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IP1 — Lecture 16: Decision Theory

Statistical Decision Theory

Generating decision functions from a statistical characterization of classes
(as opposed to a characterization by prototypes)

Advantages:

1. The classification scheme may be designed to satisfy an objective
optimality criterion:
Optimal decisions minimize the probability of error.

2. Statistical descriptions may be much more compact than a collection of
prototypes.

3. Some phenomena may only be adequately described using statistics, e.g.
noise.
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IP1 — Lecture 16: Decision Theory

Example: Medical Screening |

Health test based on some measurement x (e.g. ECG evaluation)

It is known that every 10th person is sick (prior probability):

* o, class of healthy people  P(w,) = 9/10

*  w,class of sick people P(w,) = 1/10

Task 1: Classify without taking any measurements (to save money)
e Decision rule 1a: Classify every 10th person as sick

P(error) = P(decide sick if healthy) + P(decide healthy if sick)
=1/10 x 9/10 + 9/10 x 1/10 = 0.18

* Decision rule 1b: Classify all persons as healthy
P(error) = P(decide healthy if sick) = 1/10 = 0.1
Decision rule 1b is better because it gives lower probability of error

Decision rule 1b is optimal because no other decision rule can give a lower probability
of error (try "every n-th" in 1a and minimize over n)
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Example: Medical Screening Il

Task 2: Classify after taking a measurement x
Assume that the statistics of prototypes are given as p(x|w,), i = 1, 2

Person No. X indication

. . . pxlo;)

134 7.4 neg

135 6.8  neg 0.2 1 w,: sick ,~ @, healthy
136 42  pos 01 4 y/

137 5.6 neg s N

138 5.8 pos | ~ | |

139 7.2 neg 1 2 3 4 5 6 7 8

P(e|x) = P(error given x) = P(w # w'|x) = I - P(w|x)
where m' is the class assigned to x by the decision rule.

P(e|x) is minimized by choosing the class which maximizes P(w|x).
Hence g;(x) = P(w,|x) are discriminant functions.

How do we get the "posterior" probabilities P(w,|x)?
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IP1 — Lecture 16: Decision Theory

Example: Medical Screening (3)

The posterior probabilities P(w;|x) can be computed from the
"likelihood" p(x|w,) using Bayes” formula:
P(a)l. |x) _ p(x|a)l.)P(a)l.) _ p(x|a)l.)P(a)i)
p(x) > p(x|w,)P(w;)

For the example, using Bayes” Formula, one could get:

P(w;|x)

decision

10T =~ boundary
\
\
05T B~
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General Framework for Bayes Classification

Statistical decision theory minimizes the probability of error for
classifications based on uncertain evidence

. ... K classes
1 K
P(w,) prior probability that an object of class £ will be observed

X = (xl xN) N-dimensional feature vector of an object

p()_c’ ‘wk) conditional probability ("likelihood") of observing X given that the object
belongs to class wy

conditional probability ("posterior probability") that an object belongs to
class wy given X is observed

Bayes decision rule:

Classify given evidence x as class w " such that @~ minimizes the probability of error
P(a) = a)")_c’)

—> Choose o “which maximizes the posterior probability P(a) \55)
8i ()?) = P(wi

55) are discriminant functions.
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Bayes 2-class Decisions

If the decision is between 2 classes w; and w,, the decision rule can be
simplified:

p(ﬂwl) P(w2) p(ﬂwl) is called the

Choose w;, if S p(%|w,) "likelihood ratio”

Several alternative forms are possible for a discriminant function:
P(a|%)
P(w, |3)

§(%)= P(e[%)- P(w, |3) 8(%)=

For exponential and Gaussian distributions it is useful to take the logarithm:

g(f):log(})(a)lX))=log(p(yca)1)})(wl) A log(M]_log(WJ

P ) plFl0)P)” | () Po)
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Normal Distributions

Gaussian ("normal"”) multivariate distribution: p(f) = €’
2 2

with: 2= E[(f —ﬁ)T(f—ﬁ)] NxN covariance matrix
H  mean vector

For decision problems, loci of points of constant density are interesting. For
Gaussian multivariate distributions, these are hyperellipsoids:

(X — 1) ='(X¥ - i) = constant
Eigenvectors of X determine directions of X,

principal axes of the ellipsoids,

Eigenvalues determine lengths of the
principal axes.

d*=(X-pu)' = (X- 1) is called "squared
Mahalanobis distance" of X from u.
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Discriminant Function for Normal Distributions
General form:
(%) = log(p(¥|e)) - log (P (@)

For p()_c’ wi)zN(ﬁi’zi) .
g (X)=-1(G-w)'Z(xX-u)-4log(2n —%log(‘Zi‘)Hog(P(wi))

irrelevant for decisions

We consider the discriminant functions for three interesting
special cases:

e univariate distribution N=/
* statistically independent, equal variance variables x;
* equal covariance matrices 2, = X
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Univariate Distribution

Assumption: p(x|w, ) are univariate Gaussian distributions.

Example: 2 classes

Pl @) = e_(xz_gé)z p(xlw) B
)=
2 A A
\V2mo, N )
{ —(X_Mé)z 7\ A
P(X|Wz)=me ” \ ! \
2 g s
@ |a)2
Decision rule:
gi(X)=lOg(P(a)i x))
1
- hsta 7 Hoglo) (P (o)
10
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Statistically Independent,
Equal Variance Variables

In case of insufficient statistical data, variables are sometimes assumed to be
statistically independent and of equal variance.
> =0’
~ 1 = _p
(x)=———|x - +log( P(w.
8 (7)== 5pzlF A +10g(P()

If P(w;) = 1/N, then the decision rule is equivalent to the
minimum-distance classification rule.

By expanding & (X) and dropping the ¥’ % term, X,
one gets the decision rule: t
~ 1 e T
gi(x)=—F[—ZMTX"'MTM]"'IOE%(P(@)) @XD d@)

which is linear in X and can be written as:

& (%)=(w) T+w, @

The decision surface is composed of hyperplanes. X,

v
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Equal Covariance Matrices

If 2. = 2, the decision rule can be simplified:

g (X)=- 2(1712 (% - ﬁ)T ST (xX-p)+ log(P(a)l.))

By expanding the quadratic form and dropping X’ X™'X one gets another linear
decision rule which can (again) be written as:

g, (fc) = (wl.)T X+w,

If the a-priori probabilities are
equal, the decision rule assigns x to
the class where the Mahalanobis
distance to the mean (. is minimal.
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Estimating Probability Densities

X3
Let R be a region in feature space with volume V. R
Let k out of N samples lie in R. /)'(2
=/ =/ k = : > X
fp(x)dx z—zp(x)V 1
A N
.k
|:> p(x) ~ % relative frequency of samples per volume
A sequence of approximations p, (56) may be obtained by changing the
volume V, as the number of samples n increases.
Examples: T E=
onditions for a :
~ i 2. limk, =
V. ~1Nn  Parzen Windows converging sequence Mk, =
k,~ n adjust volume for of estimates p,(x): 3 lim& _0
k nearest neighbours "N
04.12.14
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Estimating the Mean in a
Univariate Normal Density

Given:
p(xlnw) = N(u, 6°) known normal probability density for x except of unknown mean u
pw) = N(uy, o5)  prior knowledge about u: a normal density with known y,and o,
X={,..x,} samples drawn from p(x)

Estimation using Bayes Rule:

p(X 1 wp(u) - . :
p(ulX)= =al| | p(x, lu)p(u) | a is scale factor independent of u
[ p(X 1 w)p(u)du lk_l[ k

2 2 2
x-u _fu-u _Mu-u,
2\ o 1 2\ oy - 1 e 2\ o,

n
1
= aH—e e =
i N2mo V2mo, V2ro,
no’ (1« o’ 2 0.0’
with w, = B . ) _Exk + ) > Uy and Gn T 2 2
no, +o" \ n4 no, +0 no, +o

Best estimate of mean i after observing n samples
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