

Image Processing 1 (IP1) Bildverarbeitung 1

Lecture 6 – Image Properties and Filters

Winter Semester 2014/15

Dr. Benjamin Seppke Prof. Siegfried Stiehl

Global Image Properties

Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.

We treat

- empirical mean and variance
- histograms
- projections
- cross-sections
- frequency spectrum

Empirical Mean and Variance

Empirical mean = average of all pixels of an image

$$\overline{g} = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} g_{mn} \quad \text{with image size: } M \times N$$

Simplified notation:
$$\overline{g} = \frac{1}{K} \sum_{k=0}^{K-1} g_k$$

Incremental computation:
$$\overline{g}_0 = 0$$
 $\overline{g}_k = \frac{\overline{g}_{k-1}(k-1) + g_k}{k}$ with $k = 2...K$

Empirical variance = average of squared deviation of all pixels from mean

$$\sigma^{2} = \frac{1}{K} \sum_{k=1}^{K} (g_{k} - \overline{g})^{2} = \frac{1}{K} \sum_{k=1}^{K} g_{k}^{2} - \overline{g}^{2}$$

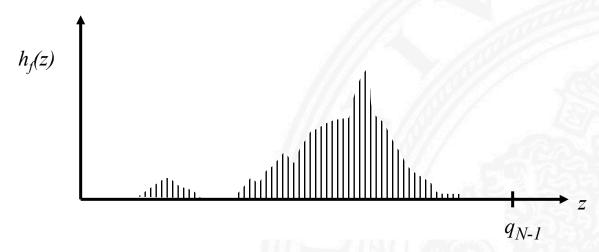
Incremental computation:

$$\sigma_0^2 = 0$$
 $\sigma_k^2 = \frac{\left(\sigma_{k-1}^2 + \overline{g}_{k-1}^2\right)(k-1) + g_k^2}{k} - \left(\frac{\overline{g}_{k-1}(k-1) + g_k}{k}\right)^2$ with $k = 2...K$

Greyvalue Histograms

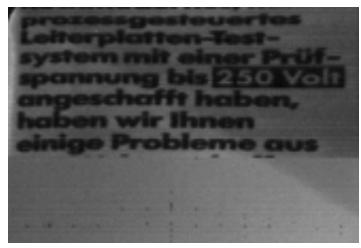
A greyvalue histogram $h_f(z)$ of an image f provides the frequency of greyvalues z in the image.

The histogram of an image with N quantization levels is represented by a 1D array mit N elements.



A greyvalue <u>histogram</u> describes discrete values, a greyvalue <u>distribution</u> describes continuous values.

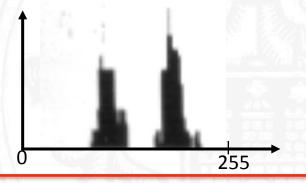
Example of Greyvalue Histogram



Histogram

255 (darkest)

A histogram can be "sharpened" by discounting pixels at edges (more about edges later):



Histogram Modification (1)

Greyvalues may be remapped into new greyvalues to

- facilitate image analysis
- improve subjective image quality

Example: Histogram equalization

- 1. Cut histogram into N stripes of equal area (N = new number of greyvalues)
- 2. Assign new greyvalues to consecutive stripes

Examples show improved resolution of image parts with most frequent greyvalues (road surface)

Histogram Modification (2)

Two algorithmic solutions:

N pixels per image, greyvalues i=0...255, histogram h(i)

1. "Cutting up a histogram into stripes of equal area"

stripe area
$$S = N/256$$

Cutting up an arbitrary histogram into equal stripes may require assignment of different new greyvalues to pixels of the same old greyvalue.

2. Gonzales & Woods "Digital Image Processing" (2nd edition)

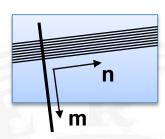
old greyvalue i, new greyvalue k = T(i)

Transformation function
$$T(i) = \text{round}\left(255\sum_{j=0}^{i} \frac{h(j)}{N}\right)$$

Histogram is only coarsely equalized.

Projections

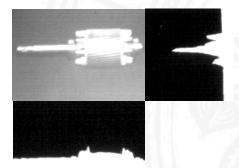
A projection of greyvalues in an image is the sum of all greyvalues orthogonal to a base line:

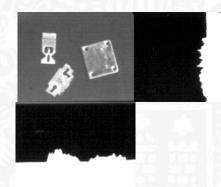


Often used:

$$p_m = \sum g_{mn}$$

- "row profile" = row vector of all (normalized) column sums
- "column profile" = column vector of all (normalized) row sums

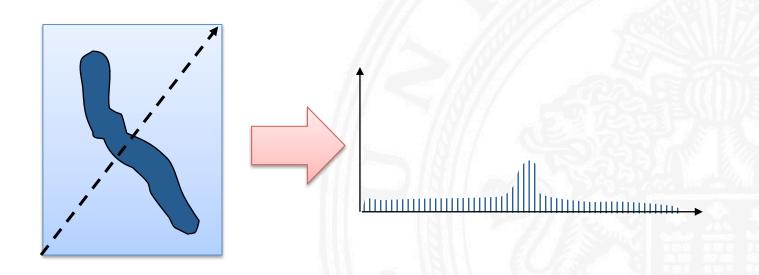




Cross-sections

A cross-section of a greyvalue image is a vector of all pixels along a straight line through the image.

- fast test for localizing objects
- commonly taken along a row or column or diagonal



Noise

Deviations from an ideal image can often be modelled as additive noise:

Typical properties:

- mean 0, variance $\sigma^2 > 0$
- spatially uncorrelated: $E[r_{ij} r_{mn}] = 0$ for $ij \neq mn$
- temporally uncorrelated: $E[r_{ij,t1}r_{ij,t2}] = 0$ for $t1 \neq t2$
- Gaussian probability density: $p(r) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{r^2}{2\sigma^2}}$

E[x] is "expected value" of x

Noise arises from analog signal generation (e.g. amplification) and transmission.

There are several other noise models other than additive noise.

Noise Removal by Averaging

Principle: $\hat{r}_K = \frac{1}{K} \sum_{k=1}^{K} r_k \Rightarrow 0$ sample mean approaches density mean

There are basically 2 ways to "average out" noise:

- temporal averaging if several samples $g_{ij,t}$ of the same pixel but at different times $t = 1 \dots T$ are available
- spatial averaging if $g_{mn} \approx g_{ij}$ for all pixels g_{mn} in a region around g_{ij}

How effective is averaging of K greyvalues?

$$\hat{r}_K = \frac{1}{K} \sum_{k=1}^K r_k$$
 is random variable with mean and variance depending on K

$$E[\hat{r}_K] = \frac{1}{K} \sum_{k=1}^K E[r_k] = 0 \quad \text{mean}$$

$$E[(\hat{r}_{K} - E[\hat{r}_{K}])^{2}] = E[\hat{r}_{K}^{2}] = E\left[\frac{1}{K^{2}}(\sum_{k=1}^{K}r_{k})^{2}\right] = \frac{1}{K^{2}}\sum_{k=1}^{K}E[r_{k}^{2}] = \frac{\sigma^{2}}{K} \quad \text{variance}$$

Example: In order cut the standard deviation in half, 4 values have to averaged

Example of Averaging

Intensity averaging with 5 x 5 mask

 $\frac{1}{25}$

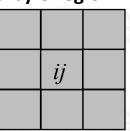
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Simple Smoothing Operations

1. Averaging

$$\hat{g}_{ij} = \frac{1}{|D|} \sum_{g_{mn} \in D} g_{mn}$$
 with D the set of all greyvalues around g_{ij}

Example of 3-by-3 region D



2. Removal of outliers

$$\hat{g}_{ij} = \begin{cases} \frac{1}{|D|} \sum_{g_{mn} \in D} g_{mn} & \text{if } \left| g_{ij} - \frac{1}{|D|} \sum_{g_{mn} \in D} g_{mn} \right| \ge S & \text{with threshold } S \\ g_{ij} & \text{else} \end{cases}$$

3. Weighted average

$$\hat{g}_{ij} = \frac{1}{\sum w_k} \sum_{g_k \in D} w_k g_k \text{ with } w_k = \text{weights in } D$$

Note that these operations are heuristics and not well founded!

Example of weights in 3-by-3 region

1 0.0		✓ 1 IIIA, 0
1	2	1
2	3	2
1	2	1

Bimodal Averaging

To avoid averaging across edges, assume bimodal greyvalue distribution and select average value of modality with largest population.

Determine:

$$\overline{g}_D = \frac{1}{|D|} \sum_{g_{mn} \in D} g_{mn}$$

$$A = \{g_k \text{ with } g_k \ge \overline{g}_D\}$$
 $B = \{g_k \text{ with } g_k < \overline{g}_D\}$

$$g'_{D} = \begin{cases} \frac{1}{|A|} \sum_{g_{k} \in A} g_{k} & \text{if } |A| \ge |B| \\ \frac{1}{|B|} \sum_{g_{k} \in B} g_{k} & \text{else} \end{cases}$$

 \boldsymbol{A}

Example:

$$\overline{g}_D = 16.7$$

$$\overline{g}_D = 16.7$$
 \Longrightarrow A, B \Longrightarrow $g'_D = 13$

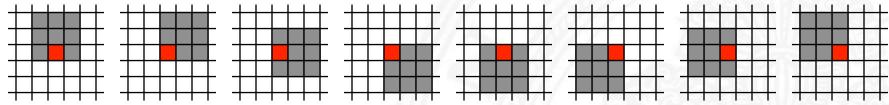
Averaging with Rotating Mask

Replace center pixel by average over pixels from the most homogeneous subset taken from the neighbourhood of center pixel.

Measure for (lack of) homogeneity is dispersion σ^2 (= empirical variance) of the greyvalues of a region D:

$$\overline{g}_{ij} = \frac{1}{|D|} \sum_{g_{mn} \in D} g_{mn} \qquad \sigma_{ij}^2 = \frac{1}{|D|} \sum_{g_{mn} \in D} (g_{mn} - \overline{g}_{ij})^2$$

Possible rotated masks in 5 x 5 neighbourhood of center pixel:



Algorithm:

- 1. Consider each pixel g_{ii}
- 2. Calculate dispersion in mask for all rotated positions of mask
- 3. Choose mask with minimum dispersion
- 4. Assign average greyvalue of chosen mask to g_{ij}

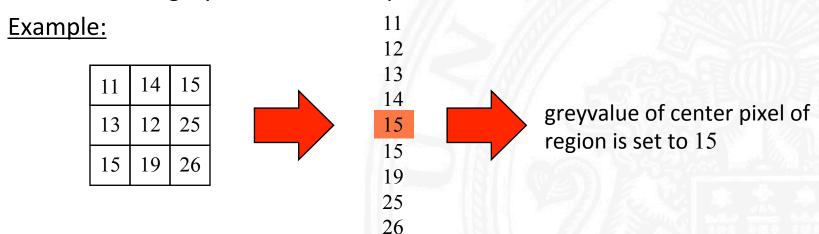
Median Filter

Median of a distribution P(x): x_m such that $P(x < x_m) = 1/2$

$$\hat{g}_{ij} = \max(a) \text{ with } g_k \in D \text{ and } |\{g_k < a\}| < \frac{|D|}{2}$$

Median Filter:

- 1. Sort pixels in D according to greyvalue
- 2. Choose greyvalue in middle position



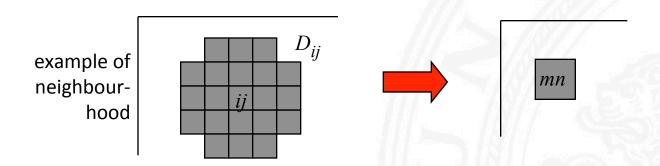
Median Filter reduces influence of outliers in either direction!

Local Neighbourhood Operations

Many useful image transformations may be defined as an instance of a local neighbourhood operation:

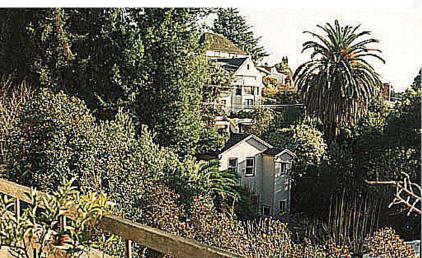
Generate a new image with pixels \hat{g}_{mn} by applying operator f to all pixels g_{ii} of an image

$$\hat{g}_{mn} = f(g_1, g_2, ..., g_K)$$
 $g_1, g_2, ..., g_K \in D_{ij}$



Pixel indices i, j may be incremented by steps larger than 1 to obtain reduced new image.

Example of Sharpening



intensity sharpening with 3 x 3 mask

-1	-1	-1
-1	9	-1
-1	-1	-1

"unsharp masking" = subtraction of blurred image

$$\hat{g}_{ij} = g_{ij} - \frac{1}{|D|} \sum_{g_{mn} \in D} g_{mn}$$