MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS)

Image Processing 1 (IP1) Bildverarbeitung 1

Lecture 16 – Decision Theory

Winter Semester 2014/15

Dr. Benjamin Seppke Prof. Siegfried Stiehl

Statistical Decision Theory

Generating decision functions from a statistical characterization of classes (as opposed to a characterization by prototypes)

Advantages:

- The classification scheme may be designed to satisfy an objective optimality criterion:
 - Optimal decisions minimize the probability of error.
- Statistical descriptions may be much more compact than a collection of prototypes.
- Some phenomena may only be adequately described using statistics, e.g. noise.

Example: Medical Screening I

Health test based on some measurement x (e.g. ECG evaluation)

It is known that every 10th person is sick (prior probability):

- ω_I class of healthy people $P(\omega_I) = 9/10$
- ω_2 class of sick people $P(\omega_2) = 1/10$

Task 1: Classify without taking any measurements (to save money)

• **Decision rule 1a:** Classify every 10th person as sick

$$P(error) = P(decide \ sick \ if \ healthy) + P(decide \ healthy \ if \ sick)$$

= $1/10 \times 9/10 + 9/10 \times 1/10 = 0.18$

Decision rule 1b: Classify all persons as healthy

$$P(error) = P(decide\ healthy\ if\ sick) = 1/10 = 0.1$$

Decision rule 1b is better because it gives lower probability of error

Decision rule 1b is optimal because no other decision rule can give a lower probability of error (try "every n-th" in 1a and minimize over n)

Example: Medical Screening II

Task 2: Classify after taking a measurement xAssume that the statistics of prototypes are given as $p(x|\omega_i)$, i=1,2

Person No.	X	indication •	$p(x \omega_i)$
• 134 135 136 137 138	• 7.4 6.8 4.2 5.6 5.8	neg neg pos neg pos	ω_{1} : healthy
139	7.2 •	neg • •	1 2 3 4 5 6 7 8

 $P(e|x) = P(error\ given\ x) = P(\omega \neq \omega'|x) = 1 - P(\omega|x)$ where ω' is the class assigned to x by the decision rule.

P(e|x) is minimized by choosing the class which maximizes $P(\omega|x)$. Hence $g_i(x) = P(\omega_i|x)$ are discriminant functions.

How do we get the "posterior" probabilities $P(\omega_i|x)$?

Example: Medical Screening (3)

The posterior probabilities $P(\omega_i|x)$ can be computed from the "likelihood" $p(x|\omega_i)$ using **Bayes' formula**:

$$P(\omega_i | x) = \frac{p(x | \omega_i) P(\omega_i)}{p(x)} = \frac{p(x | \omega_i) P(\omega_i)}{\sum_i p(x | \omega_i) P(\omega_i)}$$

For the example, using Bayes' Formula, one could get:

General Framework for Bayes Classification

Statistical decision theory minimizes the probability of error for classifications based on uncertain evidence

 $\omega_1 \dots \omega_K$ K classes

 $P(\omega_k)$ prior probability that an object of class k will be observed

 $\vec{x}^T = (x_1 ... x_N)$ N-dimensional feature vector of an object

 $p(\vec{x} | \omega_k)$ conditional probability ("likelihood") of observing \vec{x} given that the object

belongs to class ω_K

 $P(\omega_k | \vec{x})$ conditional probability ("posterior probability") that an object belongs to

class ω_K given \vec{x} is observed

Bayes decision rule:

Classify given evidence \vec{x} as class ω' such that ω' minimizes the probability of error $P(\omega \neq \omega' | \vec{x})$

ightharpoonup Choose ω' which maximizes the posterior probability $P(\omega|\vec{x})$

 $g_i(\vec{x}) = P(\omega_i | \vec{x})$ are discriminant functions.

Bayes 2-class Decisions

If the decision is between 2 classes ω_1 and ω_2 , the decision rule can be simplified:

Choose
$$\omega_I$$
 if $\frac{p(\vec{x}|\omega_1)}{p(\vec{x}|\omega_2)} > \frac{P(\omega_2)}{P(\omega_1)}$ $\frac{p(\vec{x}|\omega_1)}{p(\vec{x}|\omega_2)}$ is called the "likelihood ratio"

Several alternative forms are possible for a discriminant function:

$$g(\vec{x}) = P(\omega_1 | \vec{x}) - P(\omega_2 | \vec{x})$$

$$g(\vec{x}) = \frac{P(\omega_1 | \vec{x})}{P(\omega_2 | \vec{x})}$$

For exponential and Gaussian distributions it is useful to take the logarithm:

$$g(\vec{x}) = \log\left(\frac{P(\omega_1|\vec{x})}{P(\omega_2|\vec{x})}\right) = \log\left(\frac{p(\vec{x}|\omega_1)P(\omega_1)}{p(\vec{x}|\omega_2)P(\omega_2)}\right) = \log\left(\frac{p(\vec{x}|\omega_1)}{p(\vec{x}|\omega_2)}\right) - \log\left(\frac{P(\omega_2)}{P(\omega_1)}\right)$$

Normal Distributions

Gaussian ("normal") multivariate distribution:
$$p(\vec{x}) = \frac{1}{(2\pi)^{\frac{N}{2}} |\Sigma|^{\frac{N}{2}}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})}$$

with: $\Sigma = E[(\vec{x} - \vec{\mu})^T (\vec{x} - \vec{\mu})]$ N×N covariance matrix $\vec{\mu}$ mean vector

For decision problems, loci of points of constant density are interesting. For Gaussian multivariate distributions, these are hyperellipsoids:

$$(\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu}) = \text{constant}$$

Eigenvectors of Σ determine directions of principal axes of the ellipsoids,

<u>Eigenvalues</u> determine lengths of the principal axes.

 $d^2 = (\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})$ is called "squared Mahalanobis distance" of \vec{x} from $\vec{\mu}$.

Discriminant Function for Normal Distributions

General form:

$$g_i(\vec{x}) = \log(p(\vec{x} | \omega_i)) - \log(P(\omega_i))$$

For
$$p(\vec{x} | \omega_i) \approx N(\vec{\mu}_i, \Sigma_i)$$
:

$$g_i(\vec{x}) = -\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1}(\vec{x} - \vec{\mu}) - \frac{N}{2}\log(2\pi) - \frac{1}{2}\log(|\Sigma_i|) + \log(P(\omega_i))$$

irrelevant for decisions

We consider the discriminant functions for three interesting special cases:

- univariate distribution N=1
- statistically independent, equal variance variables x_i
- equal covariance matrices $\Sigma_{\rm i} = \Sigma$

Univariate Distribution

Assumption: $p(x|\omega_i)$ are univariate Gaussian distributions.

Example: 2 classes

$$p(x \mid \omega_1) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \qquad p(x \mid \omega_i)$$

$$p(x \mid \omega_2) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}$$

Decision rule:

$$g_i(x) = \log(P(\omega_i | x))$$

$$= -\frac{1}{2\sigma_i^2} (x - \mu)^2 - \frac{1}{2}\log(\sigma_i) + \log(P(\omega_i))$$

Statistically Independent, Equal Variance Variables

In case of insufficient statistical data, variables are sometimes assumed to be statistically independent and of equal variance.

$$g_i(\vec{x}) = -\frac{1}{2\sigma_i^2} ||\vec{x} - \vec{\mu}||^2 + \log(P(\omega_i))$$

If $P(\omega_i) = 1/N$, then the decision rule is equivalent to the minimum-distance classification rule.

By expanding $g_i(\vec{x})$ and dropping the $\vec{x}^T\vec{x}$ term, one gets the decision rule:

$$g_i(\vec{x}) = -\frac{1}{2\sigma_i^2} \left[-2\vec{\mu}^T \vec{x} + \vec{\mu}^T \vec{\mu} \right] + \log(P(\omega_i))$$

which is linear in \vec{x} and can be written as:

$$g_i(\vec{x}) = (w_i)^T \vec{x} + w_{i_0}$$

The decision surface is composed of <u>hyperplanes</u>.

Equal Covariance Matrices

If $\Sigma_i = \Sigma$, the decision rule can be simplified:

$$g_i(\vec{x}) = -\frac{1}{2\sigma_i^2} (\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu}) + \log(P(\omega_i))$$

By expanding the quadratic form and dropping $\vec{x}^T \Sigma^{-1} \vec{x}$ one gets another linear decision rule which can (again) be written as:

$$g_i(\vec{x}) = (w_i)^T \vec{x} + w_{i_0}$$

If the a-priori probabilities are equal, the decision rule assigns \vec{x} to the class where the Mahalanobis distance to the mean $\vec{\mu}_i$ is minimal.

Estimating Probability Densities

Let R be a region in feature space with volume V. Let k out of N samples lie in R.

$$\int_{R} p(\vec{x}') d\vec{x}' \approx \frac{k}{N} \approx p(\vec{x}) V$$

$$p(\vec{x}) \approx \frac{\frac{k}{N}}{V}$$

 $p(\vec{x}) \approx \frac{\frac{R}{N}}{N}$ relative frequency of samples per volume

A sequence of approximations $p_n(\vec{x})$ may be obtained by changing the volume V_n as the number of samples n increases.

Examples:

$$V_n \sim 1/\sqrt{n}$$

$$k_n \sim \sqrt{n}$$

Parzen Windows $k_n \sim \sqrt{n}$ adjust volume for k nearest neighbours

Conditions for a converging sequence of estimates
$$p_n(x)$$
:

$$1. \lim_{n\to\infty} V_n = 0$$

$$2. \lim_{n\to\infty} k_n = \infty$$

$$3. \lim_{n\to\infty}\frac{k_n}{n}=0$$

Estimating the Mean in a Univariate Normal Density

Given:

$$p(x|\mu) = N(\mu, \sigma^2)$$

known normal probability density for x except of unknown mean μ

$$p(\mu) = N(\mu_0, \sigma_0)$$

prior knowledge about μ : a normal density with known μ_0 and σ_0

$$X = \{x_1 \dots x_n\}$$

samples drawn from p(x)

Estimation using Bayes Rule:

$$p(\mu \mid X) = \frac{p(X \mid \mu)p(\mu)}{\int p(X \mid \mu)p(\mu)d\mu} = \alpha \prod_{k=1}^{n} p(x_k \mid \mu)p(\mu) \quad \text{a is scale factor independent of } \mu$$

$$= \alpha \prod_{k=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{x_{k} - \mu}{\sigma}\right)^{2}} \frac{1}{\sqrt{2\pi\sigma_{0}}} e^{-\frac{1}{2} \left(\frac{\mu - \mu_{0}}{\sigma_{0}}\right)^{2}} = \frac{1}{\sqrt{2\pi\sigma_{n}}} e^{-\frac{1}{2} \left(\frac{\mu - \mu_{n}}{\sigma_{n}}\right)^{2}}$$

with
$$\mu_n = \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \left(\frac{1}{n} \sum_{k=1}^n x_k \right) + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0 \quad \text{and} \quad \sigma_n^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}$$

Best estimate of mean μ after observing n samples