UH
ati MIN-Fakultat
L2 Universitit Hamburg Fachbereich Informatik

DER FORSCHUNG | DER LEHRE | DER BILDUNG Arbeitsbereich SAV/BV (KOGS)

Image Processing 1 (IP1)
Bildverarbeitung 1

Lecture 14 — Skeletonization and Matching
Winter Semester 2014/15

Dr. Benjamin Seppke
Prof. Siegfried Stiehl



IP1 — Lecture 14: Skeletonization and Matching

Skeletons ~

The skeleton of a region is a line structure which
represents "the essence" of the shape of the region, \
i.e. follows elongated parts.

Useful e.g. for character recognition

Medial Axis Transform (MAT) is one way to define a skeleton:
The MAT of a region R consists of all pixels of R which have more than one
closest boundary point.

MAT skeleton consists of centers of circles which
touch boundary at more than one point

Note that "closest boundary point"
depends on digital metric!

MAT skeleton of a rectangle shows problems: |\ /

7/
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Skeleton Extraction for Chinese Character
Description
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Stroke Analysis by Triangulation

Constrained Delaunay Triangulation (CDT) connects contour points to
triangles such that the circumference of a triangle contains no other
points.

CDT generates three types of tria ngles:

* junction triangles (green)

* none of the triangle sides
coincides with the contour

* sleeve triangles (blue)

* terminal triangles (red)

Junction triangles indicate stroke intersections or sharp stroke corners
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Conditions for Junction Triangles

D>2R
always junction triangles

A curved line with angle o and outer contour radius R, drawn with a stylus
of diameter D, will generate a junction triangle if

D >R (1 + cos a/2)
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Weak Influence of Contour Point Spacing

dense spacing medium spacing coarse spacing

no junction triangles if
corners are cut
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Stroke Segment Merging

* Segments meeting at a junction
may be merged if they are
compatible regarding orientation
and stroke width

 Segments between two
neighbouring junction triangles
may be intersections with irregular
direction and stroke width

* Global criteria and knowledge of
the writing system must be
invoked to resolve ambiguities
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Results of Stroke Analysis |
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Results of Stroke Analysis i

A
AR
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Thinning Algorithm

Thinning algorithm by Zhang and Suen 1987
(from Gonzalez and Wintz: "Digital Image Processing")

Repeat A to D until no more changes:

A Flag all contour points which satisfy conditions (1) to (4)
B Delete flagged points
C Flag all contour points which satisfy conditions (5) to (8)
D Delete flagged points

Assumptions:

e region pixels=1

e background pixels =0

e contour pixels 8-neighbours of background

Conditions:

(1) 2=<N(p,) =6 (5) 2<N(p,)=6
(2) S(pp) =1 (6) S(p)=1

Neighbourhood

labels:

Example:

P9

P>

Ps3

Pg

Y]

P4

P7

Pe

Ps

N(p,) = number of nonzero neighbours of p,

(3) PyXps*Xps=0 (7) p,xpys*ps=0  S(p;) =number of 0 - 1 transitions in ordered

(4) py*ps*pg=0 (8) p,Xpsxpg=0  sequence p,, p;, ...
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Templates

A template is a translation-, rotation- and scale-variant shape desription. It
may be used for object recognition in a fixed, reoccurring pose.

e A M-by-N template may be treated as a Example: N
vector in MN-dimensional feature space Template for face recognition
e Unknown objects may be compared with J
templates by their distance in feature space

Distance measures: 0

g,., bixelsof image

t pixels of template

mn

Er template
2 2 _ _ o
d, = 2(8mn ~1,,) squared Euclidean distance as point in

e 213 feature
_ _ _ L space
d,= E' 8m=tm!  absolute distance EmN
mn 812
d, = max \gmn —t,,| maximal absolute distance > 2/
mn
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Cross-correlation

r= Egmntmn cross-correlation between image g,,, and template t_

mn

Compare with squared Euclidean distance d,’:

= G =)’ = D, 8o+ Dl =

Image "energy" 2g, 2 and template "energy” 2t ° correspond to length of feature
vectors.

Egmntmn Normalized cross-correlation is independent of image
and template energy. It measures the cosine of the angle

\/E gmnztmn between the feature vectors in MN-space.

Cauchy-Schwartz Inequality:

|¥’| <1 withequalityiffg = all mn

mn'
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Fast Normalized Cross-Correlation |

 Normalized Cross-correlation should be preferred w.r.t.
cross-correlation:
— lllumination invariant

— Comparable resulting value range [-1, ..., 1]

 Problem:

— (non-normalized) cross-correlation can be computed efficiently
Remember Convolution Theorem, Fourier-Transform & FFT

— Normalization is not computable using FFT!
— Computation time is very high!

* Solution by Lewis 95: Optimize the Normalized Cross-
Correlation by means of FFT and caching strategies
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Fast Normalized Cross Correlation Il

Recall the basic equation:

Non-nomalized cross-correlation:
may be computed fast using the FFT, since:

Egmnfmn = FT™'(FT(g)- conj(FT(1))) Sum under the template:

constant for all nm,
can be precomputed

Sum under the image:
Not constant!
Changes for each position of the template!

Idea of Lewis: Use the integral image to compute the non-
constant term efficiently
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Fast Normalized Cross Correlation Il

Creation of (squared) integral images s(u,v) and s2(u,v):
s(u, v) =g(u, v) +s(u-1, v) +s(u, v-1) - s(u-1, v-1)
s?(u, v) = g’(u; v) +s°(u-1, v) + s?(u, v-1) - s*(u-1, v-1)

Extraction of the sums for a window (size M xN) at position (u,v):
e~s(utN-1, vtN-1) - s(u-1,v+N-1) - s(u+N-1, v-1) + s(u-1,v-1)
ef=s’(u+N-1, vtN-1) - s?(u-1,v+N-1) - s*(u+N-1, v-1) + s°(u-1,v-1)

Complexity analysis:
* Table creation needs approx. 3MxN operations
e Less than explicitly computed window sums!

In praxis: Acceleration of factors 1000 and more w.r.t. the naive
implementation!
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Artificial Neural Nets

Information processing in biological systems is based on neurons with roughly
the following properties:

e the degree of activation is determined by incoming signals
e the outgoing signal is a function of the activation
* incoming signals are mediated by weights

e weights may be modified by learning

netinput forcellj 2w, 0,(1)

o input signal
activation ai(t) = f; (a, 2wy 0,1)) for cell j
output signal 0,(t) = F; (a) from cell i weight w;;

output signal
Typical shapes of f, and F;: of cell j

[ =
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Multilayer Feed-forward Nets

Example: 3-layer net

e each unit of a layer s
connected to each unit of
the layer below

output units

e units within a layer are not

connected
hidden units

e Qactivation function f is
differentiable (for learning)

‘.L input units
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Character Recognition with a
Neural Net

Schematic drawing shows 3-layer feed-forward net:

* input units are activated by sensors and feed hidden units

* hidden units feed output units
0123 4567 89

* each unit receives weighted sum

1A N O S S N S N
of incoming signals OOOOOOO‘OO output units

/’ "‘“ﬁkt’“ﬁgﬁ’hbéﬂb\vﬁ\

COOO0@OOO@®O nhidden units

NN RN IR IR D7
N SNERSISISISREL

Supervised learning

Weights are adjusted iteratively
until prototypes are classified
correctly

(-> backpropagation)

input units
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Learning by Backpropagation

nominal

output

signal 7, Supervised learning procedure:

Actual e present example and determine output error signals
output e adjust weights which contribute to errors

signal 0,

cell j

Adjusting weights:

e Errorsignal of output cell j for pattern p is
ém'::(év' zv)I;Yheéﬁ)

j;’() is the derivative of the activation function f()

e Determine error signal 5pi for internal cell i recursively from
error signals of all cells £ to which cell i contributes.

0, = fi'(net,) 2; 6wy

* Modify all weights: 4w, = 50,0, hisa positive constant

T T T 1 1 I I T T The procedure must be repeated many times until the weights are
input pattern p "optimally" adjusted. There is no general convergence guarantee.
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Perceptrons |

Which shape properties can be determined by combining the outputs of

local operators?

A perceptron is a simple computational model for combining local Boolean operations.
(Minsky and Papert, Perceptrons, 69)

)

by

" B/W Retina

S p—

Pn

}

Boolean
functions

}

linear
threshold
element

Qr{’

Boolean functions with local
support in the retina:

- limited diameter

- limited number of cells

outputisOor1l

compares weighted sum of the g,
with fixed threshold 6:

& Pl S Y wip, >0
0 otherwise
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Perceptrons li

A limited-diameter perceptron cannot determine connectedness

Assume perceptron with maximal diameter d for the support of each ¢..
Consider 4 shapes as below with a < d and b >> d.

Boolean operators may distinguish 5 local situations:

@ is clearly irrelevant for
distinguishing between the 2
connected and the 2

?D; ?; @3

i h
0, 0, disconnected shapes

For Q) to exist, we must have:

+ < Q + > 8 I
W QT Wy w0, Tw, @, jl> contradiction, hence Q

Wy 0, +w; ;<0 W, +w;0;>0 cannot exist

:>Zwl.go,.<28 :> 2w, @, > 26
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