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Problems (review)
n How to find landmarks 

to match across two 
images?

n How to distinguish one 
landmark from another?

n How to match N 
landmarks from I1 to M 
landmarks from I2, 
assuming that I2 has 
more and less than I1 ?
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General matching notions
n Pj are points (or “parts”) in first image
n Lk are labels in second image or model; these could 

be points, parts, or interpretations of them
n Need to match some pairs (Pj , Lk): can be 

combinatorically expensive

P1
L1

P2

P3

Pj L2
L3

Lk
L4

There are many mappings from Image 1 pts to Image 2 labels.
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Constraining the mapping
n Points may have distinguishing features
n Points may be distinguished by relations 

with neighbor points or regions
n Points may be distinguished by distance 

relations with distant points 
n Points or corners might be connected to 

others



CVPR04 Stockman 5

Point salience by topology/geometry

Junctions of a 
network can be used 
for reliable matching: 
never map an ‘L’ to an 
‘X’, for example.

Might also use 
subtended angles 
or gradients 
across edges
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Other constraints on mapping
n Match centroids of similar regions, e.g. 

of dark regions in IR of similar area
n Match holes of same diameter
n Match corners of same angle and same 

contrast (gradient)
n Match points with similar RMTs
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Can match minimal spanning 
trees (C. Zahn 1975)
n Extract minimal spanning trees from points of 

I1 and of I2
n Assumption is that spanning tree structure is 

robust to some errors in point extraction
n Select tree nodes with high degree
n Below example: match 3 nodes of same 

degree and verify a consistent RS&T mapping  

P1 L1 L2
P2

P3

L3
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Local focus feature (Bolles) 
n Identify several “focus features” that 

are close together
n Match only the focus features
n Can a consistent RS&T be derived from 

them? 
n If so, can find more distant features to 

refine the RS&T
n Method robust against occlusions/errors
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Local focus feature matching
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Try matching model to image

Model feature F1 
matches image 
hole a5. When 
rotated 90 
degrees, two 
edges will align, 
but global match 
still wrong

Model E will match image 
fairly well also.
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Using distance constraints

Correct labeling is 
{ (H1, E), (H2, A), (H3,B) }

Distances observed in the image 
must be explained in the model.
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Backtracking search for consistent 
labeling of {H1, H2, H3}

If H1 is A, 
then H2 must 
be E to 
explain 
distance 21. 
Then, there is 
no label to 
explain H3.

If H1 is E, 
then H2 and 
H3 can both 
be 
consistently 
labeled.
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Let’s call features of image 1 “parts” 
and features of image 2 “labels”

Labels of related parts 
should be related

I1:  S1 above S4
I2:  Sj above Sn
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What relations?
n We have been using rigid geometry –

distance and angle
n Topological: F1 connects to F2; F1 

inside of F2; F1 crosses F2; …
n Other relations are useful when rigid 

mapping does not exist: F1 left of F2; 
F1 above F2; F1 between F2
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Simple definitions of …

F2

F1
F3

F4

F5

F2 above F1
F1 below F2
F5 below F1
F1 above F5
F1 left_of F4
F1 right_of F3
F4 right_of F1
F3 left_of F1

45°135°

225° 315°
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IT backtracks over part-label 
pairs to get consistent set

• A stack holds all pairings 
{(P1, L1), … , (Pj, Lk)}
• check all relations on Pj 
and Lk
• if relation is violated, 
retract pairing (Pj, Lk) and 
try a new one

In general, IT Search is 
exponential in effort; however, 
in 2D or 3D alignment, Grimson 
and Lozano Perez have shown 
the bound to be )( 3NO
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Discrete relaxation deletes part 
labels that are inconsistent with 
observations

Kleep model 
distances

Features and 
distances 
observed in 
the image
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Label A, B, C cannot match H1 since 
observed distances 26, 21 have not 
been observed. Also, H2 cannot be B.
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Impossible labels cause additional 
“filtering” out of possible labels

Failed relationships 
cause labels to be 
dropped

During any pass 
filtering can be done in 
parallel; creating a 
separate output matrix 
for the next pass
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Discrete relaxation deletes 
inconsistent labels in stages
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Face points filtered by known L-R, 
up-down, and distance relationships

Points identified by surface curvature in neighborhood and filtered by 
location relative to other salient points. These 3 points are then used for 
iterative 3D alignment (ICP algorithm) of the scan to a 3D model face.
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Face relationship filtering

TABLE 3
Relaxation Matrix after First Relaxation

Interpretation

nose rEye lEye orEye olEye centroid null

Obser
vation

Pt 1  1 0 0 1 0 0 1

Pt 2 0 0 0 0 0 0 1

Pt 3 0 1 1 1 0 0 1
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Notes on deriving a rigid 
mapping of Pj to Pk

n For 2D to 2D, match 2 points
n For 3D to 3D, match 3 points
n compute transform, then refine it to

a best fit using least squares and 
many more matching points
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Match of 2 points in 2D can 
determine R, S, and T
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Transform derived from 2 points 
can fit badly for other points
n Better if original 2 points are far apart
n An error of Δθ in the rotation implies an 

error in point location of  rΔθ where  r  
is the distance to the point from the 
center of rotation.

n Can use crude transformation to pair 
points and then refit the transformation 
using least squares
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Synthetic example of map to 
image correspondence

Assuming point labels must match, derive the RS&T matching 
each pair of similar vectors à 10 possible mappings.
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Clusters in pose space show 
correct transform & error!

3 of the 10 vector pairings produce approximately the same 
RS&T transformation: examine the variance of parameters.
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Pose-clustering concept
n Match minimal set of (points) features Fs between I 

and M
n Compute alignment transformation ω from Fs and 

contribute to cluster space
n Repeat this for “all’ or “many” corresponding feature 

sets
n Identify the best cluster centers ωi and attempt to 

verify those on other features
n * minimal basis means that ωi will have error; cluster 

center is better, but iterative refinement of ωi using 
many more features is better yet
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Pose clustering in 2D and 3D
n 2D: Can get 4 parameter RS&T ω from 

only two matching points (as above)
n 3D: can get 6 parameter rigid trans. 

from 3 matching points (S&S text 
13.2.6)

n 3D: or 2 lines and one point, or 3 lines



CVPR04 Stockman 30

RANSAC: random sample and 
consensus (Fischler and Bolles)
n Randomly choose minimal set of matching 

points {Pj} and {Lj}
n Compute aligning transformation T from these 

points so that T(Pj) = Lj  for all j
n Check that this transformation maps other 

points correctly: T(Pi) = Li  for more i   &
n Repeat until some transformation is verified 

(or no more choices remain)

& best to refine  T  on all correspondences as they are checked.
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Corner features matched 
between aerial images
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General affine transform

The transformation is 
rigid when the 2 x 2 
matrix has orthonormal 
rows and columns.
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Derivation of least squares 
constraints on coefficients  ajk
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Best affine transform 
matching the town images

11 matching 
point pairs

Ajk from the least 
squares procedure

Residuals of mapping are all less than 2 
pixels in the right image space.

Δx  
Δy

P1 P11
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Euclidean distance between point 
sets measures their match: 2D or 3D

n set A has points from image 1
n set B has points from image 2
n assume every point from A should be observed in B also 
n match measure can be the worst distance from any 

point in A to some point in B, or the root mean square of 
all such distances

a1
a2

b1

b2

b3

ignored

Worst d(aj,bk)
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Example application
n Observed data A is 3D surface scan of face
n Model data B is 3D surface model of face
n Best match of A to B probably requires points of A 

to be rotated and translated at least slightly
n So, we have to search over a 6-parameter space ω
n For each parameter set, we need to transform 

points of A into the space of B and then find the 
best point matches.

)),(( kj baTdcompute ω
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Example 2D case

(x,y)[r,c]

[r,c] = Tω(x,y)

d(Tω(x,y), bk)Image Model

To evaluate the value of the match of the Model in the Image for 
the pose parameters  ω model points must be transformed and 
best matching image points located – how to do it?
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Distance transform helps
n Identify image feature points  bk;
n Set image feature points to 0
n Set all neighbors of 0 values to 1
n Set all unset neighbors of 1 values to 2
n Set all unset neighbors of 2 to 3, etc.

)],([)(
),(

yxTIAmatch
Ayx
B∑=

ε
ω

Sum all the distance 
penalties over all 
transformed points of the 
model: called “chamfer-
matching” by Barrow and 
Tenenbaum
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Example distance transform
5  4  3  4  5  6  5  4  3  2  3  4  5
4  3  2  3  4  5  4  3  2  1  2  3  4
3  2  1  2  3  4  3  2  1  0 1  2  3

2  1  0 1  2  3  4  3  2  1  2  3  4
3  2  1  0 1  2  3  4  3  2  3  4  5
4  3  2  1  0 1  2  3  4  3  4  5  6
4  3  2  1  0 1  2  2  3  3  4  5  6
4  3  2  1  0 1  1  1  2  2  3  4  5

4  3  2  1  0 0  0  0 1  1  2  3  4
5  4  3  2  1  1  1  1  0  0 1  2  3
6  5  4  3  2  2  2  2  1  1  0 1  2
7  6  5  4  3  3  3  3  2  2  1  2  3

Set image feature points to 0
Set all neighbors of 0 values to 1
Set all unset neighbors of 1 values to 2
Set all unset neighbors of 2 to 3, etc.

Manhatten distance used here. Can use 
scaled Euclidean distance, where 4-
neighbors are distance 10 and diagonal 
neighbors are distance 14.

Parallel computation: at each stage, 
every unassigned pixel P checks its 
neighbors; if any neighbor has a 
distance label of d, then pixel P 
becomes d+1
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Hausdorff distance: take worst 
of the closest matches

)},(),,({max),(
.

),(),(
)}},({{minmax),(

ABhBAhBAH
isdistsymmetrica

ABhBAhgeneralin
badBAh BbAa

=

≠

= εε

a1
a2

b1

b2

b3

h(A,B)
h(B,A)

H(A,B)=H(B,A)
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Example use from Leventon

Left: Model scene 
with objects

Edge points of 
model plane image

Best  h(plane,scene)  
over all  sets  of 
translated  plane  edge  
pointsSymmetric distance not wanted here since 

most scene points should not be matched.

Images from Leventon web pages.
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Variations on Hausdorff  dist.
n Create histogram of all individual point distances of 

h(A,B)
n If, say 80%, of these are suitably small, then accept 

the match.
n Can define the 80% Hausdorff distance as that 

distance D such that d(aj,B) <= D for 80% of the 
points aj of A

n Perhaps we can now match the outline of a given 
pickup truck with and without a refrigerator in the 
back.

n See papers of Huttenlocher, Leventon
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Summary of matching, Part 2
n Brute force matching of points is computationally 

expensive
n Strong constraints on matching from feature point type 

and relations with other features
n Some matching methods: focus features, RANSAC, 

relaxation, interpretation tree, pose clustering
n Best affine (RT&T) transformation from N pairs of 

matching points can be done in 2D or 3D.
n Chamfer-matching enables faster match evaluation
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