Perspective Projection Transformation

Where does a point of a scene appear in an image?

o =[]

Transformation in 3 steps:
1. scene coordinates => camera coordinates
2. projection of camera coordinates into image plane

3. camera coordinates => image coordinates

Perspective projection equations are essential for Computer Graphics.
For Image Understanding we will need the inverse: What are possible
scene coordinates of a point visible in the image? This will follow later.

Perspective Projection in Independent
Coordinate Systems

It is often useful to describe real-world points, camera geometry and
image points in separate coordinate systems. The formal description of
projection involves transformations between these coordinate systems.
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3D Coordinate Transformation (1)

The new coordinate system is specified by a translation and rotation
with respect to the old coordinate system:
Note that these matrices

v'=R (v -V, Vo i.s displ.acement. vector describe coo transforms
R is rotation matrix for positive rotations of

the coo system.

R may be decomposed into _ _
3 rotations about the Re= T4 0 0
coordinate axes: 0 coso sina
R=RyRyR, 0 -sina cosa
If rota-tions are performed in the above Ry = [ cosp 0 -sin B T
order: 0 1 0
1) y = rotation angle about z-axis sinp 0 cosp
2) B = rotation angle about (new) y-axis L _
3) o = rotation angle about (new) x-axis _ e -
R, = cosy siny 0
("tilt angle”, "pan angle”, and "nick -siny cosy 0
angle” for the camera coordinate 0 0 1

assignment shown before)

3D Coordinate Transformation (2)

By multiplying the 3 matrices R,, Ry and R,, one gets

R= cos B cosy cos Bsiny -sin
sinasinpfcosy -cosasiny sinasinpBsiny+cosacosy sina cos B
cosasinBcosy+sinasiny cosasinfpsiny-sinacosy cosacos f

For formula manipulations, one tries to avoid the trigonometric functions
and takes

Note that the coefficients of R are constrained:

R= LT LEP) r3 it o
A rotation matrix is orthonormal:
21 2 23
fas. T2 Ta RRT=1 (unit matrix)
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Example for Coordinate
Transformation

camera coo system:
» displacement by v,

z * rotation by pan angle B = -30°
* rotation by nick angle o = 45°

v'=R (v-v,) withR=RxRy

= = 1
R 0 0 Ry 2% o0
ERCI 0 1 0
1 1 1
27 1a s 0 15

Perspective Projection Geometry

Projective geometry relates the coordinates of a point in a scene to the
coordinates of its projection onto an image plane.

Perspective projection is an adequate model for most cameras.

image point V,=|X,| scene point v =|x
Yo y
K

z = optical axis

optical center

focal
distance f

Projection equations:

image plane
x f yf

T %
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Perspective and Orthographic
Projection

Within the camera coordinate system the perspective projection of a
scene point onto the image plane is described by

xp'=xz—,f y,i,'=yz—,f z,’=f (f=focal distance)
¢ nonlinear transformation

¢ Joss of information

If all objects are far away (large z”), f/lz” is approximately constant
=> orthographic projection

e

Xp

=sx” y,’=sy” (s =scaling factor)

Orthographic projection can be viewed as projection with
parallel rays + scaling

From Camera Coordinates to
Image Coordinates

Transform may be necessary because

- optical axis may not penetrate image plane at origin of desired
coordinate system

- transition to discrete coordinates may require scaling

xp”= (xp'- xpo') a a, b scaling parameters
Yo = (¥p -¥po') b Xpo s Ypo~ origin of image coordinate system
y <
Example: d1 Image boundaries in camera coordinates:
» ’ X max = c1 X min = c2
x° %] Y max = d1 ¥ min = d2
1 d2
* Discrete image coordinates:
x"=0..511 y""=0..575

y

Transformation parameters:

Xpo =1 Yo" =d1 a=512/(c2-c1) b=576/(d2-d1)
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Complete Perspective Projection
Equation

We combine the 3 transformation steps:

1. scene coordinates => camera coordinates
2. projection of camera coordinates into image plane
3. camera coordinates => image coordinates

x,”"={flz’[cos B cosy (x-xo)+cosBsiny (y-yo) +sinp(z-2)]-xp}a

Yo ={fiz’[(-sinasinBcosy-cosasiny) (x-xp)+
(-sinasinBsiny+cosacosy)(y-y,)+
sinacos B (z-2y)] -y, }b

with 2= (- cos a sin B cos y + sin a sin y) (X - x,) +

(-cosasinfsiny-sinacosy)(y-y,)+
cos a. cos B (z - z;)

Homogeneous Coordinates (1)

4D notation for 3D coordinates which allows to express nonlinear 3D
transformations as linear 4D transformations.

Normal: v'=R (v - v,)

Homogeneous coordinates: v '=Av h(gﬁ:géﬁ:'ecju?rcoordmates)
A=RT= fyq T T3 0 10 0 -x,

21 oy T3 0 010 -y,

M3 I3 M3 0 00 1-z

0 0 0 1 00O 1

Transition to homogeneous coordinates:

vi=[xyz] => v'=[wxwywzw] w # 0 is arbitrary constant

Return to normal coordinates:

1. Divide components 1- 3 by 4th component
2. Omit 4th component

10
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Homogeneous Coordinates (2)

Perspective projection in homogeneous coordinates:

v, =Pv” withP=[1¢9 0 o| and v ' =[wx| gives v, = |wx
0100 wy wy
0010 wz wz
0010 w wz/f
Returning to normal coordinates gives v,” =| xflz
yflz

Transformation from camera into image coordinates:

f -

v, "=ByY,” withBa 00-xa| and v, "= [wx,| gives v, "= | wa(x,x,)
0 b 0-yb Wy, wh(y,-Yo)
001 0 0
000 1 w w
11

Homogeneous Coordinates (3)

Perspective projection can be completely described in terms of a linear
transformation in homogeneous coordinates:

v, "=BPRTV

B P R T may be combined into a single 4 x 4 matrix C :

Va4

v, "=Cy

In the literature the parameters of these equations may vary because
of different choices of coordinate systems, different order of
translation and rotation, different camera models, etc.

12
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Inverse Perspective Equations

Which points in a scene correspond to a point in the image?

7] = [}

Each image point defines a projection ray as the locus of possible
scene points (for simplicity in camera coordinates): ;
vy

v, => v, =Av,”

3 equations with the 4 unknowns x, y, z, A and camera parameters R and v,

Applications of inverse perspective mapping for e.g.
- distance measurements
- binocular stereo
- camera calibration
- motion stereo

13

Binocular Stereo (1)

7 optical axis 2

I, 15 camera positions (optical center)

b stereo base

04,0, camera orientations (unit vectors)

f;,fo  focal distances

\' scene point

u4, U, projection rays of scene point (unit vectors)

14
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Binocular Stereo (2)

Determine distance to v by measuring u, and u,

Formally: auj=b+Bu;, => v=auq+ly

o and B are overconstrained by the vector equation. In practice,
measurements are inexact, no exact solution exists (rays do not intersect).

Better approach: Solve for the point of closest approximation of both rays:
ay Uqg + (b + By uy) +
2

v= L = minimize |[ou,-(b+Bu,)Ip

Solution: ag=

15

Distance in Digital Images

Intuitive concepts of continuous images do not always carry over to
digital images.

Several methods for measuring distance between pixels:

Eucledian distance

D ((i;§): (h,k)) = V(i— h)* + (j— k)

costly computation of square root,
can be avoided for distance comparisons

City-block distance

. . . number of horizontal and vertical steps
Dy((i, j)(h, K) = |i - h + [j - k| i

in a rectangular grid

Chessboard distance
Dg((i, j)(h, k)) = max { |i - h|, |j - k[}

number of steps in a rectangular grid if
diagonal steps are allowed (number of
moves of a king on a chessboard)

16

26.10.2012



Connectivity in Digital Images

Connectivity is an important property of subsets of pixels. It is based
on adjacency (or neighbourhood):

Pixels are 4-neighbours
if their distance is D4 = 1

Pixels are 8-neighbours
if their distance is Dg = 1

all 4-neighbours of
center pixel
all 8-neighbours of
center pixel

A path from pixel P to pixel Q is a sequence of pixels beginning at
Q and ending at P, where consecutive pixels are neighbours.

In a set of pixels, two pixels P and Q are connected, if there is a
path between P and Q with pixels belonging to the set.

Aregion is a set of pixels where each pair of pixels is connected.
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Closed Curve Paradoxon

solid lines if

8-neighbourhood
is used

line 1

[T1 line 2 does not
intersect line 1

a similar paradoxon

arises if

although it crosses
from the outside to the

4-neighbourhoods N inside

are used
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Geometric Transformations

Various applications:

* change of view point

* elimination of geometric distortions from image capturing
¢ registration of corresponding images

» artificial distortions, Computer Graphics applications

Step 1: Determine mapping T(x, y) from old to new coordinate system
Step 2: Compute new coordinates (x*, y”) for (x, y)

Step 3: Interpolate greyvalues at grid positions from greyvalues at
transformed positions

([
H%o
°® \greyvalue must be

[ ) interpolated
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Polynomial Coordinate Transformations

General format of transformation:

X'= Zzaikxiyk

i=0 k=0_
y' = Z blkxlyk
i=0 k=0

» Assume polynomial mapping between (x, y) and (x*, y”) of degree m
¢ Determine corresponding points
* a) Solve linear equations for a;, b;, (i, k=1 ... m)

b) Minimize mean square error (MSE) for point correspondences
Approximation by biquadratic transformation:

- 2 2 at least 6 corresponding
X =agg +aqgX + agqy + aqqXy + aggx“ +a

T30 ™" 310 01Y T aq1Xy * azg ) 02y , pairs needed
Yy =bgg * bygx + boqy + byyxy + bygx® + byoy
Approximation by affine transformation:
X'=ann + asnX + a at least 3 corresponding

. 00 10 o1¥ pairs needed
y =bgg + bggx + bgqy "

26.10.2012
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Translation, Rotation, Scaling,
Skewing

Translation by vector t:

v=yv+t with v'=[y] v=[x] t=],
y y tx

Rotation of image coordinates by angle a:

v'=Rv with R= | cosa sina
-sina  cosa

Scaling by factor a in x-direction and factor b in y-direction:

v=Sv with S= [ a 0]

Skewing by angle B:

v=Wyv with W= [ 1 tanp
— »/ /
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Example of Geometry Correction
by Scaling
Distortions of electron-tube cameras may be = —
1-2 % =>more than 5 lines for TV images ==

ideal image
Correction procedure may be based on
- fiducial marks engraved into optical system
- a test image with regularly spaced marks
X X
Ideal mark positions: y
Xmn =a+mb, y,,=c+nd X
m=0..M1
ayn X X
Actual mark positions: n=0..N-1 d
X mne Y mn ¢ x X
b

actual image

X X
X X
X X
X X

—t—+— X
a

22
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Minimizing the MSE

F
X

N-—1
Z(xmn _x:nn)z + (Ymn - y:nn)2

n=0

Minimize E

= 3
A

N—1
=2, D(a+mb-x.,,)* +(c+nd-y, )

=0 n=0

3

From dE/da = dE/db = dE/dc = dE/dd = 0 we get:

MN(M )& ZZ(ZM 1-3m) xp,, Special case M=N=2:

v a=1/2 (X’00+X'01)

b=1/2 (X" 10=X"gn *+ X 44 - X~
ZZ(2N 1-3n)y',, (x"10=X"go 1-X01)

~MN N +1
( ) c=1/2 (yloo + y'01)

d= 2n—N+ . . . .
MN(N2 ZZ( Wo d=1/2(y"01-Y¥ 00* ¥ 11-Y 10
23
Principle of Greyvalue Interpolation
Greyvalue interpolation = computation of .. e R
unknown greyvalues at locations (u”v”) from N I
known greyvalues at locations (x“y”) J . .
Two ways of viewing interpolation in the context of geometric
transformations:
A Greyvalues at grid locations (x y) in old image are placed at
corresponding locations (x“y”) in new image: g(x“y”) = g(T(x y))
=> interpolation in new image
B Grid locations (u”v”) in new image are transformed into
corresponding locations (u v) in old image: g(u v) = g(T" 1(u'v'))
=> interpolation in old image
We will take view B:
Compute greyvalues between grid from greyvalues at grid locations.
24
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Nearest Neighbour
Greyvalue Interpolation

(xiy;)  (Xisry;)
Assign to (x y) greyvalue of nearest grid location ‘ xy)
(xi¥;) (Xis1¥;) (Xi¥je1) (Xis1¥je1) grid locations (Xi¥j+1)  (Xis1¥je1)
(xy) location between grid with
X; S XS Xy, ¥ SY S Yjug
Each grid location represents the greyvalues in a '
rectangle centered around this location: _i

Straight lines or edges may appear step-like after
this transformation:

T
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Bilinear Greyvalue Interpolation

The greyvalue at location (x y) between 4 grid points (xiyj) (xi+1yj) (xiyj+1)
(xi+1yj+1) is computed by linear interpolation in both directions:

1
a(x,y) = m {(Xm =X)(¥;1 = Y)A(XY;) + (X =X )V} — V)X, 1)) +

(xi+1 - x)(y— yj)g(xin+1) + (X— xi)(y _Yj)g(xi+1yj+1)}

. . . 91 912 Igz
Simple idea behind long formula:

1. Compute g4, = linear interpolation of g4 and g, !

2. Compute g3, = linear interpolation of g3 and g, ;
3. Compute g = linear interpolation of g4, and g3,

93 934 |94

The step-like boundary effect is reduced.
But bilear interpolation may blur sharp edges.

26
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Bicubic Interpolation

Each greyvalue at a grid point is taken to
represent the center value of a local bicubic
interpolation surface with cross section hs.

-1

0

1 2

1-2Ix)% + |x]? for 0 <|x| <1 ,
hy= {4-8Jx|+5/x2-|x for1<|x| <2 -
0 otherwise

The greyvalue at an arbitrary point [u, v] (black dot
in figure) can be computed by

- four horizontal interpolations to obtain
greyvalues at points [u, j-1] ... [u, j+2] (red dots),
followed by

- one vertical interpolation (between red dots) to
obtain greyvalue at [u, v].

1

Note: j+
For an image with constant greyvalues g, the )
interpolated greyvalues at all points between j*2

the grid lines are also g,.

\J

4

cross section of

i-1

interpolation kernel

i+ i+2

®

\d

*--0@-0--
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