Definition of Image Understanding mage understanding is the task-oriented reconstruction and nterpretation of a scene by means of images		
"image":	view of a scene projection, density image (2D) depth image (2 1/2D) image sequence (3D)	
"reconstruction and interpretation":	computer-internal scene description quantitative + qualitative + symbolic	
"task-oriented":	for a purpose, to fulfil a particular task context-dependent, supporting actions of an agent	

Abstraction Levels for the Description of Computer Vision Systems

Knowledge level

What knowledge or information enters a process? What knowledge or information is obtained by a process?

What are the laws and constraints which determine the behavior of a process?

Algorithmic level

How is the relevant information represented? What algorithms are used to process the information?

Implementation level

What programming language is used?

What computer hardware is used?

6

Primary and Secondary Colours

Primary colours: red, green, blue

Secondary colours:

magenta = red + blue cyan = green + blue yellow = red + green

aus: Gonzales & Woods Digital Image Processing Prentice Hall 2002

1

Technical Colour Models HSI colour model RGB colour model В cyan Hue: magenta } Θ ifB≤G }360-Θ ifB>G H = $\Theta = \cos^{-1} - \frac{1/2 [(R-G) + (R-B)]}{-}$ G R 4 yellow [(R-G)² + (R-B)(G-B)]^{1/2} Typical discretization: 8 bits per colour dimension Saturation: 3 => 16.777.216 colours S = 1 - • – [min (R, G, B)] (R + G + B) CMY colour model $\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$ Intensity: I = 1/3 (R + G + B)18

Comparis	on of the Sam	olina Theorems
	Shannon´s	Shape Preserving
	Sampling Theorem	Sampling Theorem
necessary	bandlimited with	r-regular
image property	bandwidth W	
equation	$\left(\frac{r'}{\sqrt{2}}\right) d < \frac{1}{2W}$	r'< r
reconstructed	identical to	same shape as the
image	original image	original image
prefiltering	band-limitation:	regularization:
	efficient algorithms	unsolved problem
	(but shapes may change!)	
2D sampling grid	rectangular grid	arbitrary grids
dimension of definition	1D	2D
	(generalizable to n-D)	(partly generalizable to n-D)

21