
Quick Introduction to Qt
Programming

CMPS160

© 2010 Nokia Corporation and its Subsidiary(-ies).

The enclosed Qt Educational Training Materials are provided under the Creative Commons
Attribution-Non-Commercial-Share Alike 2.5 License Agreement.

The full license text is available here: http://creativecommons.org/licenses/by-nc-sa/2.5/legalcode.

Nokia, Qt and the Nokia and Qt logos are the registered trademarks of Nokia Corporation in Finland
and other countries worldwide.

What is Qt?

 C++ framework – bindings for other languages

 Python, Ruby, C#, etcetera

 Originally for user interfaces – now for
everything

Databases, XML, WebKit, multimedia, networking,
OpenGL, scripting, non-GUI...

”Qt is a cross platform development

framework written in C++.”

What is Qt?

 Qt is built from modules

 All modules have a common scheme and are
built from the same API design ideas

QtCore

Phonon

QtXmlPatterns

QtXml QtWebKit

QtSvg

QtSql QtScript

QtOpenVG

QtOpenGL

QtNetwork

QtMultimedia

QtGui

What is Qt?

 Qt extends C++ with macros and introspection

 All code is still plain C++

foreach (int value, intList) { … }

QObject *o = new QPustButton;

o->metaObject()->className(); // returns ”QPushButton”

connect(button, SIGNAL(clicked()), window, SLOT(close()));

The Purpose of Qt

 Cross platform applications built from one source

 Builds native applications with native look and feel

 Easy to (re)use API, high developer productivity,
openess, fun to use

Desktop target platforms

 Windows

 Mac OS X

 Linux/Unix X11

Embedded target
platforms

 Windows CE

 Symbian

 Maemo

 Embedded Linux

 Direct framebuffer access

Hello World

Hello World

#include <QApplication>

#include <QLabel>

int main(int argc, char **argv)

{

 QApplication app(argc, argv);

 QLabel l("Hello World!");

 l.show();

 return app.exec();

}

Hello World

#include <QApplication>

#include <QLabel>

int main(int argc, char **argv)

{

 QApplication app(argc, argv);

 QLabel l("Hello World!");

 l.show();

 return app.exec();

}

Hello World

#include <QApplication>

#include <QLabel>

int main(int argc, char **argv)

{

 QApplication app(argc, argv);

 QLabel l("Hello World!");

 l.show();

 return app.exec();

}

Hello World

#include <QApplication>

#include <QLabel>

int main(int argc, char **argv)

{

 QApplication app(argc, argv);

 QLabel l("Hello World!");

 l.show();

 return app.exec();

}

Hello World

#include <QApplication>

#include <QLabel>

int main(int argc, char **argv)

{

 QApplication app(argc, argv);

 QLabel l("Hello World!");

 l.show();

 return app.exec();

}

The QObject

 QObject is the base class

of almost all Qt classes

and all widgets

 It contains many of the
mechanisms that make up
Qt

 events

 signals and slots

 properties

 memory management

The QObject

 QObject is the base class to most Qt classes.

Examples of exceptions are:

 Classes that need to be lightweight such as
graphical primitives

 Data containers (QString, QList, QChar, etc)

 Classes that needs to be copyable, as QObjects
cannot be copied

Meta data

 Qt implements introspection in C++

 Every QObject has a meta object

 The meta object knows about

 class name (QObject::className)

 inheritance (QObject::inherits)

 properties

 signals and slots

 general information (QObject::classInfo)

Meta data

 The meta data is gathered at compile time by
the meta object compiler, moc.

sources
*.cpp

executables
object files

*.o

headers
*.h

Ordinary C++ Build Process

includes

compiles links

Meta data

 The meta data is gathered at compile time by
the meta object compiler, moc.

 The moc harvests data from your headers.

sources
*.cpp

executables
object files

*.o

headers
*.h

generated
moc_*.cpp

Qt C++ Build Process

includes

compiles links

compiles

mocs

Meta data

 What does moc look for?

class MyClass : public QObject

{

 Q_OBJECT

 Q_CLASSINFO("author", "John Doe")

public:

 MyClass(const Foo &foo, QObject *parent=0);

 Foo foo() const;

public slots:

 void setFoo(const Foo &foo);

signals:

 void fooChanged(Foo);

private:

 Foo m_foo;

};

Qt keywords

General info
about the class

The Q_OBJECT
macro, usually first

Make sure that you inherit
QObject first (could be indirect)

Signals and Slots

 Dynamically and loosely tie together
events and state changes with reactions

 What makes Qt tick

Signals and Slots vs
Callbacks

 A callback is a pointer to a function that is called
when an event occurs, any function can be
assigned to a callback

 No type-safety

 Always works as a direct call

 Signals and Slots are more dynamic

 A more generic mechanism

 Easier to interconnect two existing classes

 Less knowledge shared between involved classes

What is a slot?

 A slot is defined in one of the slots sections

 A slot can return values, but not through connections

 Any number of signals can be connected to a slot

 It is implemented as an ordinary method

 It can be called as an ordinary method

public slots:

 void aPublicSlot();

protected slots:

 void aProtectedSlot();

private slots:

 void aPrivateSlot();

connect(src, SIGNAL(sig()), dest, SLOT(slt()));

What is a signal?

 A signal is defined in the signals section

 A signal always returns void

 A signal must not be implemented

 The moc provides an implementation

 A signal can be connected to any number of slots

 Usually results in a direct call, but can be passed as events between
threads, or even over sockets (using 3rd party classes)

 The slots are activated in arbitrary order

 A signal is emitted using the emit keyword

signals:

 void aSignal();

emit aSignal();

Making the connection

QObject::connect(src, SIGNAL(signature), dest, SLOT(signature));

<function name> (<arg type>...)

clicked()

toggled(bool)

setText(QString)

textChanged(QString)

rangeChanged(int,int)

setTitle(QString text)

setValue(42)

A signature consists of the function name
and argument types. No variable names,
nor values are allowed.

Custom types reduces reusability.

QObject*

setItem(ItemClass)

Making the connection

 Qt can ignore arguments, but not create values
from nothing

Signals

rangeChanged(int,int)

rangeChanged(int,int)

rangeChanged(int,int)

valueChanged(int)

valueChanged(int)

valueChanged(int)

textChanged(QString)

clicked()

clicked()

Slots

setRange(int,int)

setValue(int)

updateDialog()

setRange(int,int)

setValue(int)

updateDialog()

setValue(int)

setValue(int)

updateDialog()

Automatic Connections

 When using Designer it is convenient to have automatic
connections between the interface and your code

 Triggered by calling QMetaObject::connectSlotsByName

 Think about reuse when naming

 Compare on_widget_signal to updatePageMargins

on_ object name _ signal name (signal parameters)

on_addButton_clicked();

on_deleteButton_clicked();

on_listWidget_currentItemChanged(QListWidgetItem*,QListWidgetItem*)

updatePageMargins
can be connected to
a number of signals

or called directly.

Synchronizing Values

 Connect both ways

 An infinite loop must be stopped – no signal is
emitted unless an actual change takes place

connect(dial1, SIGNAL(valueChanged(int)), dial2, SLOT(setValue(int)));

connect(dial2, SIGNAL(valueChanged(int)), dial1, SLOT(setValue(int)));

void QDial::setValue(int v)

{

 if(v==m_value)

 return;

 ...

This is the responsibility of all code
that can emit signals – do not forget

it in your own classes

Custom signals and slots

class AngleObject : public QObject

{

 Q_OBJECT

 Q_PROPERTY(qreal angle READ angle WRITE setAngle NOTIFY angleChanged)

public:

 AngleObject(qreal angle, QObject *parent = 0);

 qreal angle() const;

public slots:

 void setAngle(qreal);

signals:

 void angleChanged(qreal);

private:

 qreal m_angle;

};

Add a notify
signal here.

Setters make
natural slots.

Signals match
the setters

Setter implementation
details

void AngleObject::setAngle(qreal angle)

{

 if(m_angle == angle)

 return;

 m_angle = angle;

 emit angleChanged(m_angle);

}

Protection against
infinite loops.

Do not forget this!

Update the internal state,
then emit the signal.

Signals are “protected”
so you can emit them
from derived classes.

Lab 1 Notes

• Use QImage or QPixMap for rendering the
image

• Override QMainWindow::keyPressEvent for
keyboard event handling

• Keep track of old mouse position to
determine paint stroke direction

• For 2D image patch transformations, use
Qimage::copy and Qimage::transformed

