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Definition of Image Understanding

Image understanding is the task-oriented reconstruction and 
interpretation of a scene by means of images 

"scene": section of the real world
stationary (3D) or moving (4D)

"image": view of a scene
projection, density image (2D)

depth image (2 1/2D)
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depth image (2 1/2D)

image sequence (3D)

"reconstruction computer-internal scene description

and interpretation": quantitative + qualitative + symbolic

"task-oriented": for a purpose, to fulfil a particular task
context-dependent, supporting actions of an agent

Illustration of Image Understanding
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Image Understanding as a 
Knowledge-based Process

object configurations, 
it ti

high-level vision, 

common sense 
knowledge

it ti d l

events, episodes

situations, occurrences 

objects, trajectories

scene elements:
volumes, 3D-surfaces, 

3D-contours

scene understanding

object 
recognition 

low-level vision, 
early vision 

situation models, 
occurrence models

object models

projective 
geometry

photometry
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image elements:
regions, edges, texture,

optical flow

raw images

segmentation, 
image preprocessing

physics

basic real-world 
properties

A Model of Scene Analysis (Kanade 78)
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Abstraction Levels for the Description 
of Computer Vision Systems

Knowledge level

What knowledge or information enters a process? What knowledge orWhat knowledge or information enters a process? What knowledge or 
information is obtained by a process?

What are the laws and constraints which determine the behavior of a process?

Algorithmic level

How is the relevant information represented? 

What algorithms are used to process the information?

5

g p

Implementation level

What programming language is used? 

What computer hardware is used?

Example for Knowledge-level Analysis

What knowledge or information enters a process? What knowledge or 
information is obtained by a process?

Wh t th l d t i t hi h d t i th b h i f ?What are the laws and constraints which determine the behavior of a process?

Consider shape-from-shading:

In order to obtain the 3D shape of an object, it is necessary to

- state what knowledge is available (greyvalues, surface 
properties, illumination direction, etc.)

t t h t i f ti i d i d ( lit ti
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- state what information is desired (e.g. qualitative vs. 
quantitative)

- exploit knowledge about the physics of image formation
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"natural images"

Image Formation

Images can be generated by various processes:

- illumination of surfaces, measurement of reflections

- illumination of translucent material, measurement of irradiation

- measurement of heat (infrared) radiation

- X-ray of material, computation of density map

- measurement of any features by means of a sensory array

physical signal

7

physical signal

sensory array

Formation of Natural Images

Intensity (brightness) of a pixel depends on

8

1. illumination (spectral energy, secondary illumination)

2. object surface properties (reflectivity)

3. sensor properties

4. geometry of light-source, object and sensor constellation (angles, distances)

5. transparency of irradiated medium (mistiness, dustiness)
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Qualitative Surface Properties

When light hits a surface, it may be

• absorbed
• reflected in general, all effects may be mixed
• scattered

Simplifying assumptions:

• Radiance leaving at a point is due to radiance arriving at this point

• All light leaving the surface at a wavelength is due to light arriving 
at the same wavelength

• Surface does not generate light internally

9
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The "amount" of reflected light may depend on:

• the "amount" of incoming light

• the angles of the incoming light w.r.t. to the surface orientation

• the angles of the outgoing light w.r.t. to the surface orientation 

Photometric Surface Properties 

surface 
normal

viewing 
di ti

illumination 
direction



�, v polar (zenith) angles

direction�
v

x

y

�
v

�, v azimuth angles

In general, the ability of a surface to reflect light is given by the
Bi-directional Reflectance Distribution Function (BRDF) r:
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( )

E = irradiance of light source 
received by the surface patch

L = radiance of surface patch 
towards viewer

For many materials the reflectance properties are rotation invariant,
in this case the BRDF depends on �, v, where�� � - v.

L(v, v)
r(i, i; v, v) = E(i, i)
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Intensity of Sensor Signals

light source
sensor

y

surface

Intensities of sensor signals depend on
- location x, y on sensor plane

x

light distribution for 
sensor
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- instance of time t
- frequency of  incoming light wave 
- spectral sensitivity of sensor

sensitivity function of sensor

spectral energy distribution

  
f(x,y, t)  C(x,y, t,)S( )d

0

∞

Multispectral Images

Sensors with separate channels of different spectral sensitivities 
generate multispectral images:  

f1( x, y, t)  C(x,y, t, )S1()d
0





f2(x, y, t)  C(x,y, t, )S2( )d
0





f3(x, y, t)  C(x, y, t, )S3( )d
0





12

Example:

R (red) 650 nm center frequency

G (green) 530 nm center frequency

B (blue) 410 nm center frequency 

S()






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Spectral Sensitivity of Human Eyes

13

Standardized wavelengths:
red = 700 nm, green = 546.1 nm, blue = 435.8 nm

Non-unique Sensor Response

Different spectral distributions may lead to identical sensor 
responses and hence cannot be distinguished

  
f(x, y, t)  C1(x, y, t, )S ( )d

0



  C2 (x, y, t,  )S ( )d
0





different spectral energy distributions

Example:

14

p

S() S()

 

C1()

C2()
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Dimensions of Colour

Human perception of colour distinguishes between 3 dimensions:
- hue
- saturation chromaticity

- brightness

yellow

green

red

orange

hue

saturation

brightness

y

r

white

NCS* colour spindle

15

blue

violet

colour circle

saturation

gb

black

*  Swedish Natural Colour System

RGB Images of a Natural Scene

Here, single colour images are rendered as greyvalue intensity images:

stronger spectral intensity = more brightness

R+G+B R G B

16
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Primary and Secondary Colours

Primary colours:

red, green, blue

Secondary colours:

magenta = red + blue
cyan = green + blue
yellow = red + green

17

aus: Gonzales & Woods
Digital Image Processing
Prentice Hall 2002

Technical Colour Models
RGB colour model

B

magenta
cyan

HSI colour model

Hue:

R

G

magenta

yellow

Typical discretization:

8 bits per colour dimension
=>  16.777.216 colours

H  =  if B ≤ G
360 -  if B > G

1/2 [(R-G) + (R-B)]
 = cos-1

[(R-G)2 + (R-B)(G-B)]1/2

Saturation:
3

S 1 [ i (R G B)]

18

CMY colour model

C 1 R
M    = 1      - G
Y 1 B

S  = 1 - [min (R, G, B)]
(R + G + B)

Intensity:

I  = 1/3 (R + G + B)
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Discretization of Images

Image functions must be discretized for computer processing:

- spatial quantization
th i l i t d b 2D f i t llthe image plane is represented by a 2D array of picture cells

- greyvalue quantization
each greyvalue is taken from a discrete value range

- temporal quantization
greyvalues are taken at discrete time intervals

f(x,y,t) => { fs(x1, y1,t1), fs(x2, y2,t1), fs(x3, y3,t1), ...

19

f(x,y,t)  { fs(x1, y1,t1), fs(x2, y2,t1), fs(x3, y3,t1), ...

fs(x1, y1,t2), fs(x2, y2,t2), fs(x3, y3,t2), ...

fs(x1, y1,t3), fs(x2, y2,t3), fs(x3, y3,t3), ... }

A single value of the discretized image function is called a pixel
(picture element).

Spatial Quantization

Rectangular grid
Greyvalues represent the 
quantized value of the 

Note that samples of a 
hexagonal grid are equally 
spaced along rows, with 
successive rows shifted by 
half a sampling interval.

Hexagonal grid

signal power falling into a 
grid cell.

20

Triangular grid

•   •   •   •   •   •
•   •   •   •   •   •
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Reconstruction from Samples

Under what conditions can the original (continuous) signal be 
reconstructed from its sampled version?

Consider a 1-dimensional function f(x):

• •
•

•
•

•

• •
• • •

f(x)

•

21

• • •

x

Reconstruction is only possible, if "variability" of function is restricted.

Sampling Theorem

Shannon´s Sampling Theorem:

fA bandlimited function with bandwidth W can be exactly 

reconstructed from equally spaced samples, if the sampling 

distance is not larger than         1

2 W

bandwidth = largest frequency contained in signal

(=> Fourier decomposition of a signal)

22

( p g )

Analogous theorem holds for 2D signals with limited spatial 

frequencies Wx and Wy
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Aliasing
Sampling an image with fewer samples than required by the sampling 
theorem may cause "aliasing" (artificial structures).

Example:

original                     143 x 128                         71 x 64                       35 x 32

p

23

To avoid aliasing, bandwidth of image must by reduced prior to sampling.

(=> low-pass filtering)

Reconstructing the Image Function 
from Samples

Formally, a continuous function f(t) with bandwidth W can be exactly 
reconstructed using sampling functions s (t):reconstructed using sampling functions si(t):

si( t)  2W
sin 2W t  i / (2W) 

2W t  i / (2W) 

i

2W

t

si(t)

x(t) 
1

2W
 

i



 x (
i

2W
) Si(t)

24

sample values

In practice, image functions are generated from samples by interpolation.

An analogous equation holds for 2D.
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Sampling TV Signals

PAL standard:
- picture format 3 : 4
- 25 full frames (50 half frames) per second

interlaced rows: 1 3 5 2 4 6- interlaced rows: 1, 3, 5, ... , 2, 4, 6, ...
- 625 rows per full frame, 576 visible
- 64 s per row, 52 s visible
- 5 MHz bandwidth

Only 1D sampling is required because of fixed row structure.

Sampling intervals of t = 1/(2W) = 10-7s = 100 ns give maximal 
possible resolution.

25

possible resolution.

With t = 100 ns, a row of duration 52 s gives rise to 520 samples.

In practice, one often chooses 512 pixels per TV row. 

=> 576 x 512 = 294912 pixels per full frame

=> rectangular pixel size with width/height =(      ) / (      ) = 1,5 
4

512
3

576

1,5

1,0

Sampling of Binary Images (1)

Problem: Shapes may change under digitization

26
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Sampling of Binary Images (2)

Problem: Shapes may change under digitization

27

This cannot be solved by using Shannon´s Theorem since binary images are 
not bandlimited.

Shape Preserving Sampling Theorem:

The shape of an r-regular image can be correctly reconstructed 
after sampling with any sampling grid if the grid point distance is

Shape Preserving Sampling Theorem (1)

after sampling with any sampling grid, if the grid point distance is 
not larger than r.  

Stelldinger, Köthe 2003

"grid point distance": maximal distance from arbitrary sampling point to
the next sampling point

"r-regular binary image":

osculating r-discs at each 

28

boundary point of the shape

 curvature bounded by 1/r

 bounded thinness of parts

 minimal distance between
parts
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Shape Preserving Sampling Theorem (2)

What does correct reconstruction mean? 

Topological and geometric similarity criterion:

One shape can be mapped onto the other by twisting the whole plane, 
such that the displacement of each point is smaller than r.

29

Sampling of Shapes in Arbitrary Images (1)

The previous sampling theorem also holds for greyvalue images, if 
each level set is an r-regular shape.

A "l l t" i th t h th i i b i ht th iA "level set" is the set where the image is brighter than a given 
threshold value.

30

sampling + reconstruction
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Sampling of Shapes in Arbitrary Images (2)

Reconstruction after sampling from r-regular originals

31

There exist generalizations to more complex cases 
(e.g. higher dimensions, blurring, colors, noise).

Comparison of the Sampling Theorems

Shannon´s

Sampling Theorem

Shape Preserving

Sampling Theorem

b dli it d ith lnecessary 
image property

bandlimited with

bandwidth W

r-regular

equation

reconstructed

image

identical to
original image

same shape as the

original image

prefiltering band-limitation:

ffi i t l ith

regularization:

l d bl

W
d

r

2

1

2

´







  rr ´

32

efficient algorithms

(but shapes may change!)

unsolved problem

2D sampling 
grid

rectangular grid arbitrary grids

dimension of 
definition

1D

(generalizable to n-D)

2D

(partly generalizable to n-D)
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Quantization of Greyvalues

Quantization of greyvalues transforms continuous values of a 
sampled image function into digital quantitiessampled image function into digital quantities.

Typically 2 ... 210 quantization levels are used, depending on task.

Less than 29 quantization levels may cause artificial contours for 
human perception.

Example: 

33

256 16 8 4 2

Uniform Quantization

qN-1Equally spaced discrete values 
t l idth

zmax
0

q0

q0 ... qN-1 represent equal-width 
greyvalue intervals of the 
continuous signal.

Typically N = 2K for K = 1 ... 10

34

Uniform quantization may "waste" quantization levels, if greyvalues 
are not equally distributed.
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Nonlinear Quantization Curves

E.g. fine resolution for "interesting" greyvalue ranges, coarse 
resolution for less interesting greyvalue ranges.

z

q
Example: 
Low greyvalues are mapped 
into more quantization levels 
than high greyvalues.

35

z

Note:

Subjective brightness in human perception depends (roughly) 
logarithmically on the actual (measurable) brightness. 

To let the computer see brightness as humans, use a logarithmic 
quantization curve.

Optimal Quantization (1)

Assumption:

Probability density p(z) for continuous greyvalues and number of 
quantization levels N are known.quantization levels N are known.

Goal:

Minimize mean quadratic quantization error dq by choosing optimal 
interval boundaries zn and optimal discrete representatives qn. 

dq
2   (z qn)2

zn

zn1


n0

N1

 p(z)dz

36


zn

dq
2  (zn  qn1)

2p(zn)  (zn  qn)2p(zn)  0   for n = 1 ... N-1


qn

dq
2  2 (z  qn

zn

zn1

 )p(z)dz  0   for n = 0 .. .  N - 1

Minimizing by setting the derivatives zero:
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Optimal Quantization (2)
Solution for optimal quantization:

zn 
1

2
(qn1 qn)    for n = 1 ... N- 1 when p(zn)  0

qn 

zp(z)dz
zn

zn1



p(z)dz
zn

zn1


    for n = 0 ...  N - 1 

Each interval boundary must be in the middle of the corresponding quantization 
levels.

Each quantization level is the center-of-gravity coordinate of the corresponding 

37

q g y p g
probability density area.

p(z)

0 zmax
z1 z2 z3

q0 q1 q2

Optimal quantization 
can be determined by 
an iterative algorithm 
beginning with an 

arbitrary choice of z1

Binarization

For many applications it is convenient to distinguish only between 2 
greyvalues, "black" and "white", or "1" and "0".

Example: Separate object from backgroundExample:  Separate object from background

Binarization = transforming an image function into a binary image  

Thresholding:

0 if g(x y) < T

38

g(x, y)  =>
0 if g(x, y) < T

1 if g(x, y) ≥ T
T is threshold

Thresholding is often applied to digital images in order to isolate 
parts of the image, e.g. edge areas.
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Threshold Selection by Trial and Error

A threshold which perfectly isolates an image component must not 
always exist. 

Selection by trial and error:

Select threshold until some image property is fulfilled, e.g. 

line strength  d0

number of connected components  n0

  
q 

#  white pixels

#  black pixels
   q0

39

p 0

Number of trials may be small if logarithmic search can be used.

Example: 

At most 8 trials are needed to select a threshold 0 ≤ T ≤ 255 which 
best approximates a given q0.

Distribution-based Threshold Selection 

The greyvalue distribution of the image function may show a bimodality: 

p(z)p(z)

z

plausible choice of threshold

Two methods for finding a plausible threshold:

1. Find "valley" between two "hills"
p(z)

40

2. Fit hill templates and compute intersection

h(z)

z

Typically, computations are based on 
histograms which provide a discrete 
approximation of a distribution.

z
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Threshold Selection Based on 
Reference Positions 

In many applicatons, the approximate position of image components 
is known a priori. These positions may provide useful reference 
greyvaluesgreyvalues. 

Example: a

b

T 
a  b

2

possible choice 
of threshold:

41

Threshold selection and binarization may be decisively facilitated by 
a good choice of illumination and image capturing techniques.

Image Capturing for Thresholding

If the image capturing process can be controlled, thresholding can be 
facilitated by a suitable choice of

• illumination• illumination

• camera position

• object placement

• background greyvalue or colour

• preprocessing

Example: Backlighting

Illumination from the rear gives bright background and shadowed object

42

Illumination from the rear gives bright background and shadowed object

Example: Slit illumination

On a conveyor belt illuminated by 
a light slit at an angle, elevations 
give rise to displacements which 
can be recognized by a camera.

empty object present


