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Definition of Image Understanding

Image understanding is the task-oriented reconstruction
and interpretation of a scene by means of images

e ''scene": section of the real world
— stationary (3D) or
— moving (4D)

* "image": view of a scene
— projection, density image (2D)
— depth image (2 1/2D)
— image sequence (3D)

* "reconstruction and interpretation”: computer-internal scene description
— Quantitative
— Qualitative
— Symbolic

* '"task-oriented": for a purpose, to fulfil a particular task

— context-dependent,
— supporting actions of an agent
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lllustration of Image Understanding

image
sequence .
gully image sequence
interpretation
scene

e
\

20.10.14 University of Hamburg, Dept. Informatics



IP1 — Lecture 3: Image Understanding and Image Formation

Image Understanding as a Knowledge-based Process

common sense events, episodes
knowledge — !
object configurations, high-level vision, scene
situation models, situations, occurrences understanding
occurrence models —) 1
object models objects, trajectories _
) I object —
s recognition
projective scene elements:
geometry volumes, 3D-surfaces, 3D-
contours low-level vision,
photometry —) I _ early vision
image elements:
physics regions, edges, texture,
optical flow
basic real-world T segmentation,
properties . r—' image preprocessing
raw images
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A Model of Scene Analysis (Kanade 78)

Model
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Abstraction Levels for the Description
of Computer Vision Systems

Knowledge level

What knowledge or information enters a process? What knowledge or information is
obtained by a process?

What are the laws and constraints which determine the behavior of a process?

Algorithmic level
How is the relevant information represented?

What algorithms are used to process the information?

Implementation level
What programming language is used?

What computer hardware is used?
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Example for Knowledge-level Analysis

What knowledge or information enters a process? What knowledge or information
is obtained by a process?

What are the laws and constraints which determine the behavior of a process?

« Consider shape-from-shading:

In order to obtain the 3D shape of an object, it is necessary to:

- state what knowledge is available
(greyvalues, surface properties, illumination direction, etc.)

- state what information is desired
(e.g. qualitative vs. quantitative)

- exploit knowledge about the physics of image formation
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Image Formation

Images can be generated by various processes:

lllumination of surfaces, measurement of reflections <: Natural Images
lllumination of translucent material, measurement of irradiation
measurement of heat (infrared) radiation

X-ray of material, computation of density map

measurement of any features by means of a sensory array

physical signal
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AT sensory array
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Formation of Natural Images
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Intensity (brightness) of a pixel depends on

1. illumination (spectral energy, secondary illumination)

2 object surface properties (reflectivity)

3 sensor properties

4. geometry of light-source, object and sensor constellation (angles, distances)
5

transparency of irradiated medium (mistiness, dustiness)
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Qualitative Surface Properties

When light hits a surface, it may be
— absorbed

— Reflected } in general, all effects may be mixed
— scattered

Simplifying assumptions:
— Radiance leaving at a point is due to radiance arriving at this point

— All light leaving the surface at a wavelength is due to light arriving at the same
wavelength

— Surface does not generate light internally

The "amount" of reflected light may depend on:
— the "amount" of incoming light
— the angles of the incoming light w.r.t. to the surface orientation

— the angles of the outgoing light w.r.t. to the surface orientation
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Photometric Surface Properties

surface normal

A

illumination
direction q,

viewing
direction q, 9, polar (zenith) angles

¢, 9, azimuth angles

In general, the ability of a surface to reflect light is given by the
Bi-directional Reflectance Distribution Function (BRDF) r:

0, (Hv,(ﬁv) radiance of surface patch towards viewer

r(81a¢z ;Hv’¢v) =

5E (Hl,q)l) irradiance of light source received by the surface patch

For many materials the reflectance properties are rotation invariant,
in this case the BRDF depends on g, g,, ¢, where ¢ =¢, - ¢,.
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Intensity of Sensor Signals

light source y
sensor
\ <
‘\““‘ NANAANAN
5
\ . TRt
surface \ light distribution for sensor

Intensities of sensor signals depend on
— location x, y on sensor plane
— instance of time ¢
— frequency of incoming light wave A
— spectral sensitivity of sensor

f(x, y;t) = jC(x, V,t, )L)ST()L) dA

sensitivity function of sensor

spectral energy distribution
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Multispectral Images

* Sensors with n separate channels of different spectral sensitivities
generate multispectral images:

fl(xay’t) = jC(x,y,t,)L)Sl()L)d)L

fz(-x’yat) = jC(X,y,t,A,)Sz(A)dl

fn(x,y,t)={C(X,%LA)S”(A)CZA + S(\)

 Example:

— R (red) 650 nm center frequency m—» A
— G (green) 530 nm center frequency % J

— B (blue) 410 nm center frequency _§ |
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Spectral Sensitivity of Human Eyes
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Standardized wavelengths: red = 700 nm, green = 546.1 nm, blue = 435.8 nm
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Non-unique Sensor Response

Different spectral distributions may lead to identical sensor
responses and hence cannot be distinguished

filx,y,1) = jQ(x,y,t,)L)S()L)d)L = jCz(x,y,t,A)S(A)dA
0 T 0 T

different spectral energy distributions

Example:

C5(4)

M | S& S(4)
It b =
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Dimensions of Colour

Human perception of colour distinguishes between 3 dimensions:

— Hue o
: } chromaticity
— Saturation
— Brightness NCS* colour spindle

* Swedish Natural Colour System

white

brightness

e

v

colour circle saturation black
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Computer Vision Colour Models

RGB colour model HSI colour model
Different colors are generated by adding Different colors are described by Hue (H),
different portions of red (R), green (G), and Saturation (S), and Intensity (I). Can be derived
blue (B). from RGB model:

cyan = 0 if B=G
magenta | 360-0 if B>G
I1(R-G)+(R-B
Q = arccos £ [( )+ )]
G J(R-G)* +(R-B)G-B)
R yellow S=1-—> _min(R,G,B)
R+G+B
RGB is the most commonly used color space
in Computer Vision. R+G+B
Typical discretization: f- 3
8 bits per colour dimension Closer to human perception
- 16.777.216 colours Better choice e.g. for selecting colors!
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Primary and Secondary Colours

MIXTURES OF LIGHT
(Additive primaries)

Primary colours:

red, green, blue

Secondary colours:

MIXTURES OF PIGMENTS

(Subtractive primaries)

magenta = red + blue
cyan = green + blue
yellow = red + green

from: Gonzales & Woods

PRIMARY AND SECONDARY COLORS Digital Image Processing
OF LIGHT AND PIGMENT Prentice-Hall 2002
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RGB Images of a Natural Scene

Here, single colour images are rendered as greyvalue intensity images:

stronger spectral intensity = more brightness

R+G+B
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Printing Color Models

Subtractive color model because of white background!

CMY colour model CMYK colour model

Yellow A combination of C, M, and Y typically
cannot produce a clear, dark black.
Therefore a fourth black ink

(K for 'key' or blac'k')

is used in addition.

Y
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Discretization of Images

Image functions must be discretized for computer processing:
— spatial quantization
the image plane is represented by a 2D array of picture cells

— greyvalue quantization
each greyvalue is taken from a discrete value range

— temporal quantization
greyvalues are taken at discrete time intervals

rf:v(xl’ yl’tl)7 f;'(xz, yzatl)af;(xg,, y3,tl), )
f(x’y’t) =9 fs('xl’ yl’tz)’ fs(xza yz,tz),fs(x3, y3at2)a
L-](.;('xl’ yl’t3)’ f:g(x27 y29t3)9fg(x3, y3,t3), e

g

A single value of the discretized image function is called a pixel
(picture element).
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Spatial Quantization

Rectangular grid

Greyvalues represent the
quantized value of the signal
power falling into a grid cell.

Note that samples of a
hexagonal grid are equally
spaced along rows, with
successive rows shifted by half a
sampling interval.

Hexagonal grid

Triangular grid \/\/\/\/
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Reconstruction from Samples

* Under what conditions can the original (continuous) signal be
reconstructed from its sampled version?

* Consider a 1-dimensional function f(x):

»

) 1

* Reconstruction is only possible, if "variability" of function is
restricted.
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Sampling Theorem

Shannon’s Sampling Theorem:

A bandlimited function with bandwidth 7 can be exactly
reconstructed from equally spaced samples, if the sampling
distance is not larger than L

2W

Bandwidth = largest frequency contained in signal
(=> Fourier decomposition of a signal)

Analogous theorem holds for 2D signals with limited spatial
frequencies W, and W7,

20.10.14 University of Hamburg, Dept. Informatics
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Aliasing

Sampling an image with fewer samples than required by the
sampling theorem may cause "aliasing" (artificial structures).

Example:

I []] :,,"_l ,’/N/ ],. ,” ”’I'u” " '.F '. -
[ ] ’.';" | | “ l _ﬂ‘

W// A ||,'?'.",“' i ':',",",,',' :’?':l:'l?l. il J :\\

i

original 143 x 128 71 x 64 35x32

To avoid aliasing, bandwidth of image must by reduced prior to
sampling (=> low-pass filtering)
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Reconstructing the Image Function
from Samples

Formally, a continuous function f(#) with bandwidth ¥ can be
exactly reconstructed using sampling functions s.(?):

£ (6) =BW sin2aW [t -i/(2W)] »
" 2aW([t—i/(2W)]

- 1 i
X(t)=,-=2_oo‘/2W (ZW) S; (1) ’\/\}, i U/\v"

Ik
~

sample values

An analogous equation holds for 2D.

In practice, image functions are generated from samples by
interpolation.
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Sampling TV Signals

PAL standard:
- picture format 3:4
25 full frames (50 half frames) per second
interlaced rows: 1, 3,5, ..., 2,4, 6, ...
625 rows per full frame, 576 visible
64 ms per row, 52 ms visible
5 MHz bandwidth

Only 1D sampling is required because of fixed row structure.
Sampling intervals of Dt = 1/(2W) = 10"7s = 100 ns give maximal possible resolution.
With Dt = 100 ns, a row of duration 52 ms gives rise to 520 samples.

In practice, one often chooses 512 pixels per TV row.

- 576 x 512 = 294912 pixels per full frame
1.5

4
- rectangular pixel size with . (512)
g P wzd%eight= ( 3 )=1.5 1.0
576
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