

MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS)

# Image Processing 1 (IP1) Bildverarbeitung 1

Lecture 7 – Spectral Image Processing and Convolution

Winter Semester 2014/15

Dr. Benjamin Seppke Prof. Siegfried Stiehl

# **Spectral Image Properties**

An image function may be considered a sum of spatially sinusoidal components of different frequencies.

The frequency spectrum indicates the magnitudes of the spatial frequencies contained in an image.  $f_v = v$ 

Principle:



Important qualitative properties of spectral information:

- spectral information is independent of image locations
- sharp edges give rise to high frequencies
- noise (= disturbances of image signal) is often high-frequency

### Illustration of 1-D Fourier Series Expansion



# **Discrete Fourier Transform (DFT)**

Computes image representation as a sum of sinusoidals.

**Discrete Fourier Transform: Inverse Discrete Fourier-Transform:**  $G_{uv} = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} g_{mn} e^{-2\pi j(\frac{mu}{M} + \frac{nv}{N})}$  $g_{mn} = \sum_{u=0}^{m-1} \sum_{v=0}^{N-1} G_{uv} e^{2\pi j (\frac{mu}{M} + \frac{nv}{N})}$ for u = 0, ..., M - 1 and v = 0, ..., N - 1 for m = 0, ..., M - 1 and n = 0, ..., N - 1Notation for computing the Fourier Transform:  $G_{uv} = F\{g_{mn}\}$  $g_{mn} = F^{-1} \{ G_{\mu\nu} \}$ Transform is based on periodicity assumption!  $\rightarrow$  periodic continuation may cause boundary effects

# **Basic Properties of DFT**

- Linearity:  $F\{a g_{1mn} + b g_{2mn}\} = a F\{g_{1mn}\} + b F\{g_{2mn}\}$
- Symmetry:  $G_{-u,-v} = G_{uv}$  for real  $g_{mn}$  (such as images) In general, the Fourier transform is a complex function with a real (even) and an imaginary (odd) part:

$$G_{uv} = R_{uv} + i I_{uv}$$

**Euler's formula:**  $r e^{iz} = r \cos(z) + r i \sin(z)$ 

**Recommended reading:** 

Gonzalez/Wintz Digital Image Processing Addison Wesley 87

### **Measures of DFT**

**Freuqency/amplitude spectrum**  $|G(u,v)| = \sqrt{\operatorname{Re}\{G(u,v)\}^2 + \operatorname{Im}\{G(u,v)\}^2}$ 

**Power spectrum** 
$$|G(u,v)|^2$$

**Phase spectrum** 
$$\Phi = \arctan\left(\frac{\operatorname{Im}(u,v)}{\operatorname{Re}(u,v)}\right)$$

**Frequency** 
$$f = 1/p$$
 mit  $p = \sqrt{u^2 + v^2}$ 

**Direction** 
$$\Psi = \arctan\left(\frac{v}{u}\right)$$

### Illustrative Example of Fourier Transform





**Frequency spectrum** 

Note that large spectral amplitudes occur in directions vertical to prominent edges of the image function!



frequency spectrum as an intensity function

### **Examples of Fourier Transform Pairs**



#### **Example of a Real-world Amplitude Spectrum**



## **Fast Fourier-Transformation**

Ordinary DFT needs  $\sim (MN)^2$  operations for an image of size M x N. <u>Example</u>: M = N = 1024,  $10^{-12}$  sec/operation  $\rightarrow 1, 1$  s.

**FFT (Fast Fourier Transform)** is based on recursive decomposition of  $g_{mn}$  into subsequences.

Due to multiple use of partial results  $\rightarrow \sim MN \log_2(MN)$  Operations.

Same example with FFT needs only about 0.000021 seconds.

The next slides will:

- introduce the decomposition scheme and
- give one-dimensional examples of the FFT

## **Fast Fourier-Transformation**

Principle of decomposition for the 1D-DFT (Cooley & Tukey, 1965):



All  $G_r$  my be computed by  $(N/2)^2$  instead of  $(N)^2$  operations!

# **Cooley & Tukey Decomposition I**

Example with two values (N=2)

$$G_0 = g_0 + e^{-2\pi j \cdot 0} \quad g_1 = g_0 + g_1$$
$$G_1 = g_0 - e^{-2\pi j \cdot 0} \quad g_1 = g_0 - g_1$$

#### Graphical representation:



# **Cooley & Tukey Decomposition II**



University of Hamburg, Dept. Informatics

# **Cooley & Tukey Dekomposition III**



# Convolution

Convolution is an important operation for describing and analyzing linear operations, e.g. filtering.

Definition of 2D convolution for continuous signals:

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r,s) h(x-r,y-s) dr ds = f(x,y) * h(x,y)$$

Convolution in the spatial domain is dual to multiplication in the frequency domain:

$$F\{f(x, y) * h(x, y)\} = F(u, v) \cdot H(u, v)$$
  
$$F\{f(x, y) \cdot h(x, y)\} = F(u, v) * H(u, v)$$

H can be interpreted as attenuating or amplifying the frequencies of F.

 $\rightarrow$  Convolution describes <u>filtering</u> in the spatial domain.

# Filtering in the Frequency Domain

A filter transforms a signal by modifying its spectrum.

G(u, v) = F(u, v) H(u, v)

- *F* Fourier transform of the signal
- *H* frequency transfer function of the filter
- G modified Fourier transform of signal

Typical filters:

- low-pass filter low frequencies pass, high frequencies are attenuated or removed
- high-pass filter high frequencies pass, low frequencies are attenuated or removed
- band-pass filter frequencies within a frequency band pass, other frequencies below or above are attenuated or removed

Often (but not always) the noise part of an image is high-frequency and the signal part is low-frequency. Low-pass filtering then improves the signal-to-noise ratio.

# **Filtering in the Spatial Domain**

Filtering in the spatial domain is described by convolution.

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r,s) h(x-r,y-s) dr ds = f(x,y) * h(x,y)$$

Commonly used description for the effect of technical components in *linear signal theory*:

$$s'(t) = \int_{-\infty}^{+\infty} h(r) \ s(t-r) \ dr$$

$$s_{1}(t) \xrightarrow{h} s_{1}'(t)$$

$$s_{2}(t) \xrightarrow{h} s_{2}'(t)$$

$$a s_{1}(t) + b s_{2}(t) \xrightarrow{h} a s_{1}'(t) + b s_{2}'(t)$$

An impulse  $\delta$  as input generates the filter function h(x, y) as output:

$$h(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(r,s) \,\delta(x-r,y-s) \,dr \,ds = h(x,y) * \delta(x,y)$$

h(x, y) is often called "impulse response" w.r.t. LTI systems

### **Low-pass Filters**

Ideal low-pass filter



- All frequencies above *W* are annihilated
- Note that the filter function h(x, y) is rotation symmetric and  $h(r) \sim sinc(2pWr) = sin 2pWr / (2pWr)$  with  $r^2 = x^2 + y^2$
- → impuls-shaped input structures may produce ring-like structures as output

#### **Gaussian filter**

- optimally smooth boundary, both in the frequency and the spatial domain.
- important for several advanced image analysis methods, e.g. generating multiscale images.

$$H(u,v) = e^{-\frac{1}{2}(u^2 + v^2)\sigma^2} \qquad h(x,y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\frac{x^2 + y^2}{\sigma^2}}$$

### **Discrete Filters**

For periodic discrete 2D signals (e.g. discrete images), the convolution operator which describes filtering is  $M_{-1} = N_{-1}$ 

$$g_{ij} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f_{m,n} h_{i-m,j-n}$$

Each pixel  $g_{ij}$  of the filtered image is the sum of the products of the original image with the mirror filter  $h_{-m,-n}$  placed at location ij.

Example



 $h_{mn} = h_{-m,-n}$  is a bell-shaped function, e.g. Gaussian The filtering effect is a smoothing operation by weighted local averaging.

The choice of weights of a local filter - the convolution mask - may influence the properties of the output image in important ways, e.g. with regard to remaining noise, blurred edges, artificial structures, preserved or discarded information.

### **Matrix Notation for Discrete Filters**

The convolution operation  $g_{ij} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f_{m,n} h_{i-m,j-n}$ may be expressed as matrix multiplication:  $\vec{g} = H \vec{f}$ 

Vectors  $\vec{g}$  and  $\vec{f}$  are obtained by stacking rows (or columns) onto each other:

$$\vec{g}^{T} = (g_{00} \ g_{01} \cdots g_{0N-1} \ g_{10} \ g_{11} \cdots g_{1N-1} \cdots g_{M-1 \ 0} \ g_{M-1 \ 1} \cdots g_{M-1 \ N-1} )$$
  
$$\vec{f}^{T} = (f_{00} \ f_{01} \cdots f_{0N-1} \ f_{10} \ f_{11} \cdots f_{1N-1} \cdots f_{M-1 \ 0} \ f_{M-1 \ 1} \cdots f_{M-1 \ N-1} )$$

The filter matrix H is obtained by constructing a matrix  $H_i$  for each row j of  $h_{ij}$ :

$$H_{j} = \begin{pmatrix} h_{j0} & h_{j N-1} & h_{j N-2} & \cdots & h_{j 1} \\ h_{j1} & h_{j0} & h_{j N-1} & \cdots & h_{j 2} \\ \vdots & \vdots & \ddots & \vdots \\ h_{1 N-1} & h_{1 N-2} & h_{1 N-3} & \cdots & h_{j0} \end{pmatrix} \quad H = \begin{pmatrix} H_{0} & H_{M-1} & H_{M-2} & \cdots & H_{1} \\ H_{1} & H_{0} & H_{N-1} & \cdots & H_{2} \\ \vdots & \vdots & \ddots & \vdots \\ H_{M-1} & H_{N-2} & H_{M-3} & \cdots & H_{0} \end{pmatrix}$$

# **Avoiding Wrap-around Errors**

Wrap-around errors result from filter responses due to the periodic continuation of image and filter  $\rightarrow$  periodicity (cf. slide 4).

To avoid wrap-around errors, image and filter have to be extended e.g. by zeros.

- $A \times B$  original image size
- $C \times D$  original filter size
- $M \times N$  extended image and filter size

#### Example:



M > A + C - 1

N > B + D - 1

# **Discrete Convolution Using the FFT**

Convolution in the spatial domain may be performed more efficiently using the FFT.

$$g'_{ij} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} g_{mn} h_{i-m,j-n} \qquad (MN)^2 \text{ operations needed}$$

Using the FFT and filtering in the frequency domain:



Example with M = N = 512:

- straight convolution needs ~ 10<sup>10</sup> operations
- convolution using the FFT needs ~10<sup>7</sup> operations

# **Convolution and Correlation**

The crosscorrelation function of 2 stationary stochastic processes f and h is:

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r,s) h(r-x,s-y) dr ds = f(x,y) \circ h(x,y) = f(x,y) * h(-x,-y)$$

Compare with convolution: filter function is not mirrored!

Correlation using Fourier Transform:

$$F_{\{f(x, y) \circ h(x, y)\}} = F^{*}(u, v) H(u, v)$$
  

$$F_{\{f^{*}(x, y) h(x, y)\}} = F(u, v) \circ H(u, v)$$
  
F\*, f\* are complex conjugates

Correlation is particularly important for matching problems, e.g. matching an image with a template.

Correlation may be computed more efficiently by using the FFT.

# **Correlation and Matching**

#### Matching a template with an image:



template

- find degree of match for all locations of template
- find location of best match

For (periodic) discrete images, crosscorrelation at (i, j) is

Compare with Euclidean distance between f and h at location (i, j):

Since image energy and template energy are constant, correlation measures distance

$$c_{ij} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f_{mn} h_{m-i,n-j}$$

$$d_{ij} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left( f_{mn} - h_{m-i,n-j} \right)^{2}$$
  
= 
$$\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left( f_{mn} \right)^{2} - 2 \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f_{mn} h_{m-i,n-j} + \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left( h_{m-i,n-j} \right)^{2}$$
  
Energy

## **Principle of Image Restoration**

Typical degradation model of a continuous 1-dimensional signal:



How can one process g'(t) to obtain a g''(t) which best approximates g(t)? Note that a perfect restoration g''(t) = g(t) may not be possible even if z(t) = 0.

$$g'(t) \longrightarrow g''(t)$$
  $r(t)$  restoring filter  
 $g''(t)$  restored signal

The ideal restoring filter H'(f) = 1/H(f) may not exist because of zeros of H(f).

$$G(f) \longrightarrow H'(f) \longrightarrow G'(f) \longrightarrow G''(f)$$

# Image Restoration by Minimizing the MSE

Degradation in matrix notation:  $\vec{g}' = H \vec{g} + \vec{z}$ 

Restored signal g'' must minimize the mean square error J(g'') of the remaining difference:  $\min \|\vec{g}' - H\vec{g}''\|^2$ 

If *H* is a square matrix, and if H<sup>-1</sup> exists, we can simplify:  $\vec{g}'' = H^{-1}\vec{g}'$ The matrix  $H^{-1}$  gives a perfect restoration if  $\underline{z} = 0$ .

# **Discrete Convolution of Masked Images**

Scenario: Greyvalues exist only for a partial domain of the image function

- Examples:
  - Cloud coverage in aerial and satellite images,
  - Segmented areas
  - Sensor malfunctions
- Problems arise at the boundary of the convolution kernel (Titmarsh 1926). In these areas, discrete convolution results in undesired effects.
- "Easy fixes" suffer from additional problems:
  - 1. Exclude the boudary areas  $\rightarrow$  (Strong) reduction of the resulting image space!
  - 2. Set to zero  $\rightarrow$  Errorneous values are introduced!
- If iterative algorithms are used, errors may also be propagated and enhanced!

# Wanted: An approach, which treats "masked" pixel as "no information" instead of "no intensity"!

## **Normalized Convolution I**

Approach of Knutsson und Westin (1993):

$$I' = K * I \qquad I' = K *_{M,A} I = \begin{cases} \frac{A \cdot K * (I \cdot M)}{A \cdot K * M} & \text{if } A \cdot K * M \neq 0\\ 0 & \text{else.} \end{cases}$$

Example:

#### with:

- *K* Convolution kernel
- I Image
- *A* Applicable kernel
- M Image mask

 $I = \{250, 225, 200, 175, 150, 125, 100, 75, 50, 25, 0\}$   $M = \{1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0\}$   $K = \{1, 2, 4, 8, 4, 2, 1\}/22$  A = 1  $K * I = \{ , , , 175, 150, 125, 100, 75 , , , \}$ 

 $K^*(I \cdot M) = \{ , , , 159.09, 114.77, 52.27, 21.59, 6.82, , , \}$  $K^*_{M,A} I = \{ , , , 184.21, 168.33, 164.29, 158.33, 150, , , \}$ 

## **Normalized Convolution II**

#### Example of Knutsson und Westin



# **Normalized Convolution III**

Summary

- Combines mask and discrete convolution,
- Execution speed may be enhanced by the use of FFT
- Derives results for masked areas if at least one non-masked pixel exists within the current neighborhood
   → may also be used for reconstruction purpose
- Provides a base to extend generic algorithms to with with masked images in a clearly defined way.

Restricted to certain convolution kernels (non-zero power)! Differential convolution kernels require an additional normalized convolution → Normalized differential convolution