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Motion Analysis

Motion analysis of digital images is based on a temporal sequence of 
image frames of a coherent scene.

"sparse sequence"    => few frames, temporally spaced apart, 

Motion detection
Register locations in an image sequence which have change due to motion

considerable differences between frames

"dense sequence"      => many frames, incremental time steps,
incremental differences between frames

video => 50 half frames per sec, interleaving, 
line-by-line sampling
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Register locations in an image sequence which have change due to motion

Moving object detection and tracking
Detect individual moving objects, determine and predict object trajectories, 
track objects with a moving camera

Derivation of 3D object properties
Determine 3D object shape from multiple views ("shape from motion")

Case Distinctions for Motion Analysis
stationary observer
moving observer

single moving object
multiple moving objects

B/W images
colour images

xray images
IR images

polyeder
smooth objects
arbitrary objects

matte surfacesp g j

rigid objects
jointed objects
deformable objects

perspective projection
weakly perspective projection
orthographic projection

rotation only
translation only

t i t d ti

g
natural images

noisy data
ideal data

monocular images
stereo images

dense flow
sparse flow
no flow

l i

specular surfaces
textured surfaces
arbitrary surfaces

without occlusion
with occlusion

uncalibrated camera
calibrated camera

data-driven
t ti d i
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unrestricted motion

2 image analysis
multiple image analysis

incremental motion
large-scale motion

paralaxis

quantitative motion
qualitative motion

small objects
extended objects

expectation-driven

real-time
no real-time

parallel computation
sequential computation

Many motion analysis methods are only applicable in restricted cases! 
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Motion in Video Images

TV

moving object TV halfframes

TV-rate sampling affects images of moving objects:

- contours show saw-tooth pattern 

- deformed angles

li it d l ti
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- limited resolution

Example: - 512 pixels per row

- length of dark car is ca. 3.5 m » 130 pixel

- speed is ca. 50 km/h » 14 m/s

- displacement between halfframes is ca. 
10 pixels

Difference Images
An obvious technique for motion detection is based on difference images:

• take the pixelwise difference of images of a sequence

• threshold the magnitude of the differences

• regions above threshold may be due to motion 

Examples:

frame1 frame12 difference difference difference difference
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frame1 frame12 difference 
frame2 - frame1

threshold 30 

difference 
frame12 - frame1

threshold 30 

difference 
frame34 - frame1

threshold 30 

difference 
frame34 - frame1
without threshold

Note effects which prohibit reliable motion detection:

- phase jitter between frames (pixels do not correspond exactly)
- spurious motion of branches, pedestrians, dogs, etc.
- motion of uniform brightness regions does not show
- temporal changes of illumination cause non-motion differences
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Counting Differences

If the goal is to isolate the images of moving objects, it may be useful to 

• count how often a pixel differs from its initial value (first-order 
difference picture FODP)

• count how often a  pixel of a FODP region differs from its previous 
value (second-order difference picture SODP)

(R. Jain 76)
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frame1 difference 
frame4 - frame1
FODP (yellow)

SODP (red)

difference 
frame10 - frame1

FODP (yellow)
SODP (red)

difference 
frame30 - frame1

FODP (yellow)
SODP (red)

The problem of uniform brightness regions is not really overcome. 

Corresponding Interest Points

Detection of moving objects by
- finding "interest points" in all frames of a sequence
- determining the correspondence of interest points in different frames
- chaining correspondences over timechaining correspondences over time
- grouping interest points into object candidates

Example: Tracking interest points of a taxi turning off Schlüterstraße 
(Dreschler and Nagel 82) 

6
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Moravec Interest Operator

Interest points (feature points) are image locations  where an interest 
operator computes a high value. Interest operators measure properties of a 
local pixel neighbourhood.

Moravec interest operator: ij

This simple operator measures the distinctness of a point w.r.t. its surround. 

Refinement of Moravec operator: 

Determine locations with strong 
brightness variations along two
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brightness variations along two 
orthogonal directions (e.g. based 
on variances in horizontal, 
vertical and diagonal direction).

Interest points in different frames may not correspond to identical 
physical object parts due to their small neighbourhood and noise.

Corner Models

Interest points may be based on 
models of interesting facets of 
the image function, e.g. corners.

" " l ti ith t l"corner" = location with extremal 
Gaussian curvatures
(Dreschler and Nagel 81)

Zuniga-Haralick operator:

• fit a cubic polynomial  
f(i,j) = c1 + c2x + c3y + c4x2 + c5xy + c6y2 + c7x3 + c8x2y + c9xy2 + c10y3

8

For a 5x5 neighbourhood the coefficients of the best-fitting polynomial can 
be directly determined from the 25 greyvalues 

• compute interest value from polynomial coefficients  

measure of "cornerness" of the polynomial
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Correspondence Problem

The correspondence problem is to determine which interest points in 
different frames of a sequence mark the same physical part of a scene.

Difficulties:

• scene may not offer enough structure to uniquely locate points

• scene may offer too much structure to uniquely locate points

• geometric features may differ strongly between frames

• photometric features differ strongly between frames

9

• there may be no corresponding point because of occlusion

Note that these difficulties apply to single-camera motion analysis as 
well as multiple-camera 3D analysis (e.g. binocular stereo).

Correspondence by Iterative Relaxation

Basic scheme (Thompson and Barnard 81) modified by Dreschler and Nagel:

• initialize correspondence confidences between all pairs of interest points 
in 2 frames based on

- similarity of greyvalue neighbourhoods
- plausibility of distance (velocity)

• modify confidences iteratively based on 

- similarity of displacement vectors in the neighbourhood
- confidence of competing displacement vectors

10

initialized confidences confidences after 10 iterationsinterest points of 2 frames 
(red and blue)
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Kalman Filters (1)

A Kalman filter provides an iterative scheme for (i) predicting an event and 
(ii) incorporating new measurements. 

prediction measurement

Assume a linear system with observations depending linearly on the 
system state, and white Gaussian noise disturbing the system evolution 
and the observations:

xk+1 = Akxk + wk

xk quantity of interest ("state") at time k

Ak model for evolution of xk
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zk = Hkxk + vk

Ak model for evolution of xk

wk zero mean Gaussian noise with 
covariance Qk

zk observations at time k

Hk relation of observations to state

vk zero mean Gaussian noise with 
covariance Rk

Often, Ak, Qk, Hk and Rk are constant.

What is the best estimate of xk

based on the previous estimate 
xk-1 and the observation zk?

Kalman Filters (2)
The best a priori estimate of xk before observing zk is

xk´ = Ak-1xk-1

After observing zk, the a priori estimate is updated by

xk´´ =  xk´ + Kk(zk - Hkxk´ )

Kk is Kalman gain matrix. Kk is determined to minimize the a posteriori 
variance Pk´´ of the error xk - xk´´. The minimizing Kk is

Kk = Pk´Hk
T (HkPk´Hk

T + Rk)-1

with Pk´ = AkPk-1´´Ak
T + Qk-1 and  Pk´´= (I - KkHk) Pk´

Pk´ is covariance of error xk - xk´ before observation of zk.
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k k k k

Iterative order of computations:

(1)  xk´ = Ak-1xk-1´´

(2)  Pk´ = AkPk-1´´Ak
T + Qk-

1

(1)  Kk = Pk´Hk
T (HkPk´Hk

T + Rk)-1

(2)  xk´´ =  xk´ + Kk(zk - Hkxk´ )

(3)  Pk´´= (I - KkHk) Pk´

x0´

P0´

initialization
k := k+1
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Kalman Filter Example
Track positions pk and velocities vk of an object moving along a straight line. 
Assume unknown accelerations ak with probability density N(0, q2) and 
measurements of positions pk corrupted by white noise bk with probability 
density N(0, r2).

xk+1 = Akxk + wk

zk = Hkxk + vk

pk+1    = 1    T pk   +   T2/2   ak

vk+1 0    1 vk T
T is time 
increment

zk = pk + bkzk =   1     0     pk +    bk

0            0    0     vk 0

P0´=   0    0
0    0

initialization   (here: position and velocity 
values are known with certainty)

x0´ =    p0

v0

´´
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K0 =   0    0
0    0

x0´´=   p0

v0

P0´´=   0    0
0   0

x1´ =    1    T    p0 =   p0 + v0T
0    1    v0 v0

K1 =    q2 1    0
q2+ r2 0    0

x1´´=   p0 + v0T  +   q2 z1 - (p0 + v0T)          
v0              q2+ r2 0

P1´´=   q2 1    0
q2+ 1  0    0

P1´= q2 1   0
0   0

Diagrams for Kalman Filter Example (1)

T = 1 time step

q = 1 standard deviation of 
acceleration bursts

r = 20 standard deviation of

positions

r = 20 standard deviation of 
position sensor

p0 = 0 initial position

v0 = 0 initial velocity

The standard deviation of the 
estimated position p is  around 
12 before observing  z and 
around 10 after observing z

velocities

14

around 10 after observing z.
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Diagrams for Kalman Filter Example (2)

positions T = 1 time step

q = 2 standard deviation of 
acceleration bursts

r = 20 standard deviation of

velocities

r = 20 standard deviation of 
position sensor

p0 = 0 initial position

v0 = 0 initial velocity

The standard deviation of the 
estimated position p is  around 
15 before observing  z and 
around 12 after observing z

15

around 12 after observing z.

Optical Flow Constraint Equation
Optical flow is the displacement field of surface elements of a scene during 
an incremental time interval dt ("velocity field").

Assumptions:
• Observed brightness is constant over time (no illumination changes)
• Nearby image points move similarly (velocity smoothness constraint) 

For a continuous image g(x, y, t) a linear Taylor series approximation gives

g(x+dx, y+dy, t+dt) ≈ g(x, y, t) + gxdx + gydy + gtdt

For motion without illumination change we have

g(x+dx, y+dy, t+dt) = g(x, y, t)

Hence g dx/dt + g dy/dt = g u + g v = -gt u v velocity components

16

Hence gxdx/dt + gydy/dt  gxu + gyv  gt u, v velocity components

gxu + gyv = -gt optical flow constraint equation

gx = dg/dx,  gy = dg/dy,  gt = dg/dt  may be estimated from the spatial and 
temporal surround of a location (x, y), hence the optical flow constraint 
equation provides one equation for the two unknowns u and v. 
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Aperture Effect

The optical flow constraint allows for ambiguous motion interpretations. 
This can be illustrated by the aperture effect.

In which direction has the edge moved?

17

Compare with the barber pole effect:

Due to the linear approximation of the image function, the velocity vector 
cannot be determined uniquely from a local neighbourhood.

Optical Flow Smoothness Constraint

For dynamic scenes one can often assume that the velocity field changes 
smoothly in a spatial neighbourhood:

- large objectslarge objects
- translational motion
- observer motion, distant objects

Hence, as an additional constraint, one can minimize a smoothness error:

One also wants to minimize the error in the optical flow constraint equation: 

18

Using a Lagrange multiplier , both constraints can be combined into an 
error functional, to be minimized by the calculus of variations:  
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Optical Flow Algorithm
The solution for optical flow with smoothness constraint is given in terms 
of a pair of partial differential equations: 

The equations can be solved by a Gauss-Seidel iteration based on pairs of 
consecutive images (Horn & Schunck 81). 

1. Initialize velocity vectors c(i, j) for all (i, j) where cT = [u v]

2. Estimate gx, gy, gt for all (i, j) from the pair of consecutive images

3. For the k-th iteration, compute

Basic optical flow algorithm (Sonka et al. 98, pp. 687):
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, p

with

4. Repeat step 3 until the error e is below a threshold

 is a fixed value chosen 
to balance the constraints

Optical Flow Improvements

Several improvements of the Horn & Schunck optical flow computation 
have been suggested. For example, Nagel (1983) introduced the "oriented 
smoothness constraint" which does not enforce smoothness across edges

(from Nagel and Enkelmann 86)

smoothness constraint  which does not enforce smoothness across edges.  

2 frames of the 
taxi sequence

needle diagram of optical 
flow for taxi motion with 
isotropic smoothness 
constraint after 30 
iterations

20

frame 11

frame 12

the same with oriented 
smoothness constraint  



11

Optical Flow and Segmentation
The optical flow smoothness constraint is not valid at occluding boundaries 
("silhouettes"). In order to inhibit the constraint, one may try to segment the 
image based on optical flow discontinuities while performing the iterations. 

Checkered sphere (From B K P Horn Robot Vision 1986)Checkered sphere 
rotating before 

randomly textured 
background

1. iteration 4. iteration 16. iteration

(From B.K.P. Horn, Robot Vision, 1986)
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te at o te at o 6 te at o

64. iteration final result ideal result

Optical Flow Patterns

Complex optical flow fields may be segmented into components which 
show a consistent qualitative pattern.

Qualitative flow patterns:Qualitative flow patterns:

translation at 
constant distance

translation 
in depth

rotation at 
constant distance

rotation about 
axis parallel to 

image plane

22

General translation results in a flow pattern with a focus of expansion (FOE):

•
FOE •

As the direction of motion changes, the FOE changes its location.
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Optical Flow and 3D Motion (1)

In general, optical flow may be caused by an unknown 3D motion of an 
unkown surface.

How do the flow components u´, v´ depend on the 3D motion parameters?

Assume camera motion in a static scene, optical axis = z-axis, rotation about 
the origin.

•
•

•

optical 
axis

scene point r = x
z

y

x x´

y´

image plane 
at f=1 

3D velocity v
rotation 
axis 

23

optical 
center

y
z2D velocity v´

3D velocity v of a point r is determined by rotational velocity  and 
translational velocity t:

v = -t -  r

Optical Flow and 3D Motion (2)

By taking the component form of  v = -t - r with  tT = [tx, ty, tz], T = [a, b, c] 
and rT = [x y z] and computing the perspective projection we get

The translational and rotational parts may be separated:

Observation of u´and v´at location (x´, y´) gives 2 equations for 7 unknowns. 
Note that motion of a point at distance kz with translation kt and the same 
rotation  will give the same optical flow, k any scale factor.

24

The translational and rotational parts may be separated:

For pure translation we have 2 equations for 3 unknows (z fixed arbitrarily).
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3D Motion Analysis Based on 
2D Point Displacements

2D displacements of points 
observed on an unknown 
moving rigid body may g g y y
provide information about 

- the 3D structure of the points

- the 3D motion parameters

Rotating cylinder experiment
by S. Ullman (1981)

25

Cases of interest:

• stationary camera, moving object(s)

• moving camera, stationary object(s)

• moving camera, moving object(s)

camera motion 
parameters may 
be known

x1

Structure from Motion (1)

Ullman showed 1979 that the spatial structure of 4 rigidly connected 
non-coplanar points may be recovered from 3 orthographic projections.

•
C

•

x1

y1

projection plane P1

oa1

O, A, B, C 4 rigid points

a, b, c vectors to A, B, C

P1, P2, P3 projection planes

xi, yi coordinate axes of Pi

ai, bi, ci coordinate pairs of points 
A, B, C in projection plane Pix

y

z

•a
A

•
b

B•
c

•O

26

The problem is to determine the spatial orientations of P1, P2, P3 from the 
9 projection coordinate pairs ai, bi, ci, i = 1, 2, 3.

•O
u12

u31

u23

The 3 projection planes intersect and form a tetrahedron. 
u12, u23, u31 are unit vectors along the intersections. The 
idea is to determine the uij from the observed 
coordinates ai, bi, ci. 
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Structure from Motion (2)
The projection coordinates are

a1x = aTx1 a1y = aTy1

b1x = bTx1 b1y = bTy1

c1x = cTx1 c1y = cTy1c1x  c x1 c1y  c y1

Since each uij lies in both planes i and j, it can be written as

uij = ijxi + ijyi

uij = ijxj + ijyj

 ijxi + ijyi = ijxj + ijyj

Multiplying with aT, bT and cT we get

 ijaix + ijaiy = ijajx + ijajy
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 ijbix + ijbiy = ijbjx + ijbjy

 ijcix + ijciy = ijcjx + ijcjy

Exploiting the constraints  ij
2 + ij

2 = 1 and ij
2 + ij

2 = 1, we can solve for
 ij, ij, ij, ij. 

Structure from Motion (3)

From the coefficients ij, ij, ij, ij one 
can compute the distances between the 
3 unit vectors u u u :

d1

d2d3

3 unit vectors u12, u23, u31:
O

d1 = || u23 - u12 || = || (23 - 12)xi + (23 - 12)yi || = (23 - 12)2 + (23 - 12)2

d2 = (31 - 23)2 + (31 - 23)2

d3 = (12 - 31)2 + (12 - 31)2

Hence the relative angles of the projection planes are determined.

The spatial positions of A, B, C relative to the projection planes (and to

28

The spatial positions of A, B, C relative to the projection planes (and to 
the origin O) can be determined by intersecting the projection rays 
perpendicular on the  projected points ai, bi, ci.
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Perspective 3D Analysis of 
Point Displacements  

• relative motion of one rigid object and one camera
• observation of P points in M views

• v1

• v2m

F h i t i 2 ti i h  v1m

• v3m

For each point vp in 2 consecutive images we have:

vp,m+1 = Rm vpm + tm motion equation

vpm = pm vpm´ projection equation

For P points in M images we have

- 3MP unknown 3D point coordinates vpm

- 6(M-1) unkown motion parameters R and t

• v1,m+1• v2,m+1

• v3,m+1

29

- 6(M-1) unkown motion parameters Rm and tm

- MP unknown projection parameters pm

- 3(M-1)P motion equations

- 3MP projection equations

- 1 arbitrary scaling parameter

# equations ≥ # unknowns  =>                                     =>

3,m 1

M P

2 5
3 4
4 4
5 4

Essential Matrix
Geometrical constraints derived from 2 views of a point in motion

y• motion between image m and m+1 
may be decomposed into

z

x

• vm • vm+1Rm

tm
•

1) rotation Rm about origin of 
coordinate system (= optical center)

2) translation tm

• observations are given by direction 
vectors nm and nm+1 along projection 
rays

R t d l [t R ]T 0

nm

nm+1

30

Rmnm, tm and nm+1 are coplanar: [tm x Rmnm]T nm+1 = 0

After some manipulation: nm
T Em nm+1 = 0             E = essential matrix

with Em = and Rm =
tmxr1 tmxr2 tmxr3

|

|

|

|

|

|

r1 r2 r3

|

|

|

|

|

|
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Solving for the Essential Matrix 

nm
T Em nm+1 = 0 formally one equation for 9 unknowns eij

But: only 6 degrees of freedom 
(3 rotation angles 3 translation components)(3 rotation angles, 3 translation components)

eij can only be determined up to a scale factor 

Basic solution approach:

• observe P points, alltogether in 2 views, P >> 8

• fix e11 arbitrarily

• solve an overconstrained system of equations for the other 8 unknown 
coefficients eij

31

E may be written as E = S R-1 with R = rotation matrix and S =   0  -tz ty

tz 0   -tx

-ty tx 0 

E may be decomposed into S and R by Singular Value Decomposition (SVD).

Note:  S (and therefore E) has rank 2

Singular Value Decomposition of E

Any m x n matrix A, m ≥ n, may be decomposed as A = U D VT where
U    has orthonormal columns m x n
D    is non-negative diagonal n x ng g
VT has orthonormal rows n x n

This can be applied to E to give E =  U D VT  with

R = U G VT or   R = U GT VT

S = V Z VT

32

where G =     0   1   0 and Z = 0   -1  0
-1   0   0 1   0   0
0   0   1 0   0   0
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Constraint by Nagel and Neumann 

y

Consider 2 views of 3 points vpm,
p = 1 ... 3, m = 1, 2

z

x

• vpm • vp,m+1Rm

tm
•

npm

np,m+1

The planes through Rmnpm and 
np,m+1 all intersect in tm

=> the normals of the planes are 
coplanar

Coplanarity condition for 3 vectors a, b, c:     (a x b)T c = 0

33

( [Rmn1m x n1,m+1] x [Rmn2m x n2,m+1] )T [Rmn3m x n3,m+1] = 0

Nonlinear equation with 3 unknown rotation parameters. 
=>  Observation of at least 5 points required to solve for the unknowns. 

Reminder: Homogeneous Coordinates

• (N+1)-dimensional notation for points in N-dimensional Euclidean space 

• allows to express projection and translation as linear operations 

Normal coordinates: vT = [x y z]

Homogeneous coordinates: vT = [wx wy wz w]
w ≠ 0 is arbitrary constant

Rotation and translation in homogeneous coordinates:

v´ = Av with A = R    t
0 1

34

0 1

Projection in homogeneous coordinates:

v´ = Bv with B = f   0  0
0  f   0
0  0  1

Divide the first N 
components by the (N+1)rst 
component to recover 
normal coordinates
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From Homogeneous World Coordinates 
to Homogeneous Image Coordinates

x, y, z = v = scene coordinates
xp´´, yp´´ = vP = image coordinates  xp , yp  vP  image coordinates  

wxp´´ x x
wyp´´ =     K R    K t y = M y
w z z

1 1

K = fa fb xp0 intrinsic camera parameters
0 fc yp0 ("camera calibration matrix K")

fa = scaling in xP-axis

fc = scaling in yP-axis

fb = slant of axes

vp = M v 

35

p
0 0 1

R, t extrinsic camera parameters

M =  3 x 4 projective matrix

fb  slant of axes

xP0, yP0 = "principal point"

(optical center in image 
plane)

Camera Calibration

Determine intrinsic and/or extrinsic camera parameters for a specific 
camera-scene configuration. Prior calibration may be needed

- to measure unknown objects

- to navigate as a moving observer

- to perform stereo analysis

- to compensate for camera distortions

Important cases:

1. Known scene

Each image point corresponding with a known scene point provides

36

Each image point corresponding with a known scene point provides 
an equation vp = M v 

2. Unknown scene

Several views are needed, differing by rotation and/or translation

a. Known camera motion

b.  Unknown camera motion ("camera self-calibration")
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Calibration of One Camera 
from a Known Scene

• "known scene" = scene with prominent points, whose scene 
coordinates are known

• prominent points must be non-coplanar to avoid degeneracy

Projection equation vp = M v provides 2 linear equations for unknown 
coefficients of M:

xp (m31x + m32y + m33z + m34) = m11x + m12y + m13z + m14

yp (m31x + m32y + m33z + m34) = m21x + m22y + m23z + m24

Taking N points, N > 6, M can be estimated with a least-square 
method from an overdetermined system of 2N linear equations

37

method from an overdetermined system of 2N linear equations. 

From M =  [ KR  Kt ] = [ A b ], one gets K and R by Principle 
Component Analysis (PCA) of A and t from t = K-1b.

Fundamental Matrix

The fundamental matrix F generalizes the essential matrix E by incorporating 
the intrinsic camera parameters of two (possibly different) cameras. 

Essential matrix constraint for 2 views of a point:Essential matrix constraint for 2 views of a point:

nT E n´ = 0 

From vp = K n and vp´ = K´ n´ we get:

vp (K-1)T E (K´)-1 vp´ =  vp F vp´ = 0

K = fa fb xp0
0 fc yp0
0 0 1

38

Note that E and hence F have rank 2.

For each epipole of a 2-camera configuration we have eTF = 0 and Fe´= 0.

••C C´
e e´
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Epipolar Plane
• v

vp vp´

The epipolar plane is spanned by 
the projection rays of a point v and 
the baseline CC´of a stereo 

l
••C C´e e´

p
camera configuration. 

The epipoles e and e´ are the intersection points of the baseline with the 
image planes. The epipolar lines l and l´ mark the intersections of the 
epipolar plane in the left and right image, respectively.

Search for corresponding points in stereo images may be restricted to the

l l´

b

39

Search for corresponding points in stereo images may be restricted to the 
epipolar lines.

In a canonical stereo configuration (optical 
axes parallel and perpendicular to baseline) 
all epipolar lines are parallel:

•

•

C

C´

Algebra of Epipolar Geometry
• v

vp vp´l

Observation vp´ can be modelled 
as a second observation after 
translation b and rotation R of

••C R
e e´

pl l´

b

translation b and rotation R of 
the optical system.

Coplanarity of vp, b and vp´ (rotated back into coo-system at C) can be 
expressed as

vp [ b x Rvp´] = 0 = vp [ b ] Rvp´ = vp E vp´

ti l t i

40

A vector product c x d can be written in matrix form:

c x d = cydz - czdy = 0  -cz cy dx =  [ c ] d
czdx - cxdz cz 0  -cx           dy

cxdy - cydx -cy cx 0       dz

essential matrix
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Correspondence Problem Revisited

For multiple-view 3D analysis it is essential to find corresponding 
images of a scene point - the correspondence problem.

Difficulties:

• scene may not offer enough structure to uniquely locate points

• scene may offer too much structure to uniquely locate points

• geometric features may differ strongly between views

• there may be no corresponding point because of occlusion

• photometric features differ strongly between views

41

Note that difficulties apply to multiple-camera 3D analysis (e.g. binocular 
stereo) as well as single-camera motion analysis.

Correspondence Between Two 
Mars Images

Two images taken from two cameras of the Viking Lander I (1978). 
Disparities change rapidly moving from the horizon to nearby structures.
(From B.K.P. Horn, Robot Vision, 1986)

42
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Correspondence Between Two 
Mars Images

Two images taken from two cameras of the Viking Lander I (1978). 
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43

Correspondence Between Two 
Mars Images

Two images taken from two cameras of the Viking Lander I (1978). 
Disparities change rapidly moving from the horizon to nearby structures.
(From B.K.P. Horn, Robot Vision, 1986)

44



23

Constraining Search for Correspondence

The ambiguity of correspondence search may be reduced by several 
(partly heuristic) constraints.
• Epipolar constraint

reduces search space from 2D to 1D

• Uniqueness constraint
a pixel in one image can correspond to only one pixel in another image

• Photometric similarity constraint
intensities of a point in different images may differ only a little

• Geometric similarity constraint
geometric features of a point in different images may differ only a little

• Disparity smoothness constraint
disparity varies only slowly almost everywhere in the image

Ph i l i i t i t
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• Physical origin constraint
points may correspond only if they mark the same physical location

• Disparity limit constraint
in humans disparity must be smaller than a limit to fuse images

• Ordering constraint
corresponding points lie in the same order on the epipolar line 

• Mutual correspondence constraint
correspondence search must succeed irrespective of order of images

Neural Stereo Computation

Neural-network inspired approach to stereo computation devised by 
Marr and Poggio (1981) 

• •possible 
correspon-
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disparity d

left image right image

•
•
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•

dencesExploitation of 2 constraints:

• each point in the left image 
corresponds only to one point 
in the right image

• depth varies smoothly

1 2 3 4 1 2 3 4
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left image right image
Relaxation procedure:
Modify correspondence values c(x, y, d) interatively until values converge.

S1 = { neighbours of (x, y) with d´= d }
S2 = { neighbours of (x, y) with |d´- d| = 1 and (x, y) = (x´, y´) }


