
Image Processing with Python

An introduction to the use of
Python, NumPy, SciPy and matplotlib

for image processing tasks

In preparation for the exercises of the Master course module
Image Processing 1

 at winter semester 2013/14

Benjamin Seppke (seppke@informatik.uni-hamburg.de)
17.10.2013

Outline
  Introduction

  Presenting the Python programming language

  Image processing with NumPy and SciPy

  Visualization with matplotlib and the spyder IDE

  Summary

Outline
  Introduction

  Presenting the Python programming language

  Image processing with NumPy and SciPy

  Visualization with matplotlib and the spyder IDE

  Summary

Prerequisites (Software)
  Python (we use version 2.X with X>5)

  http://www.python.org

  NumPy and SciPy (with PIL: http://www.pythonware.com/products/pil)
  http://www.scipy.org

  matplotlib
  http://matplotlib.org

  spyder IDE
  http://code.google.com/p/spyderlib

Installing Python and packages

  Linux
  All of the prerequisites should be installable by means of the

package manager of the distribution of your choice.

  Mac OS X
  Install the MacPorts package manager (http://www.macports.org)

and use this to get all necessary packages.

  Windows
  Python-(x,y) (http://code.google.com/p/pythonxy) contains all

necessary packages in binary form and an installer.

Goals for today...
  Draw interest to another programming language,

namely: Python

  Motivation of an interactive Workflow („Spielwiese“)

  „Easy access” into practical image processing tasks
using NumPy, SciPy, matplotlib and spyder

  Finally: Give you the ability to solve the exercises of
this course

Outline
  Introduction

  Presenting the Python programming language

  Image processing with NumPy and SciPy

  Visualization with matplotlib and the spyder IDE

  Summary

Introducing Python

The following introduction is based on the
official „Python-Tutorial“

http://docs.python.org/tutorial/index.html

Python
„Python is an easy to learn, powerful programming language. [...]

Python’s elegant syntax and dynamic typing, together with its
interpreted nature, make it an ideal language for scripting and
rapid application development in many areas on most platforms.“

„By the way, the language is named after the BBC show “Monty
Python’s Flying Circus” and has nothing to do with reptiles.“

The Python Tutorial, Sep. 2010

Why another language?
Why Python?

  Interactive: no code/compile/test-cycle!

  A lot of currently needed and easy accessible functionality
compared with traditional scripting languages!

  Platform independent and freely available!

  Large user base and good documentation!

  Forces compactness and readability of programs by syntax!

  Some say: can be learned in 10 minutes...

Getting in touch with Python (2.X)

  All of this tutorial will use the interactive mode:
  Start the interpreter: python
  Or, an advanced interpreter: ipython

1. Example:
> python

Python 2.7 (#1, Feb 28 2010, 00:02:06)

Type "help", "copyright", "credits" or "license" for more information.

>>> the_world_is_flat = True

>>> if the_world_is_flat:

... print "Be careful not to fall off!"

...

Be careful not to fall off!

Data types – numbers (1)
  Python supports integer, floating point and complex

valued numbers by default:
>>> 2+2

4

>>> # This is a comment

... 2+2

4

>>> # Integer division returns the floor:

... 7/3

2

>>> 7.0 / 2 # but this works...

3.5

>>> 1.0j * 1.0j

(-1+0j)

Data types – numbers (2)
  Assignments and conversions:

>>> a=3.0+4.0j

>>> float(a)

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

TypeError: can't convert complex to float; use abs(z)

>>> a.real

3.0

>>> a.imag

4.0

>>> abs(a) # sqrt(a.real**2 + a.imag**2)

5.0

Special variables
  Example: last result „_“ (only in interactive mode):

  Many more in ipython!

>>> tax = 12.5 / 100

>>> price = 100.50

>>> price * tax

12.5625

>>> price + _

113.0625

>>> round(_, 2)

113.06

Data types – strings
  Sequences of chars (like e.g. in C), but immutable!

 >>> word = 'Help' + 'A'

>>> word

'HelpA'

>>> '<' + word*5 + '>'

'<HelpAHelpAHelpAHelpAHelpA>'

>>> 'str' 'ing' # <- This is ok

'string'

>>> word[4]

'A'

>>> word[0:2]

'He'

>>> word[2:] # Everything except the first two characters

'lpA'

Data types – lists
  Lists may contain different types of entries at once!

  First element has index: 0, last element: length-1.
>>> a = ['spam', 'eggs', 100, 1234]

>>> a

['spam', 'eggs', 100, 1234]

>>> a[0]

'spam'

>>> a[-2]

100

>>> a[1:-1]

['eggs', 100]

>>> a[:2] + ['bacon', 2*2]

['spam', 'eggs', 'bacon', 4]

The first program (1)
  Counting Fibonacci series

>>> # Fibonacci series:

... # the sum of two elements defines the next

... a, b = 0, 1

>>> while b < 10:

... print b

... a, b = b, a+b

...

1

1

2

3

5

8

The first program (2)
  Counting Fibonacci series (with a colon after the print)

>>> # Fibonacci series:

... # the sum of two elements defines the next

... a, b = 0, 1

>>> while b < 10:

... print b,

... a, b = b, a+b

...

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Conditionals – if
  Divide cases in if/then/else manner:

>>> x = int(raw_input("Please enter an integer: "))

Please enter an integer: 42

>>> if x < 0:

... x = 0

... print 'Negative changed to zero'

... elif x == 0:

... print 'Zero'

... elif x == 1:

... print 'Single'

... else:

... print 'More'

...

More

Control flow – for (1)
  Python‘s for-loop:

  is indeed a for-each-loop!

>>> # Measure the length of some strings:

... a = ['two', 'three', 'four']

>>> for x in a:

... print x, len(x)

...

two 3

three 5

four 4

Control flow – for (2)
  What about a counting for loop?

  Quite easy to get:
>>> a = ['Mary', 'had', 'a', 'little', 'lamb']

>>> for i in range(len(a)):

... print i, a[i]

...

0 Mary

1 had

2 a

3 little

4 lamb

Defining functions (1)
  Functions are one of the most important way to

abstract from problems and to design programs:
>>> def fib(n): # write Fibonacci series up to n

... """Print a Fibonacci series up to n."""

... a, b = 0, 1

... while a < n:

... print a,

... a, b = b, a+b

...

>>> # Now call the function we just defined:

... fib(2000)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

Defining functions (2)
  Functions are (themselves) just Python symbols!

  No explicit return value needed (default: “None”)

>>> fib

<function fib at 10042ed0>

>>> f = fib

>>> f(100)

0 1 1 2 3 5 8 13 21 34 55 89

>>> fib(0)

>>> print fib(0)

None

Defining functions (3)
  Fibonacci series with a list of numbers as return value:

>>> def fib2(n): # return Fibonacci series up to n

... """Return a list containing the Fibonacci series up to n."""

... result = []

... a, b = 0, 1

... while a < n:

... result.append(a) # see below

... a, b = b, a+b

... return result

...

>>> f100 = fib2(100) # call it

>>> f100 # write the result

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

Function argument definitions (1)

  Named default arguments:

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):

 while True:

 ok = raw_input(prompt)

 if ok in ('y', 'ye', 'yes'):

 return True

 if ok in ('n', 'no', 'nop', 'nope'):

 return False

 retries = retries - 1

 if retries < 0:

 raise IOError('refuse user')

 print complaint

Function argument definitions (2)

  Calling strategy in more detail:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):

 print "-- This parrot wouldn't", action,

 print "if you put", voltage, "volts through it."

 print "-- Lovely plumage, the", type

 print "-- It's", state, "!"

parrot(1000)

parrot(action = 'VOOOOOM', voltage = 1000000)

parrot('a thousand', state = 'pushing up the daisies')

parrot('a million', 'bereft of life', 'jump')

Excurse: lambda abstraction
  If you want, you can go functional with Python, e.g.

using the provided lambda abstractor:
>>> f = lambda x, y: x**2 + 2*x*y + y**2

>>> f(1,5)

36

>>> (lambda x: x*2)(3)

6

Modules
  If you have saved this as „fibo.py“:

…you have already written your first Python module.
 Call it using:

Fibonacci numbers module

def fib(n): # return Fibonacci series up to n

 result = []

 a, b = 0, 1

 while b < n:

 result.append(b)

 a, b = b, a+b

 return result

>>> import fibo

>>> fibo.fib(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

Summary of Python
  You‘ll learn Python the best:

 … by means of practical use of the language!
 … especially not by listening to lectures!

  Python has a lot more to offer!
E.g.: A class system, error handling, IO, GUI, Networking

  The slides shown before should have shown that:
  Getting in touch is quite easy!

  The learning rate is comparably steep!

  You get early and valuable experiences of achievements!

  All this makes Python so popular!!

Outline
  Introduction

  Presenting the Python programming language

  Image processing with NumPy and SciPy

  Visualization with matplotlib and the spyder IDE

  Summary

Image processing with
NumPy and SciPy

Unfortunately, it is not possible to give a complete
introduction in either NumPy or SciPy.

The image processing introduction is based on:
http://scipy-lectures.github.io/advanced/image_processing

More material regarding NumPy can e.g. be found at:
http://numpy.scipy.org

A good beginner‘s tutorial is provided at:
http://www.scipy.org/Tentative_NumPy_Tutorial

Images as efficient arrays?!
  In many programming environments, like e.g. MatLab,

images are represented as random access arrays

  However, Python‘s built-in array is often neither flexible
nor powerful enough for image processing

  Thus: use NumPy arrays for image representation.

  Idea of a first (very basic) workflow:
  Load images using scipy.misc (via PIL)

  Process the images using NumPy and Scipy

  Save the images using scipy.misc (via PIL)

NumPy at a glance
•  „NumPy is the fundamental package needed for scientific computing

with Python. It contains among other things:
a powerful N-dimensional array object […]“

•  NumPy Homepage, 2010

  May have required a whole course on its own...

  Still growing scientific user community (SciPy/NumPy)

  Reliable algorithms

  Quite fast, compared to commercial software
implementations

Loading and saving images
  Load an image into a NumPy array (requires PIL)

  Saving a NumPy array as an image (requires PIL)

  Attention: Usually only 2d- and 3d-arrays with datatype
„uint8“ (0 – 255) can be saved as images.
A type conversion may be necessary before saving!

>>> import numpy as np

>>> from scipy import misc

>>> img = misc.imread('lena.png‘)

...

>>> img = misc.imread('lena.png‘)

>>> misc.imsave('lena_copy.png‘, img)

„Hello Image“
  First example: Load, “view” and save an image:

...

>>> img = misc.imread('lena.png‘) #or: img = misc.lena()

>>> img

array([[162, 162, 162, ..., 170, 155, 128],

 ...,

 [44, 44, 55, ..., 104, 105, 108]])

>>> misc.imsave(img, 'lena_copy.png‘)

NumPy image representation (1)

  Gray-value images:
...

>>> img

array([[162, 162, 162, ..., 170, 155, 128],

 [162, 162, 162, ..., 170, 155, 128],

 [162, 162, 162, ..., 170, 155, 128],

 ...,

 [43, 43, 50, ..., 104, 100, 98],

 [44, 44, 55, ..., 104, 105, 108],

 [44, 44, 55, ..., 104, 105, 108]])

NumPy image representation (2)

  RGB-value images:
...

>>> img_rgb

array([[[121, 112, 131], ..., [139, 144, 90]],
 [[89, 82, 100], ..., [146, 153, 99]],

 [[73, 66, 84], ..., [144, 153, 98]],

 ...,

 [[87, 106, 76], ..., [119, 158, 95]],

 [[85, 101, 72], ..., [120, 156, 94]],

 [[85, 101, 74], ..., [118, 154, 92]]], dtype=uint8)

NumPy slicing and index tricks

  Extract channels using slicing

  Extract sub-images using index ranges:

  Attention: NumPy often creates views and does not
copy your data, when using index tricks!
 Compare to Call-By-Reference Semantics

>>> img_rgb[:,:,0] # <-- red channel
>>> img_rgb[...,0] # same as above, fix inner-most dim. to 0

>>> img_rgb[...,1] # <-- green channel

>>> img_rgb[...,2] # <-- blue channel
>>> img_rgb[...,-1] # same as above, since blue is the last ch.

>>> img_rgb[100:200,100:200,0] # <-- red channel, size 100x100 px

>>> img[100:200,100:200] # <-- 100x100 px of gray-scale image

Basic Image Processing (1)
  Example: Invert an image (create the negative):

...
>>> img_invert = 255 - img

>>> img_rgb_invert = 255 – img_rgb # <-- works for rgb too!

Basic Image Processing (2)
  Example: Threshold an image:

...
>>> threshold = 100
>>> mask = img < threshold

>>> masked_img = img.copy()

>>> masked_img[mask] = 0

Summary: Image Processing
with SciPy and NumPy

  Many image processing algorithms already
„onboard“, like e.g. filters and Fourier transformation
in scipy.ndimge package

  Enables you to fast process images due to highly
sophisticated C-implementation

  Contains a lot of numerical operations

  Time and memory efficient due to referential
workflow

Outline
  Introduction

  Presenting the Python programming language

  Image processing with NumPy and SciPy

  Visualization with matplotlib and the spyder IDE

  Summary

Visualization with matplotlib

“matplotlib is a python 2D plotting library which produces
publication quality figures in a variety of hardcopy formats and
interactive environments across platforms. matplotlib can be used
in python scripts, the python and ipython shell...“

http://matplotlib.org, October 2013

This introduction is based on the matplotlib image tutorial:
http://matplotlib.org/users/image_tutorial.html

Showing images interactively

•  Use matplotlib to show an image figure:
>>> import matplotlib.pyplot as plt
>>> from scipy import misc
>>> img = misc.imread(‚stinkbug.png‘) # <-- stored as a gray rgb image
>>> lum_img = img[...,0]

>>> img_plot = plt.imshow(img)
>>> img_plot.show()
>>> img_lum_plot = plt.imshow(lum_img)
>>> img_lum_plot.show()
>>> img_lum_plot.set_cmap(gray) # also try hot, spectral etc.

Show with enhanced constast

•  Use matplotlib to inspect the histogram:
...
>>> plt.hist(lum_img.flatten(), 256, range=(0.0,1.0), fc='k', ec='k')
>>> plt.show()

>>> imgplot.set_clim(0.0,0.7)

Visualization issue: Interpolation

•  When zooming in, it may be necessary to interpolate
the images pixels.

•  By default, bilinear interpolation is used. It might be
better to use „nearest neighbor“ interpolation to see
the pixels:

•  Or, for more accuracy, you may want to try bicubic
interpolation:

...
>>> img_plot.set_interpolation('nearest‘)

...
>>> img_plot.set_interpolation(‘bicubic‘)

Working with the spyder IDE

„spyder (previously known as Pydee) is a powerful interactive development environment for the
Python language with advanced editing, interactive testing, debugging and introspection
features.[...]

spyder lets you easily work with the best tools of the Python scientific stack in a simple yet
powerful environment.[...]“

http://code.google.com/p/spyderlib, October 2013

The screenshots of this introduction have been taken from the spyder homepage.

The spyder IDE

spyder - the editor

spyder - the console

spyder - the variable explorer

Outline
  Introduction

  Presenting the Python programming language

  Image processing with NumPy and SciPy

  Visualization with matplotlib and the spyder IDE

  Summary

Summary (1)
  The Python programming language

  Readable, meaningful syntax (remember the tabs!)

  Highly functional, full of functionality

  Steep learning experience and fast results

  Perfectly practicable for interactive work

  Can be extended easily

  Large global community

Summary (2)
  NumPy and SciPy

  Efficient Array implementation

  Loading and saving of images (transparently via PIL)

  Adds (nature) scientific stuff to Python

  Contains basic image processing functionality

  Highly active and widely recommended packages

Summary (3)
  matplotlib

  Plots everything...

  Works well with NumPy arrays

  spyder
  Nice IDE

  Integrates Scientific work flow (a bit like MatLab)

  Everything is there and freely available: Time to start
with the excercises!

Thank you for your attention!

Time for questions, discussions etc.

