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Perspective Projection Transformation

Where does a point of a scene appear in an image?

x
y
z

xp´´
yp´´?

Transformation in 3 steps:

1.  scene coordinates  =>  camera coordinates

2.  projection of camera coordinates into image plane

1

3.  camera coordinates  =>  image coordinates

Perspective projection equations are essential for Computer Graphics. 
For Image Understanding we will need the inverse: What are possible 
scene coordinates of a point visible in the image? This will follow later.

Perspective Projection in Independent 
Coordinate Systems

It is often useful to describe real-world points, camera geometry and 
image points in separate coordinate systems. The formal description of 
projection involves transformations between these coordinate systems. 

•
•

•

optical 
axis

scene point v = x
y
z

y

z´

y´

x´ x´´

y´´

camera 
coordinates

image 
coordinates
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•

optical 
center v0

vp = xp

yp

zp

image point

z

x
vp´ = xp´

yp´
zp´

vp´´=  xp´´
yp´´

scene (world) 
coordinates
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3D Coordinate Transformation (1)

The new coordinate system is specified by a translation and rotation
with respect to the old coordinate system:

v´= R (v - v ) v0 is displacement vector
Note that these matrices 
describe coo transformsv = R (v - v0) v0 is displacement vector

R   is rotation matrix

R may be decomposed into 
3 rotations about the 
coordinate axes:
R = Rx Ry Rz

1

0

0

0

cos 
- sin 

0

sin 
cos 

Rx =

0cos  sin R =If rotations are performed in the above 

describe coo transforms 
for positive rotations of 
the coo system.
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0

1

0

cos 
0

sin 

-sin 
0

cos 

Ry

0

0

1

cos 
- sin 


sin 
cos 

0

Rz =

p
order:
 = rotation angle about z-axis
 = rotation angle about (new) y-axis
 = rotation angle about (new) x-axis

("tilt angle",  "pan angle", and  "nick 
angle" for the camera coordinate 
assignment shown before)

3D Coordinate Transformation (2)

By multiplying the 3 matrices Rx, Ry and Rz, one gets

cos  cos  cos  sin  - sin R =

sin sin cos  - cos sin sin sin sin + cos cos  sin cos 

cos sin cos  + sin sin cos sin sin - sin cos  cos cos 

For formula manipulations, one tries to avoid the trigonometric functions 
and takes

N t th t th ffi i t f R t i d

4

R =   r11 r12 r13

r21 r22 r23

r31 r32 r33

Note that the coefficients of R are constrained: 
A rotation matrix is orthonormal:

R RT = I  (unit matrix)
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Example for Coordinate 
Transformation

y

v

y´
x´

camera coo system: 
•  displacement by v0

z

x
v0 z´ •  rotation by pan angle = -300

•  rotation by nick angle  =  450

v´= R (v - v0)  with R = Rx Ry
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Perspective Projection Geometry

Projective geometry relates the coordinates of a point in a scene to the 
coordinates of its projection onto an image plane.

Perspective projection is an adequate model for most cameras.

•

•
x

y

y

v = x
y
z

scene pointimage point Vp = xp

yp

zp
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•
xp

yp

zp = f

image plane

optical center

x f
z

xp =
y f
z

yp=

Projection equations:

focal 
distance f

z = optical axis
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Perspective and Orthographic 
Projection

Within the camera coordinate system the perspective projection of a 
scene point onto the image plane is described by

x´f
z´

xp´= y´f
z´

yp´= zp´= f      (f = focal distance)

• nonlinear transformation

• loss of information

If all objects are far away (large z´) f/z´ is approximately constant

7

If all objects are far away (large z ), f/z is approximately constant

=> orthographic projection

xp´= s x´ yp´= s y´ (s = scaling factor)

Orthographic projection can be viewed as projection with 
parallel rays + scaling

From Camera Coordinates to 
Image Coordinates

Transform may be necessary because

- optical axis may not penetrate image plane at origin of desired 
coordinate system

xp´´= (xp´- xp0´) a a, b  scaling parameters

yp´´= (yp´- yp0´) b xp0´, yp0´ origin of image coordinate system

coordinate system

- transition to discrete coordinates may require scaling

Example:
x´´

y´

Image boundaries in camera coordinates:
x´ = c1 x´ = c2

d1

8

•x´

y´´

x max = c1   x min = c2
y´max = d1   y´min = d2

Discrete image coordinates:
x´´= 0 .. 511   y´´ = 0 .. 575

Transformation parameters:   
xp0´ = c1    yp0´ = d1   a = 512 / (c2 - c1)   b = 576 / (d2 - d1) 

c1 c2

d2
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Complete Perspective Projection 
Equation

We combine the 3 transformation steps:

1.  scene coordinates  =>  camera coordinates

2.  projection of camera coordinates into image plane

3.  camera coordinates  =>  image coordinates

xp´´= { f/z´[cos  cos  (x - x0) + cos  sin  (y - y0) + sin  (z - z0)] - xp0 } a  

yp´´= { f/z´[ (- sin sin cos - cos sin  (x - x0) + 
- sin sin sin + cos cos  ) (y - y0) + 
sin cos  (z - z0)] - y 0 } b

9

sin cos  (z - z0)] - yp0 } b  

with z´= (- cos sin cos + sin sin (x - x0) +
- cos sin sin  - sin cos (y - y0) +
cos cos (z - z0)

Homogeneous Coordinates (1)

4D notation for 3D coordinates which allows to express nonlinear 3D 
transformations as linear 4D transformations.

Normal: v´= R (v - v0)

Homogeneous coordinates:  v´ = A v (note italics for 
homogeneous coordinates)

Transition to homogeneous coordinates:

A = R T = r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0    0    0    1

1   0   0  -x0

0   1   0  -y0

0   0   1  -z0

0   0   0   1

10

Transition to homogeneous coordinates:

vT = [x y z]   =>   vT = [wx wy wz w]       w ≠ 0  is arbitrary constant

Return to normal coordinates:

1. Divide components 1- 3 by 4th component

2. Omit 4th component



26.10.2012

6

Homogeneous Coordinates (2)

v ´ = P v´ with P = 1 0 0 0 and v´ = gives v ´ =

Perspective projection in homogeneous coordinates: 

vp = P v with P = 1  0   0   0
0  1   0   0
0  0   1   0
0  0  1/f  0

and  v = wx
wy
wz
w

gives  vp = wx
wy
wz
wz/f

Returning to normal coordinates gives vp´ = xf/z
yf/z

f
compare with 
earlier slide

11

Transformation from camera into image coordinates:

vp´´ = B vp´ with B = a  0  0 -x0a
0  b  0 -y0b
0  0  1    0
0  0  0    1

gives  vp´´ =and  vp´ = wxp

wyp

0
w

wa(xp-x0)
wb(yp-y0)
0
w

Homogeneous Coordinates (3)

Perspective projection can be completely described in terms of a linear 
transformation in homogeneous coordinates:

vp´´ = B P R T v

B P R T may be combined into a single 4 x 4 matrix C :

vp´´ = C v

12

In the literature the parameters of these equations may vary because 
of different choices of coordinate systems, different order of 
translation and rotation, different camera models, etc.
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Inverse Perspective Equations

x
y

xp´´
y ´´

Which points in a scene correspond to a point in the image?

y
z

yp
?

Each image point defines a projection ray as the locus of possible 
scene points (for simplicity in camera coordinates):

vp´ =>   v´=  vp´ •
•

origin
vp´

v´

v = v0 + RT  vp´

13

3 equations with the 4 unknowns x, y, z,  and camera parameters R and v0

Applications of inverse perspective mapping for e.g.
- distance measurements
- binocular stereo
- camera calibration
- motion stereo

Binocular Stereo (1)
•

optical axis 1 optical axis 2

v

y

x

z

•
•

l1
l2

o1
o2

b

u1 u2

14

l1, l2 camera positions (optical center)

b stereo base

o1, o2 camera orientations (unit vectors)

f1, f2 focal distances

v scene point

u1, u2 projection rays of scene point (unit vectors)
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Binocular Stereo (2)

Determine distance to v by measuring u1 and u2

Formally:  u = b +  u => v =  u + lFormally:     u1 = b +  u2 =>   v =  u1 + l1

 and  are overconstrained by the vector equation. In practice, 
measurements are inexact, no exact solution exists (rays do not intersect).

Better approach: Solve for the point of closest approximation of both rays:
 u1 + (b +  u2)v =

2
+  l1 =>       minimize   ||  u1 - (b +  u2) ||2

S l ti
u1

T b - (u1
T u2) (u2

T b)

15

Solution: 0 = 1 ( 1 2) ( 2 )

1 - (u1
T u2)

2

0 =
(u1

T u2) ( u1
T b) - (u2

T b)

1 - (u1
T u2)

2

Distance in Digital Images

Intuitive concepts of continuous images do not always carry over to 
digital images.

Several methods for measuring distance between pixels:g p

Eucledian distance

City-block distance

D4((i, j)(h, k)) = |i - h| + |j - k|

costly computation of square root, 
can be avoided for distance comparisons

number of horizontal and vertical steps 
in a rectangular grid

  DE ((i, j),(h,k))  (i  h)2  ( j  k)2

16

Chessboard distance

D8((i, j)(h, k)) = max { |i - h|, |j - k|}
number of steps in a rectangular grid if 
diagonal steps are allowed (number of 
moves of a king on a chessboard)
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Connectivity in Digital Images

Connectivity is an important property of subsets of pixels. It is based 
on adjacency (or neighbourhood):

Pixels are 4-neighbours 
if their distance is D4 = 1

Pixels are 8-neighbours 
if their distance is D8 = 1

all 4-neighbours of 
center pixel

all 8-neighbours of 
center pixel

17

A path from pixel P to pixel Q is a sequence of pixels beginning at 
Q and ending at P, where consecutive pixels are neighbours.

In a set of pixels, two pixels P and Q are connected, if there is a 
path between P and Q with pixels belonging to the set.

A region is a set of pixels where each pair of pixels is connected.

Closed Curve Paradoxon

solid lines if        
8-neighbourhood 
is used 

line 2 does not 
i li 1

line 1 line 2

18

intersect line 1 
although it crosses 
from the outside to the 
inside 

a similar paradoxon 
arises if                    
4-neighbourhoods 
are used
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Geometric Transformations

Various applications:

• change of view point

• elimination of geometric distortions from image capturing

• registration of corresponding images

• artificial distortions, Computer Graphics applications

Step 1: Determine mapping T(x, y) from old to new coordinate system

Step 2: Compute new coordinates (x´, y´) for (x, y)

Step 3: Interpolate greyvalues at grid positions from greyvalues at 
transformed positions

19

• •
• •

•
•

•
• ••

••
greyvalue must be 
interpolated

Polynomial Coordinate Transformations

General format of transformation:

x  a
ik
xi

k0

m i


i0

m

 yk

•  Assume polynomial mapping between (x, y) and (x´, y´) of degree m

•  Determine corresponding points

•  a) Solve linear equations for aik, bik (i, k = 1 ... m) 

b) Minimize mean square error (MSE) for point correspondences

 k0i0

 
y  b

ik
xi

k0

m i


i0

m

 yk
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Approximation by biquadratic transformation:

x´= a00 + a10x + a01y + a11xy + a20x2 + a02y2

y´= b00 + b10x + b01y + b11xy + b20x2 + b02y2

Approximation by affine transformation:

x´= a00 + a10x + a01y

y´= b00 + b10x + b01y 

at least 6 corresponding 
pairs needed

at least 3 corresponding 
pairs needed
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Translation, Rotation, Scaling, 
Skewing

v = x
y

v´= x´
y´

Translation by vector t:

v´= v + t with t = 
tx

cos 
- sin 

sin 
cos 

R =

Rotation of image coordinates by angle :

v´= R v with

yy ty

Scaling by factor a in x-direction and factor b in y-direction: 

21

a

0

0

b

S =v´= S v with

Skewing by angle : 

1

0

tan 
1

W =v´= W v with

Example of Geometry Correction 
by Scaling

Distortions of electron-tube cameras may be

1 2 % => more than 5 lines for TV images1 - 2 %  => more than 5 lines for TV images

ideal image            actual image

Correction procedure may be based on

- fiducial marks engraved into optical system
- a test image with regularly spaced marks 

Ideal mark positions:
x x x x

x x x x

y

22

xmn = a + mb,  ymn = c + nd x x x x

x x x x

x x x x

x
a

c

b

d

Determine a, b, c, d such that MSE (mean 
square error) of deviations is minimized

Actual mark positions:

x´mn, y´mn

m = 0 ... M-1

n = 0 ... N-1
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Minimizing the MSE

E   ( xmn  x mn
n0

N1


m0

M1

 )2  (ymn  y mn)2Minimize

N1


M1

 2 2  (a + mb  x mn
n0


m0
 )2  (c  nd y mn)2

From dE/da = dE/db = dE/dc = dE/dd = 0 we get:

a 
2

MN(M  1)
(2M 1 3m) x mn

n


m


b 
6

MN(M2 1)
(2mM  1) x mn

Special case M=N=2:

a = 1/2 (x´00 + x´01)

23

MN(M2 1)
( ) mn

n


m


c 
2

MN(N  1)
(2N  1 3n) y mn

n


m


d 
6

MN(N2  1)
(2n N1) y mn

n


m


b = 1/2 (x´10 - x´00 + x´11 - x´01)

c = 1/2 (y´00 + y´01)

d = 1/2 (y´01 - y´00+ y´11 - y´10)

Principle of Greyvalue Interpolation

• •
• •

•

•
• •

••
•

•Greyvalue interpolation = computation of 

unknown greyvalues at locations (u´v´) from 

known greyvalues at locations (x´y´) • •
••

•
known greyvalues at locations (x y )

Two ways of viewing interpolation in the context of geometric 
transformations:

A Greyvalues at grid locations (x y) in old image are placed at 
corresponding locations (x´y´) in new image: g(x´y´) = g(T(x y))

=> interpolation in new image

24

=> interpolation in new image

B Grid locations (u´v´) in new image are transformed into 
corresponding locations (u v) in old image: g(u v) = g(T-1(u´v´))

=> interpolation in old image

We will take view B: 

Compute greyvalues between grid from greyvalues at grid locations.
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Nearest Neighbour 
Greyvalue Interpolation

Assign to (x y) greyvalue of nearest grid location •

(xiyj)    (xi+1yj)

(x y)

(xiyj) (xi+1yj) (xiyj+1) (xi+1yj+1) grid locations 

(x y)  location between grid with  
xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1

(xiyj+1)    (xi+1yj+1)

Each grid location represents the greyvalues in a 
rectangle centered around this location:  

25

Straight lines or edges may appear step-like after 
this transformation:

Bilinear Greyvalue Interpolation

The greyvalue at location (x y) between 4 grid points (xiyj) (xi+1yj) (xiyj+1) 

(xi+1yj+1) is computed by linear interpolation in both directions:

g(x, y) 
1

(xi1  xi )(yj1  yi)
(xi1  x)(yj1  y)g(xiyj)  (x  xi)( yj1  y)g( xi 1yj ) 

                                                 ( xi1  x)( y  yj)g(xiyj1)  (x  xi)(y  y j)g(xi1yj 1)

g1 g12 g2
Simple idea behind long formula:

1. Compute g12 = linear interpolation of g1 and g2 g •

26

g3 g34 g4

2. Compute g34 = linear interpolation of g3 and g4

3. Compute g = linear interpolation of g12 and g34

The step-like boundary effect is reduced.
But bilear interpolation may blur sharp edges.

g
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Bicubic Interpolation

Each greyvalue at a grid point is taken to 
represent the center value of a local bicubic 
interpolation surface with cross section h3.

1

interpolation surface with cross section h3.

1 - 2|x|2 + |x|3 for 0 < |x| < 1

h3 = 4 - 8|x| + 5|x|2 - |x|3 for 1 < |x| < 2

0 otherwise

The greyvalue at an arbitrary point [u, v] (black dot 
in figure) can be computed by 

- four horizontal interpolations to obtain 
greyvalues at points [u, j-1] ... [u, j+2] (red dots), 

cross section of 
interpolation kernel

-2 -1 0 1 2

27

followed by

- one vertical interpolation (between red dots) to 
obtain greyvalue at [u, v].

j-1

j

j+1

j+2

i-1    i    i+1    i+2

Note:
For an image with constant greyvalues g0 the 
interpolated greyvalues at all points between 
the grid lines are also g0.

•

•
•

•

•


