- Explain emissivity of a material at the example of snow!
- Explain why EM radiation has to be considered as a particle flow sometimes!
- Explain the photo-electric effect!
- What are the requirements for reflection?
- Explain the absorption index of a material at the example of sliver or gold!

#### The Atmosphere of the Earth

- Explain the dependency between pressure and temperature!
- What is the Barometric Scale Factor?
- Describe the temperature distribution inside the atmosphere!
- How do we chemically characterize the atmosphere?
- What is the magnetosphere, and why do we need it?
- Explain the kinds of scattering of EM waves by the atmosphere!
- Explain, why the sky is blue!
- Describe the trajectories of EM waves from sun through the atmosphere!

#### **Optical Sensors**

- What constraints the EO by means of optical sensors?
- Briefly explain the differences between photographic sensors, framing and scanning optical sensors!
- Give two advantages of Along-Track scanners over Rotating scanners
- What are NADIR- and Off-NADIR modes?
- What is the azimuth axis?
- What is the revisit time?
- Can a single high-resolution optical satellite be used to monitor a single people over hours, like it is shown in Hollywood movies?

#### **Microwave and SAR-Sensors**

- Distinguish between active and passive MW Systems!
- What are the main advantages when using microwaves?
- Briefly explain satellite based altimetry!
- Why is altimetry of such importance, e.g. in climate research?
- What is mainly measured by satellite scatterometers?
- Explain the difference between real and synthetic Aperture!
- Which are the important steps and advantages of SAR systems?
- What is Speckle Noise?
- What is Interferometric SAR?

#### **Image Characteristics and Preprocessing**

- Name at least two sources of geometric distortions!
- What does "panorama distortion" mean?
- Explain the effect of relief displacement!
  - Why may it be useful sometimes?
  - What are the corresponding effects for imaging radar?
- What are the important steps in sensor normalization?
- Why do we need good atmospheric correction?
- What does registration mean w.r.t. Remote Sensing?
  - Which different registration tasks may occur?
  - What has to be considered in mountainous areas?
  - What registration methods do you know for point to point correspondences?

#### **Image Classification**

- Describe the Classification task!
- What distinguishes photo interpretation from quantitative analysis?
- Explain the supervised classification approach in general!
- What does "Maximum Likelihood Classification" mean?
- What are discriminant functions and Thresholds?
- When may the minimum distance classification be applied?
- What is "Context Classification? Give an Example!
- What is Clustering? Where is it needed?

#### **Edge Detection**

- Describe the correspondence of the image gradient and edges in images!
- What is the main difficulty for the definition of multispectral edges?
- Explain the differences of the mean, max and multispectral gradient for edge detection!
- What is the main advantage of the multi-spectral gradient measure?

#### **Motion Derivation**

- Name and explain the two algorithmic classes for motion detection!
- What are the advantages of feature-based methods?
- When are differential methods applicable?
- Explain the problem of large spatiotemporal distances!
- Explain the concept of focused search!

#### **Knowledge Based Interpretation**

- Give examples for different kinds of knowledge in the context of Remote Sensing!
- Explain the difference between implicit and explicit knowledge use!
- How do Description Logics store knowledge?
- What kind of knowledge box may be filled automatically (e.g. by means of derived results)
- What are the main challenges in knowledge representation and reasoning w.r.t. Remote Sensing applications?