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General Principles of 
3D Image Analysis

Extraction of 3D information from an image 
(sequence) is important for

high-level interpretations
(sequence) is important for

- vision in general (= scene reconstruction)

- many tasks (e.g. robot grasping and   
navigation, traffic analysis)

- not all tasks (e.g. image retrieval, quality
control, monitoring)

f f

objects

scene elements

image elements
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Recovery of 3D information is possible

•  by multiple cameras (e.g. binocular stereo) 

•  by a monocular image sequence with 
motion + weak assumptions

•  by a single image + strong assumptions or 
prior knowledge about the scene 

g

raw images

Single Image 3D Analysis

Humans exploit various cues for a tentative (heuristic) depth analysis:

size of known objects
•

- size of known objects

- texture gradient

- occlusion

- colour intensities

- angle of observation

- continuity assumption

- generality assumption

2
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Generality Assumption
Assume that 

- viewpoint
- illumination
- physical surface propertiesphysical surface properties

are general, i.e. do not produce coincidental structures in the image.

Example:  Do not interpret 
this figure as a 3D 
wireframe cube, because 
this view is not general.

General 
view:

3

The generality assumption is the basis for several specialized 
interpretation methods, e.g.

- shape from texture

- shape from shading

...

- "shape from X" 

Texture Gradient

Assume that texture does 
not mimick projectivenot mimick projective 
effects

Interpret texture gradient 
as a 3D projection effect

(Witkin 81)

4
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Optical Illusion from Depth Cues

5

The left table seems to be square, the right table lengthy. But 
their image shapes are identical, although rotated by 900.

Shape from Texture

Assume 
- homogeneous texture on 
3D surface and 

- 3D surface continuity

Reconstruct 3D shape from 
perspective texture 
variations

(Barrow and Tenenbaum 81)

6

(Barrow and Tenenbaum 81)



07.01.2013

4

Depth Cues from Colour Saturation

Humans interpret regions with less saturated colours as farther away. 

hills in haze 
nearby Graz

7

Surface Shape from Contour

2D image contour
Assume "non-special" 
illumination and surface 
properties

possible 3D reconstructions

properties

3D surface shape maximizes 
probability of observed 
contours and minimizes 
probability of additional 
contours

8

a b c

contours
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Colour from Shading Cues

Central squares on top 
d i f t hand in front have 

identical colour, but 
shading cues suggest 
that the front square is 
brighter. 

9

3D Line Shape from 2D Projections

Assume that lines 
connected in 2D are 
also connected in 3D

Reconstruct 3D line 
shape by minimizing 
spatial curvature and 
torsion 

10

2D collinear lines are 
also 3D collinear
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3D Shape from Multiple Lines

Assume that similar line 
shapes result from similarshapes result from similar 
surface shapes

Parallel lines lie locally on 
a cylinder

11

(Stevens 81)

3D Junction Interpretation

a

b

a
b

c

rules for junctions 
of curved lines

b

a not behind b

c

a, b and c meet

(Binford 81)

rules for blocks-
world junctions

(W lt 86)

12

(Waltz 86)
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3D Line Orientation from 
Vanishing Points

From the laws of perspective 
projection:

The projections of 3D parallel 
straight lines intersect in a 
single point, the vanishing 
point. 

Assume that more than 2 
straight lines do not intersect in 
a single point by coincidence

13

a single point by coincidence 

If more than 2 straight lines 
intersect, assume that they are 
parallel in 3D

Obtaining 3D Shape from 
Shading Information

Under certain 

conditions, a 3D 

surface model maysurface model may 

be reconstructed 

from the greyvalue 

variations of a 

monocular image.

14

From "Shape from Shading", 
B.K.P. Horn and M.J. Brooks (eds.), 
MIT Press 1989
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Principle of Shape from Shading

Physical surface properties, surface orientation, illumination and viewing 

See "Shape from Shading" (B.K.P. Horn, M.J. Brooks, eds.), MIT Press 1989

direction determine the greyvalue of a surface patch in a sensor signal.

For a single object surface viewed in one image, greyvalue changes are 
mainly caused by surface orientation changes.

The reconstruction of arbitrary surface shapes is not possible because 
different surface orientations may give rise to identical greyvalues.

Surface shapes may be uniquely reconstructed from shading information if 
possible surface shapes are constrained by smoothness assumptions.

15

a: patch with known orientation

b, c: neighbouring patches with similar orientations 

b´: radical different orientation may not be 
neighbour of a

Principle of incremental procedure for surface shape reconstruction:

a
b

c
b´

Photometric Surface Properties 

surface 
normal

viewing 
di ti

illumination 
direction



i, v polar (zenith) angles

direction
v

x

y

i
v

i, v azimuth angles

In general, the ability of a surface to reflect light is given by the
Bi-directional Reflectance Distribution Function (BRDF) r:

16

( )

E = irradiance of light source 
received by the surface patch

L = radiance of surface patch 
towards viewer

For many materials the reflectance properties are rotation invariant,
in this case the BRDF depends on i,v, where    v.

L(v, v)
r(i, i; v, v) = E(i, i)
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Irradiance of Imaging Device

O

n

f

surface patch 
produces radiance L

I 

irradiance = light energy falling on unit patch of imaging sensor

lens with 
aperture d

sensor patch 
receives irradiance E

17

irradiance = light energy falling on unit patch of imaging sensor,
sensor signal is proportional to irradiance

sensor signal depends on span-off angle 
of surface element ("vignetting")

off-center pixels in wide-angle images are darker

Lambertian Surfaces

A Lambertian surface is an ideally matte surface which looks equally 
bright from all viewing directions under uniform or collimated 
illumination. Its brightness is proportional to the cosine of the 
illumination angle.illumination angle.

• surface receives energy per unit area  cos i

• surface reflects energy  cos v due to matte reflectance properties

• sensor element receives energy from surface area  1/cos v

sensor element

uniform 
light source

i
v

cancel 
out

18

surface unit area

"albedo" =  proportion of incident energy reflected back into
half space Ω above surface

rLambert(i, v, ) = ()/
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Surface Gradients

For 3D reconstruction of surfaces, it is useful to represent reflectance 
properties as a function of surface orientation.

z

x

z(x, y) surface

p = z/x x-component of surface gradient

q = z/y y-component of surface gradient

1
0
p

tangent 
vector in x 
direction

0
1
q

tangent 
vector in y 
direction

-p
-q
1

vector in 
surface 
normal 
direction

-p
-q
1

surface 
normal 
vector
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If the z-axis is chosen to coincide with the viewer direction, we have 

The dependency of the BRDF on i, v and  may be expressed in terms 
of p and q (with pi and qi for the light source direction).

Simplified Image Irradiance Equation

• the object has uniform reflecting properties,

• the light sources are distant so that the irradiation is approximately

Assume that

the light sources are distant so that the irradiation is approximately 
constant and equally oriented,

• the viewer is distant so that the received radiance does not depend 
on the distance but only on the orientation towards the surface.

With these simplifications the sensor greyvalues depend only on the 
surface gradient components p and q.

20

"Simplified Image Irradiance Equation"

R(p, q) is the reflectance function for a particular illumination geometry. 
E(x, y) is the sensor greyvalue measured at (x, y). Based on this 
equation and a smoothness constraint, shape-from-shading methods 
recover surface orientations.



07.01.2013

11

Reflectance Maps

R(p, q) may be plotted as a reflectance map with iso-brightness contours.

Reflectance map for Reflectance map for p
Lambertian surface 

illuminated from 
pi = 0.7 and qi = 0.3

q
q

p
matte surface with 

specular component 

21

p p

Characteristic Strip Method

Given a surface point (x, y, z) with known height z, orientation p and q, and 
second derivatives r = zxx, s = zxy = zyx, t = zyy, the height z+z and orientation 
p+p, q+q in a neighbourhood x+x, y+y can be calculated from the image 
irradiance equation E(x, y) = R(p, q).irradiance equation E(x, y)  R(p, q). 

Infinitesimal change of height:

z = p x + q y

Changes of p and q for a step x, y:

p = r x + s y    q = s x + t y

Differentiation of image irradiance equation w.r.t. x and y gives

Ex = r Rp + s Rq Ey = s Rp + t Rq

Choose step  in gradient direction of the reflectance map ("characteristic strip"):

22

Choose step  in gradient direction of the reflectance map ( characteristic strip ):

x = Rp  y = Rq 

For this direction the image irradiance equation can be replaced by

x/ = Rp y/ = Rq z/ = p Rp+ q Rq p/ = Ex q/ = Ey

Boundary conditions and initial points may be given by
- occluding contours with surface normal perpendicular to viewing direction
- singular points with surface normal towards light source.
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Recovery of the Shape of a Nose

Pictures from B.K.P. Horn "Robot Vision", MIT Press,1986, p. 255

23

nose with crudely 
quantized greyvalues

superimposed  
characteristic curves

superimposed elevations 
at characteristic curves

Nose has been powdered to provide Lambertian reflectance map

Shape from Shading 
by Global Optimization 

Given a monocular image and a known image irradiance equation, surface 
orientations are ambiguously constrained. Disambiguation may be 
achieved by optimizing a global smoothness criterion.

Minimize

violation of reflectance 
constraint

violation of smoothness 
constraint

Lagrange multiplier

Th i d d h i f l i hi i i i i bl

24

There exist standard techniques for solving this minimization problem 
iteratively. In general, the solution may not be unique.

Due to several uncertain assumptions (illumination, reflectance function, 
smoothness of surface) solutions may not be reliable.
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Principle of Photometric Stereo

In photometric stereo, several images with different known light source 
orientations are used to uniquely recover 3D orientation of a surface with 
known reflectance.known reflectance.

• The reflectance maps R1(p, q), 
R2(p, q), R3(p, q) specify the 
possible surface orientations of 
each pixel in terms of iso-
brightness contours 
("isophotes").

• The intersection of the 
isophotes corresponding to the

25

From "Shape from Shading", 
B.K.P. Horn and M.J. Brooks (eds.), 
MIT Press 1989

isophotes corresponding to the 
3 brightness values measured 
for a pixel (x, y) uniquely 
determines the surface 
orientation (p(x, y), q(x, y)).

Analytical Solution for 
Photometric Stereo

For a Lambertian surface:
E(x, y) = R(p, q) =  cos(i) =  iTn

i = light source direction,  n = surface normal,   = constant

i1T

.

.

.
i T

g , , 

If K images are taken with K different light sources ik, k = 1 ... K, there are K 
brightness measurements Ek for each image position (x, y):

Ek(x, y) =  ikT n

In matrix notation:

E(x, y) =  L n where L =

26

iKT

For K=3,  L may be inverted, hence

In general, the pseudo-inverse must be 
computed:


