

Quick Introduction to Qt Programming

CMPS160

© 2010 Nokia Corporation and its Subsidiary(-ies).

The enclosed Qt Educational Training Materials are provided under the Creative Commons Attribution-Non-Commercial-Share Alike 2.5 License Agreement.

The full license text is available here: http://creativecommons.org/licenses/by-nc-sa/2.5/legalcode.

Nokia, Qt and the Nokia and Qt logos are the registered trademarks of Nokia Corporation in Finland and other countries worldwide.

What is Qt?

"Qt is a cross platform development framework written in C++."

- C++ framework bindings for other languages
 Python, Ruby, C#, etcetera
- Originally for user interfaces now for everything

Databases, XML, WebKit, multimedia, networking, OpenGL, scripting, non-GUI...

What is Qt?

Qt is built from modules

• All modules have a common scheme and are built from the same API design ideas

What is Qt?

Qt extends C++ with macros and introspection

foreach (int value, intList) { ... }

```
QObject *o = new QPustButton;
o->metaObject()->className(); // returns "QPushButton"
```

connect(button, SIGNAL(clicked()), window, SLOT(close()));

• All code is still plain C++

The Purpose of Qt

- Cross platform applications built from one source
- Builds native applications with native look and feel

🛾 🕐 S	peed	runch						0
<u>S</u> ession	<u>E</u> dit	<u>V</u> iew	Se <u>t</u> tings	<u>H</u> elp				
65-42								
23								
x=ans								
23								
sin(x)								
-0.84	6220	40417	5170635	524				
sin(x)								
sin(x)								
sin(x)	8	9		c	~	Π	exp	In
sin(x) 7	8	9		c	√	π	exp	In
sin(x) 7	8	9		C C	V	π	exp	In
sin(x) 7 4	8	9		C E	√ ^	π ans	exp sin	In asin
sin(x) 7 4	8 5	9		C E	√ ^	π ans	exp sin	In asin
sin(x) 7 4	8 5 2	9 6 3	/	C E	√ ^)	π ans x	exp sin cos	In asin acos
sin(x) 7 4	8 5 2	9 6 3	/	C E (√ ^)	π ans x	exp sin cos	In asin acos
sin(x) 7 4 1	8 5 2	9 6 3		C E (√ ^)	π ans x	exp sin cos	In asin acos

 Easy to (re)use API, high developer productivity, openess, fun to use

Desktop target platforms

65-42 23 x=ans

23 sin(x)

7

4

1

0

2

3

=

-

+

(

%

)

1

х

x =

COS

tan

acos

atan

x=678

_ O X

Windows

536*12						
6432						
cos ans						
-0,399	948795304	300988	3262			
cos an	s					
cos an	s					
cos an 7	s 8 9		С	√) n	exp	In
cos an 7	s 8 9			√ <u>n</u>	exp	In
cos an 7 4	s 8 9 5 6		C E	√ n ^ ans	exp sin	In asin
cos an 7 4	s 8 9 5 6 2 3		C C	√ n ^ ans) x	exp sin cos	In asin acos
cos an 7 4	s 8 9 5 6 2 3			√ n ^ ans) x	exp sin cos	In asin acos
<pre>cos an 7 4 1 0</pre>	s 8 9 5 6 2 3 , =		C (E (- ()	√ n ^ ans) x ! x=	exp sin cos tan	In asin acos atan

SpeedCrunch

Mac OS X

Linux/Unix X11

SpeedCrunch 🕅

Embedded target platforms

Windows CE

Symbian

Maemo

- Embedded Linux
 - Direct framebuffer access

beagleboard.org


```
#include <QApplication>
#include <QLabel>
int main( int argc, char **argv )
{
    QApplication app( argc, argv );
    QLabel l( "Hello World!" );
    l.show();
    return app.exec();
}
```


#include <QApplication> #include <QLabel>

```
int main( int argc, char **argv )
{
    QApplication app( argc, argv );
    QLabel l( "Hello World!" );
    l.show();
    return app.exec();
}
```



```
#include <QApplication>
#include <QLabel>
int main( int argc, char **argv )
{
    QApplication app( argc, argv );
    QLabel l( "Hello World!" );
    l.show();
    return app.exec();
}
```



```
#include <QApplication>
#include <QLabel>
int main( int argc, char **argv )
{
    QApplication app( argc, argv );
    QLabel 1( "Hello World!" );
    l.show();
    return app.exec();
}
```



```
#include <QApplication>
#include <QLabel>
int main( int argc, char **argv )
{
    QApplication app( argc, argv );
    QLabel l( "Hello World!" );
    l.show();
    return app.exec();
}
```


The QObject

- QObject is the base class of almost all Qt classes and all widgets
- It contains many of the mechanisms that make up Qt
 - events
 - signals and slots
 - properties
 - memory management

The QObject

- QObject is the base class to most Qt classes. Examples of exceptions are:
 - Classes that need to be lightweight such as graphical primitives
 - Data containers (QString, QList, QChar, etc)
 - Classes that needs to be copyable, as QObjects cannot be copied

Meta data

- Qt implements introspection in C++
- Every gobject has a meta object
- The meta object knows about
 - class name (QObject::className)
 - inheritance (QObject::inherits)
 - properties
 - signals and slots
 - general information (QObject::classInfo)

Meta data

• The meta data is gathered at compile time by the meta object compiler, *moc*.

Ordinary C++ Build Process

Meta data

• The meta data is gathered at compile time by the meta object compiler, *moc*.

Qt C++ Build Process

• The moc harvests data from your headers.

Signals and Slots

• Dynamically and loosely tie together events and state changes with reactions

• What makes Qt tick

Signals and Slots vs Callbacks

- A callback is a pointer to a function that is called when an event occurs, any function can be assigned to a callback
 - No type-safety
 - Always works as a direct call
- Signals and Slots are more dynamic
 - A more generic mechanism
 - Easier to interconnect two existing classes
 - Less knowledge shared between involved classes

- A slot can return values, but not through connections
- Any number of signals can be connected to a slot

connect(src, SIGNAL(sig()), dest, SLOT(slt()));

- It is implemented as an ordinary method
- It can be called as an ordinary method

What is a signal?

• A signal is defined in the signals section

signals:
 void aSignal();

- A signal always returns void
- A signal must not be implemented
 - The moc provides an implementation
- A signal can be connected to any number of slots
- Usually results in a direct call, but can be passed as events between threads, or even over sockets (using 3rd party classes)
- The slots are activated in arbitrary order
- A signal is emitted using the emit keyword

emit aSignal();

Making the connection

Qt can ignore arguments, but not create values from nothing

Qt	Automatic Connections
 Whe conr 	en using Designer it is convenient to have automatic nections between the interface and your code
	on_ object name _ signal name (signal parameters)
	<pre>on_addButton_clicked();</pre>
	<pre>on_deleteButton_clicked();</pre>
or	n listWidget currentItemChanged(QListWidgetItem*,QListWidgetItem*)

- **Triggered by calling** QMetaObject::connectSlotsByName
- Think about reuse when naming
 - Compare on_widget_signal to updatePageMargins

updatePageMargins can be connected to a number of signals or called directly.

Setter implementation details

Signals are "protected" so you can emit them from derived classes.

Lab 1 Notes

- Use QImage or QPixMap for rendering the image
- Override QMainWindow::keyPressEvent for keyboard event handling
- Keep track of old mouse position to determine paint stroke direction
- For 2D image patch transformations, use Qimage::copy and Qimage::transformed