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Abstract. The performance of matching and object recognition meth-
ods based on interest points depends on both the properties of the un-
derlying interest points and the associated image descriptors. This pa-
per demonstrates the advantages of using generalized scale-space inter-
est point detectors when computing image descriptors for image-based
matching. These generalized scale-space interest points are based on link-
ing of image features over scale and scale selection by weighted averaging
along feature trajectories over scale and allow for a higher ratio of correct
matches and a lower ratio of false matches compared to previously known
interest point detectors within the same class. Specifically, it is shown
how a significant increase in matching performance can be obtained in
relation to the underlying interest point detectors in the SIFT and the
SURF operators. We propose that these generalized scale-space interest
points when accompanied by associated scale-invariant image descriptors
should allow for better performance of interest point based methods for
image-based matching, object recognition and related vision tasks.

Key words: interest points, scale selection, scale linking, matching, ob-
ject recognition, feature detection, scale invariance, scale space

1 Introduction

A common approach to image-based matching consists of detecting interest
points with associated image descriptors from image data and then establishing
a correspondence between the image descriptors. Specifically, the SIFT opera-
tor [1] and the SURF operator [2] have been demonstrated to be highly useful
for this purpose with many successful applications, including object recognition,
3-D object and scene modelling, video tracking, gesture recognition, panorama
stitching as well as robot localization and mapping.

In the SIFT operator, the intitial detection of interest points is based on
differences-of-Gaussians from which local extrema over space and scale are com-
puted. Such points are referred to as scale-space extrema. The difference of
Gaussian operator can be seen as an approximation of the Laplacian operator,
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and it follows from general results in [3] that the scale-space extrema of the
Laplacian have scale-invariant properties that can be used for normalizing local
image patches or image descriptors with respect to scaling transformations. The
SURF operator is on the other hand based on initial detection of image features
that can be seen as approximations of the determinant of the Hessian operator
with the underlying Gaussian derivatives replaced by an approximation in terms
of Haar wavelets. From the general results in [3] it follows that scale-space ex-
trema of the determinant of the Hessian do also lead to scale-invariant behaviour,
which can be used for explaining the good performance of the SIFT and SURF
operators under scaling transformations.

The subject of this article is to show how the performance of image matching
can be improved by using a generalized framework for detecting interest points
from scale-space features involving (i) new Hessian feature strength measures
at a fixed scale, (ii) linking of image features over scale into feature trajectories
to allow for a better selection of significant image features and (iii) scale selec-
tion by weighted averaging along feature trajectories to allow for more robust
scale estimates. By replacing the interest points in the regular SIFT and SURF
operators by generalized scale-space interest points to be described below, it
is possible to define new scale-invariant image descriptors that lead to better
matching performance compared to the performance obtained by corresponding
interest point detection mechanisms as used in the SIFT and SURF operators.

2 Generalized Scale-Space Interest Points

Basic requirements on the interest points on which image matching is to be
performed are that they should (i) have a clear, preferably mathematically well-
founded, definition, (ii) have a well-defined position in image space, (iii) have
local image structures around the interest point that are rich in information
content such that the interest points carry important information to later stages
and (iv) be stable under local and global deformations of the image domain,
including perspective image deformations and illumination variations such that
the interest points can be reliably computed with a high degree of repeatability .

2.1 Differential Entities for Detecting Scale-Space Interest Points

As basis for performing local image measurements on a two-dimensional image
f , we will consider a scale-space representation [4–10]

L(x, y; t) =

∫
(u,v)∈IR2

f(x− u, y − v) g(u, v; t) du dv (1)

generated by convolution with Gaussian kernels g(x, y; t) = 1
2πt e

−(x2+y2)/2t of
increasing width, where the variance t is referred to as the scale parameter, and
with scale-normalized derivatives with γ = 1 defined according to a ∂ξ = tγ/2 ∂x
and ∂η = tγ/2 ∂y [3]. To detect interest points within this scale-space framework,
we will consider:
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(i) either the scale-normalized Laplacian operator [3]

∇2
normL = t (Lxx + Lyy) (2)

or the scale-normalized determinant of the Hessian [3]

detHnormL = t2 (LxxLyy − L2
xy), (3)

(ii) either of the following differential analogues/extensions of the Harris opera-
tor [11] proposed in [12, 13]; the unsigned Hessian feature strength measure I

D1,normL =

{
t2 (detHL− k trace2HL) if detHL− k trace2HL > 0
0 otherwise

(4)

or the signed Hessian feature strength measure I

D̃1,normL =

 t2 (detHL− k trace2HL) if detHL− k trace2HL > 0
t2 (detHL+ k trace2HL) if detHL+ k trace2HL < 0
0 otherwise

(5)

where k ∈ [0, 14 [ as derived in [12] with the preferred choice k ≈ 0.06, or
(iii) either of the following differential analogues and extensions of the Shi and

Tomasi operator [14] proposed in [12, 13]; the unsigned Hessian feature strength
measure II

D2,normL = t min(|λ1|, |λ2|) = t min(|Lpp|, |Lqq|) (6)

or the signed Hessian feature strength measure II

D̃2,normL =

 t Lpp if |Lpp| < |Lqq|
t Lqq if |Lqq| < |Lpp|
t (Lpp + Lqq)/2 otherwise

(7)

with Lpp and Lqq denoting the eigenvalues of the Hessian matrix ordered
such that Lpp ≤ Lqq [10].

2.2 Scale Selection Mechanisms

To perform scale selection for the abovementioned differential feature detectors,
we will consider two different approaches:

– Detection of scale-space extrema (x̂, ŷ, t̂) where the scale normalized differ-
ential entities assume local extrema with respect to space and scale [3], and
with image features ranked by the magnitude of the scale-normalized re-
sponse |DnormL| at the scale-space extremum.

– Linking image features at different scales into feature trajectories over scale
and performing scale selection by weighted averaging of scale values along
each feature trajectory T delimited by bifurcation events [12, 13]

τ̂T =

∫
τ∈T τ ψ((Dγ−normL)(p(τ); τ)) dτ∫
τ∈T ψ((Dγ−normL)(p(τ); τ)) dτ

(8)
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with the integral expressed in terms of effective scale τ = log t to give a scale
covariant construction of the corresponding scale estimates t̂T = exp τ̂T ,
and with significance measure taken as the integral of the scale-normalized
feature responses along the feature trajectory [12, 13]

WT =

∫
τ∈T

ψ(|(DnormL)(p(τ); τ)|) dτ (9)

where ψ(|DnormL|) = wDL |DnormL|a represents a monotonically increasing
self-similar transformation and wDL = (L2

ξξ+2L2
ξη+L2

ηη)/(A(L2
ξ+L

2
η)+L2

ξξ+

2L2
ξη + L2

ηη + ε2) with A = 4/e representing the relative weighting between
first- and second-order derivatives [15] and with ε ≈ 0.1 representing an
estimated noise level for image data in the range [0, 255].

In [13] it is shown that when applied to a rotationally symmetric Gaussian blob
model f(x, y) = g(x, y; t0), both scale-space extrema detection and weighed
scale selection lead to similar scale estimates t̂ = t0 for all the above interest point
detectors. When, subjected to non-uniform affine image deformations outside the
similarity group, the determinant of the Hessian detHnormL and the Hessian
feature strength measures D1,normL and D̃1,normL do, however, have theoretical
advantages in terms of affine covariance or approximations thereof [12, 13].

3 Scale-Invariant Image Descriptors for Matching

For each interest point, we will compute a complementary image descriptor in
analogous ways as done in the SIFT and SURF operators, with the difference
that the feature vectors will be computed from Gaussian derivative responses in
a scale-space representation instead of using a pyramid as done in the original
SIFT operator [1] or a Haar wavelet basis as used in the SURF operator [2].

For our SIFT-like image descriptor, we compute image gradients ∇L at the
detection scale t̂ of the interest point. An orientation estimate is computed in
a similar way as by Lowe [1], by accumulating a histogram of gradient direc-
tions arg∇L quantized into 36 bins with the area of the accumulation window
proportional to the detection scale t̂, and then detecting peaks in the smoothed
orientation histograms. Multiple peaks are accepted if the height of the sec-
ondary peak(s) are above 80 % of the highest peak. Then, for each point on a
4 × 4 grid with the grid spacing proportional to the detection scale measured

in units of σ̂ =
√
t̂, a weighed local histogram of gradient directions arg∇L

quantized into 8 bins is accumulated around each grid point, with the weights
proportional to the gradient magnitude |∇L| and a Gaussian window function
with its area proportional to the detection scale t̂ with trilinear interpolation for
distributing the weighted increments for the sampled image measurements into
adjacent histogram bins. The resulting 128-dimensional descriptor is normalized
to unit sum to achieve contrast invariance, with the relative contibution of a
single bin limited to a maximum value of 0.20.
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For our SURF-like image descriptor, we compute the following sums of deriva-
tive responses

∑
Lx,

∑
|Lx|,

∑
Ly,

∑
|Ly| at the scale t̂ of the interest point,

for each one of 4× 4 subwindows around the interest point as Bay et al [2] and
with similar orientation normalization as for the SIFT operator. The resulting
64-D descriptor is then normalized to unit length for contrast invariance.

4 Matching Properties under Perspective
Transformations

To evaluate the quality of the interest points with their associated local image
descriptors, we will apply bi-directional nearest-neighbour matching of the image
descriptors in Euclidean norm. In other words, given a pair of images fA and
fB with corresponding sets of interest points A = {Ai} and B = {Bj}, a match
between the pair of interest points (Ai, Bj) is accepted only if (i) Ai is the best
match for Bj in relation to all the other points in A and, in addition, (ii) Bj is
the best match for Ai in relation to all the other points in B.

To suppress matching candidates for which the correspondence may be re-
garded as ambiguous, we will furthermore require the ratio between the distances
to the nearest and the next nearest image descriptor to be less than r = 0.9.

Next, we will evaluate the matching performance of such interest points with
local image descriptors over a dataset of poster images with calibrated homo-
graphies over different amounts of perspective scaling and foreshortening.

Distance variations Viewing variations
s ≈ 1.25 ϕ ≈ 0◦

s ≈ 6.0 ϕ ≈ 45◦

Fig. 1. Illustration of images of posters from multiple views (left) by varying the dis-
tance between the camera and the object for different frontal views, and (right) by
varying the viewing direction relative to the direction of the surface normal. (Image
size: 768× 576 pixels.)
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4.1 Poster Image Dataset

High-resolution photographs of approximately 4900× 3200 pixels were taken of
12 outdoor and indoor scenes in natural city and office environments, from which
poster printouts of size 100× 70 cm were produced by a professional laboratory.
Each such poster was then photographed from 14 different positions:

(i) 11 normal views leading to approximate scaling transformations with relative
scale factors s approximately equal to 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0,
5.0 and 6.0, and

(ii) 3 additional oblique views leading to foreshortening transformations with
slant angles 22.5◦, 30◦ and 45◦ relative to the frontal view with s ≈ 2.0.

For the 11 normal views of each objects, homographies were computed between
each pair using the ESM method [16] with initial estimates of the relative scaling
factors obtained from manual measurements of the distance between the poster
surface and the camera. For the oblique views, for which the ESM method did
not produce sufficiently accurate results, homographies were computed by first
manually marking correspondences between the four images of each poster, com-
puting an initial estimate of the homography using the linear method in [17,
algorithm 3.2, page 92] and then computing a refined estimate by minimizing
the Sampson approximation of the geometric error [17, algorithm 3.3, page 98].

The motivation for using such poster image for evaluation is to reflect natural
image structures while allowing for easy calibration without 3-D reconstruction.

4.2 Matching Criteria and Performance Measures

Figure 2 shows an illustration of point matches obtained between two pairs of
images corresponding to a scaling transformation and a foreshortening transfor-
mation based on interest points detected using the D̃1,normL operator.

To judge whether two image features Ai and Bj matched in this way should
be regarded as belonging to the same feature or not, we associate a scale depen-
dent circle CA and CB to each feature, with the radius of each circle equal to the
detection scale of the corresponding feature measured in units of the standard
deviation σ =

√
t. Then, each such feature is transformed to the other image

domain, using the homography and with the scale value transformed by a scale
factor of the homography. The relative amount of overlap between any pair of
circles is defined by forming the ratio between the intersection and the union of
the two circles in a similar way as Mikolajczyk et al [18] define a corresponding
ratio for ellipses

m(CA, CB) =
|
⋂

(CA, CB)|
|
⋃

(CA, CB)|
. (10)

Then, we measure the performance of the interest point detector by:

efficiency =
#(interest points that lead to accepted matches)

#(interest points)

1 - precision =
#(rejected matches)

#(accepted matches) + #(rejected matches)
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Scaling transformation Foreshortening transformation

Fig. 2. Illustration of matching relations obtained by bidirectional matching of SIFT-
like image descriptors computed at interest points of the signed Hessian feature strength
measure D̃1,normL for (left) a scaling transformation and (right) a foreshortening trans-
formation between pairs of poster images of the harbour and city scenes shown in Fig-
ure 1. These illustrations have been generated by first superimposing bright copies of
the two images to be matched by adding them. Then, the interest points detected in
the two domains have been overlayed on the image data, and a black line has been
drawn between each pair of image points that has been matched. Red circles indicate
that the Hessian matrix is negative definite (bright features), blue circles that the Hes-
sian matrix is positive definite (dark features), whereas green circles indicate that the
Hessian matrix is indefinite (saddle-like features).

The evaluation of the matching score is only performed for image features that
are within the image domain for both images before and after the transformation.
Moreover, only features within corresponding scale ranges are evaluated. In other
words, if the scale range for the image fA is [tmin, tmax], then image features are
searched for in the transformed image fB within the scale range [t′min, t

′
max] =

[s2 tmin, s
2 tmax], where s denotes an overall scaling factor of the homography.

In the experiments below, we used [tmin, tmax] = [4, 256].

4.3 Experimental Results

Table 1 shows the result of evaluating 2 × 9 different types of scale-space in-
terest point detectors with respect to the problem of establishing point corre-
spondences between pairs of images on the poster dataset. Each interest point
detector is applied in two versions (i) with scale selection from local extrema
of scale-normalized derivatives over scale, or (ii) using scale linking with scale
selection from weighted averaging of scale-normalized feature responses along
feature trajectories.

In addition to the 2 × 7 differential interest point detectors described in
section 2, we have also included 2× 2 additional interest point detectors derived
from the Harris operator [11]: (i) the Harris-Laplace operator [19] based on
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Efficiency: SIFT-like image descriptor

scaling foreshortening average
Interest points extr link extr link extr link

∇2
normL (D1L > 0) 0.7484 0.7994 0.7512 0.7574 0.7498 0.7784

detHnormL (D1L > 0) 0.7721 0.8225 0.7635 0.7932 0.7678 0.8079

detHnormL (D̃1L > 0) 0.7691 0.8163 0.7602 0.7841 0.7647 0.8002
D1,normL 0.7719 0.8280 0.7596 0.7977 0.7658 0.8128

D̃1,normL 0.7698 0.8241 0.7578 0.7916 0.7638 0.8079
D2,normL (D1L > 0) 0.7203 0.8187 0.7111 0.7776 0.7157 0.7981

D̃2,normL (D1L > 0) 0.7204 0.8261 0.7113 0.7766 0.7159 0.8014
Harris-Laplace 0.7002 0.7855 0.7046 0.7535 0.7024 0.7695
Harris-detHessian 0.7406 0.7608 0.7561 0.7319 0.7406 0.7463

Efficiency: SURF-like image descriptor

scaling foreshortening average
Interest points extr link extr link extr link

∇2
normL (D1L > 0) 0.7424 0.7832 0.7280 0.7140 0.7352 0.7486

detHnormL (D1L > 0) 0.7656 0.8072 0.7402 0.7504 0.7529 0.7788

detHnormL (D̃1L > 0) 0.7628 0.8015 0.7372 0.7430 0.7500 0.7723
D1,normL 0.7661 0.8126 0.7354 0.7537 0.7507 0.7831

D̃1,normL 0.7640 0.8081 0.7334 0.7478 0.7487 0.7779
D2,normL (D1L > 0) 0.7157 0.8014 0.6870 0.7284 0.7013 0.7649

D̃2,normL (D1L > 0) 0.7158 0.8100 0.6873 0.7328 0.7015 0.7714
Harris-Laplace 0.6948 0.7620 0.6724 0.6944 0.6836 0.7282
Harris-detHessian 0.7345 0.7381 0.7192 0.6705 0.7268 0.7043

Table 1. Performance measures obtained by matching different types of scale-space
interest points with associated SIFT- and SURF-like image descriptors for the poster
image dataset. The columns show from left to right: (i) the average efficiency over all
pairs of scaling transformations, (ii) the average efficiency over all pairs of foreshort-
ening transformations and (iii) the average total computed as the mean of the scaling
and foreshortening scores. The columns labelled “extr” and “link” indicate whether the
features have been detected with scale selection from extrema over scale or by scale
linking.

spatial extrema of the Harris measure and scale selection from local extrema
over scale of the scale-normalized Laplacian, (ii) a scale-linked version of the
Harris-Laplace operator with scale selection by weighted averaging over feature
trajectories of Harris features [12], and (iii-iv) two Harris-detHessian operators
analogous to the Harris-Laplace operators, with the difference that scale selection
is performed based on the scale-normalized determinant of the Hessian instead
of the scale-normalized Laplacian [12].

The experiments are based on detecting the N = 800 strongest interest
points extracted from the first image, regarded as reference image for the ho-
mography. To obtain an approximate uniform density of interest points under
scaling transformations, an adapted number N ′ = N/s2 of interest points is
searched for (i) within the subwindow of the reference image that is mapped to
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Interest points and image descriptors ranked on matching efficiency

Interest points Scale selection Descriptor Efficiency

D1,normL link SIFT 0.8128

D̃1,normL link SIFT 0.8079
detHnormL (D1L > 0) link SIFT 0.8079

D̃2,normL (D1L > 0) link SIFT 0.8014

detHnormL (D̃1L > 0) link SIFT 0.8002
...

...
detHnormL (D1L > 0) extr SIFT 0.7721
detHnormL (D1L > 0) extr SURF 0.7656
∇2

normL (D1L > 0) extr SIFT 0.7484
Harris-Laplace extr SIFT 0.7002

Table 2. The five best combinations of interest points and image descriptors among
the 2× 2× 9 = 36 combinations considered in this experimental evaluation as ranked
on the ratio of interest points that lead to correct matches. For comparison, results
are also shown for the SIFT descriptor based on scale-space extrema of the Laplacian,
the SIFT or SURF descriptors based on scale-space extrema of the determinant of the
Hessian and the SIFT descriptor based on Harris-Laplace interest points.

the interior of the transformed image and (ii) in the transformed image, with s
denoting relative scaling factor between the two images.

This procedure is repeated for all pairs of images within the groups of dis-
tance variations or viewing variations respectively, implying up to 55 image pairs
for the scaling transformations and 6 image pairs for the foreshortening trans-
formations, i.e. up to 61 matching experiments for each one of the 12 posters,
thus up to 732 experiments for each one of 2× 9 interest point detectors.

As can be seen from the results of matching SIFT- or SURF-like image de-
scriptors in Table 1, the interest point detectors based on scale linking and with
scale selection by weighted averaging along feature trajectories generally lead to
significantly higher efficiency rates compared to the corresponding interest point
detectors based on scale selection from local extrema over scale. Specifically, the
highest efficiency rates are obtained with the scale linked version of the unsigned
Hessian feature strength measure D1,normL, followed by scale-linked versions of

the unsigned signed Hessian feature strength measure D̃1,normL and the deter-
minant of the Hessian operator detHnormL with complementary thresholding
on D1,normL > 0.

Corresponding experimental results that cannot be included here because of
lack of space show that the lowest and thus the best 1-precision score is obtained
with the determinant of the Hessian operator detHnormL with complementary
thresholding on D̃1,normL > 0, followed by the determinant of the Hessian op-
erator detHnormL with complementary thresholding on D1,normL > 0.

Among the more traditional feature detectors based on scale selection from
local extrema over scale, we can also note that the determinant of the Hes-
sian operator detHnormL performs significantly better than both the Laplacian
operator ∇2

normL and the Harris-Laplace operator. We can also note that the
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Scaling variations Foreshortening variations

0 0.5 1 1.5 2 2.5 3

0.55

0.6

0.65

0.7

0.75

0.8

0.85

 

 

¢2 L
det H L (D1 L > 0)
det H L (~D1 L > 0)
D1 L
~D1 L
~D2 L (D1 L > 0)

HarrisLaplace
¢2 L (extr)

20 25 30 35 40 45

0.55

0.6

0.65

0.7

0.75

0.8

0.85

 

 

¢2 L
det H L (D1 L > 0)
det H L (~D1 L > 0)
D1 L
~D1 L
~D2 L (D1 L > 0)

HarrisLaplace
¢2 L (extr)

Fig. 3. Graphs showing how the matching efficiency depends upon (left) the amount
of scaling s ∈ [1.25, 6.0] for scaling transformations (with log2 s on the horizontal
axis) and (right) the difference in viewing angle ϕ ∈ [22.5◦, 45◦] for the foreshortening
transformations for interest point matching based on SIFT-like image descriptors.

Harris-Laplace operator can be improved by either scale linking or by replacing
scale selection based on the scale-normalized Laplacian by scale selection based
on the scale-normalized determinant of the Hessian.

When comparing the results obtained for SIFT-like and SURF-like image
descriptors, we can see that the SIFT-like image descriptors lead to both higher
efficiency rates and lower 1-precision scores than the SURF-like image descrip-
tors. This qualitative relationship holds over all types of interest point detectors.
In this respect, the pure image descriptor in the SIFT operator is clearly better
than the pure image descriptor in the SURF operator. Specifically, more reliable
image matches can be obtained by replacing pure image descriptor in the SURF
operator by the pure image descriptor in the SIFT operator.

Table 2 lists the five best combinations of interest point detectors and image
descriptors in this evaluation as ranked on their efficiency values. For comparison,
the results of our corresponding analogues of the SIFT operator with interest
point detection from scale-space extrema of the Laplacian and our analogue of
the SURF operator based on scale-space extrema of the determinant of the Hes-
sian are also shown. As can be seen from this ranking, the best combinations
of generalized points with SIFT-like image descriptors perform significantly bet-
ter than the corresponding analogues of regular SIFT or regular SIFT based on
scale-space extrema of the Laplacian or the determinant of the Hessian.

Figure 3 shows graphs of how the efficiency rate depends upon the amount of
scaling for the scaling transformations and the difference in viewing angle for the
foreshortening transformations. As can be seen from these graphs, the interest
point detectors detHnormL, D1,normL and D̃1,normL that possess affine covari-
ance properties or approximations thereof [12, 13] do also have the best matching
properties under foreshortening transformations. Specifically, the generalized in-
terest point detectors based on scale linking perform significantly better than



Image Matching using Generalized Scale-Space Interest Points 11

scale-space extrema of the Laplacian or the determinant of the Hessian as well
as better than the Harris-Laplace operator.

5 Summary and Conclusions

We have presented a set of extensions of the SIFT and SURF operators, by
replacing the underlying interest point detectors used for computing the SIFT
or SURF descriptors by a family of generalized scale-space interest points.

These generalized scale-space interest points are based on (i) new differen-
tial entities for interest point detection at a fixed scale in terms of new Hessian
feature strength measures, (ii) linking of image structures into feature trajec-
tories over scale and (ii) performing scale selection by weighted averaging of
scale-normalized feature responses along these feature trajectories [12].

The generalized scale-space interest points are all scale-invariant in the sense
that (i) the interest points are preserved under scaling transformation and that
(ii) the detection scales obtained from the scale selection step are transformed in
a scale covariant way. Thereby, the detection scale can be used for defining a local
scale normalized reference frame around the interest point, which means that
image descriptors that are defined relative to such a scale-normalized reference
frame will also be scale invariant.

By complementing these generalized scale-space interest points with local im-
age descriptors defined in a conceptually similar way as the pure image descriptor
parts in SIFT or SURF, while being based on image measurements in terms of
Gaussian derivatives instead of image pyramids or Haar wavelets, we have shown
that the generalized interest points with their associated scale-invariant image
descriptors lead to a higher ratio of correct matches and a lower ratio of false
matches compared to corresponding results obtained with interest point detec-
tors based on more traditional scale-space extrema of the Laplacian, scale-space
extrema of the determinant of the Hessian or the Harris-Laplace operator.

In the literature, there has been some debate concerning which one of the
SIFT or SURF descriptors leads to the best performance. In our experimen-
tal evaluations, we have throughtout found that our SIFT-like image descriptor
based on Gaussian derivatives generally performs much better than our SURF-
like image descriptor, also expressed in terms of Gaussian derivatives. In this
respect, the pure image descriptor in the SIFT operator can be seen as signifi-
cantly better than the pure image descriptor in the SURF operator.

Concerning the underlying interest points, we have on the other hand found
that the determinant of the Hessian operator to generally perform significantly
better than the Laplacian operator, both for scale selection based on scale-
space extrema and scale selection based on weighted averaging of feature re-
sponses along feature trajectories obtained by scale linking. Since the difference-
of-Gaussians interest point detector in the regular SIFT operator can be seen
as an approximation of the scale-normalized Laplacian, we can therefore regard
the underlying interest point detector in the SURF operator as significantly
better than the interest point detector in the SIFT operator. Specifically, we
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could expect a significant increase in the performance of SIFT by just replacing
the scale-space extrema of the difference-of-Gaussians operator by scale-space
extrema of the determinant of the Hessian.

In addition, our experimental evaluations show that further improvements are
possible by replacing the interest points obtained from scale-space extrema in the
SIFT and SURF operators by generalized scale-space interest points obtained
by scale linking, with the best results obtained with the Hessian feature strength
measures D1,normL and D̃1,normL followed by the determinant of the Hessian

detHnormL and the Hessian feature strength measure D̃2,normL.
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