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Region Description for Recognition 

For object recognition, descriptions of regions in an image have to be 
compared with descriptions of regions of meaningful objects (models). 

The general problem of object recognition will be treated later.The general problem of object recognition will be treated later.

Here we learn basic region description techniques for later stages in 
image analysis (including recognition).

Typically, region descriptions suppress (abstract from) irrelevant details 
and expose relevant properties. What is "relevant" depends on the task.

Example: OCR (Optical Character Recognition)
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Simple 2D Shape Features

For industrial recognition tasks it is often required to distinguish
• a small number of different shapes
• viewed from a small number of  different view points
• with a small computational effort.with a small computational effort.

In such cases simple 2D shape features may be useful, such as:
- area
- boxing rectangle
- boundary length
- compactness
- second-order momentums
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- polar signature
- templates

Features may or may not have invariance properties:
- 2D translation invariance
- 2D rotation invariance
- scale invariance
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Euler Number

The Euler number is the difference between the number of disjoint regions 
and the number of holes in an image.

P = number of parts
H = number of holes
E = P - H

Example:
P = 5
H = 2
E = 3

Surprisingly, E (but not P or H) can be 
computed by simple local operators.
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Operators for regions with asymmetric connectivity:

4-connected  NE and SW

8-connected NW and SE

pattern1 =

pattern2 =

E = (count of pattern1) - (count of pattern2) 

Area

The area of a digital region is defined as the number of pixels of the region. 
For an arbitrarily fine resolution, area is translation and rotation invariant. 
In praxis, discretization effects may cause considerably variations.

area = 28

4

area = 31
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Boxing Rectangle

Boxing rectangle = width of a shape in x- and y-direction

y a

x

y

• easy to compute
• not rotation invariant

b

a
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To achieve rotation invariance, the rectangle must be fitted parallel to an 
innate orientation of the shape. Orientation can be determined as the 
axis of least inertia (see second order moments).

Boundary Length

The boundary length is defined as the number of pixels which constitute 
the boundary of a shape.

Example:

area = 77

boundary 
length = 32

p
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area = 69

boundary 
length = 40
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Compactness

(non-)compactness = (boundary length)2

area

Compactness describes analog shapes independent of linear 
transformations. 

very compact not very compact
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Compactness for discrete shapes is in general not translation, rotation or 
scale invariant due to discretization effects.

Center of Gravity

Consider a 2D shape evenly covered with mass. Physical concepts such as

- center of gravity

- moments of inertia

may be applied.

Center-of-gravity coordinates:

D = digital region
y

The center of gravity is the location where 
first-order moments sum to zero.
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Second-order Moments

Second-order moments ("moments of inertia") measure the distribution of 
mass relative to axes through the center of gravity.

moment of inertia relative to y-axismoment of inertia relative to y axis
through center of gravity

moment of inertia relative to x-axis
through center of gravity

"mixed"moment of inertia relative to x-
and y-axis through center of gravity,
zero if x- and y-axis are "main axes"
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• x

y
mx > my mxy = 0

•

y

x

mx < my mxy ≠ 0

Axis of Minimal Inertia

The axis of minimal inertia can be used as an innate orientation of a 2D 
shape.

Inertia (= second order moment) rij

w

relative to an axis is the sum of 
the squared distances between all 
pixels of the shape and the axis.

v

1. The axis of least inertia passes through the center of gravity

2. The mixed moment mvw relative to the axes v and w must be zero

If the mixed moment is nonzero, the 
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,
axis must be turned by the angle :

•
x

y

•

v

w

x

y


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Polar Signature

The polar signature records the angular segments where circles 
around the center of gravity lie within a shape. 

0 90 180 270 360
R1

0 90 180 270 360
R2

0 90 180 270 360
R3

0

90

270

180
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• scalable from coarse to fine by appropriate number of circles
• radii of circles must be chosen judiciously
• translation-invariant
• rotation-invariance can be achieved by cyclic shifting

Object Recognition Using 
the Polar Signature

Model signatures

12
Recognition results
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Convex Hull

A region R is convex if the straight-line segment x1x2 between any two 
points of R lies completely inside of R.  

For an arbitrary region R the convex hull H is the smallest convex regionFor an arbitrary region R, the convex hull H is the smallest convex region 
which contains R.

Example of shape with convex hull:

Intuitive convex hull algorithm:

1. Pick lowest and left-most boundary point of R as starting point Pk = P1. Set 
direction of previous line segment of convex-hull boundary to v = (0, -1).

2 F ll b d f R f t i t P i ti l k i di ti d
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2. Follow boundary of R from current point Pk in an anti-clockwise direction and
compute angle n of line PkPn for all boundary points Pn after Pk. The point Pq

with q = min{n} is a vertex of the convex hull boundary.

3. Set Pk = Pq and v = (PkPn) and repeat 2) and 3) until Pk = P1.

There are numerous convex hull algorithms in the literature. The most 
efficient is O(N) [Melkman 87], see Sonka et al. "Image Processing ...". 

Skeletons

The skeleton of a region is a line structure 
which represents "the essence" of the shape 
of the region, i.e. follows elongated parts.

Useful e.g. for character recognition

Medial Axis Transform (MAT) is one way to define a skeleton:

The MAT of a region R consists of all pixels of R which have more than one 
closest boundary point.

•
•

•
MAT skeleton consists of centers of circles 

14

•which touch boundary at more than one point

MAT skeleton of a rectangle shows problems:

Note that "closest boundary point" 
depends on digital metric!
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Skeleton Extraction for Chinese 
Character Description

Stroke Analysis by Triangulation

Constrained Delaunay Triangulation (CDT) connects contour points to 
triangles such that the circumference of a triangle contains no other points.    

CDT generates three types of 
triangles:

•  junction triangles (green)

none of the triangle sides 
coincides with the contour

g g p

•  sleeve triangles (blue)

•  terminal triangles (red)

Junction triangles indicate stroke intersections or sharp stroke corners
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Conditions for Junction Triangles

R

S 

j ti t i l
S ≥ R

S 

R
R

no junction triangles always junction triangles

A curved line with angle  and outer contour radius R, drawn with a 
stylus of radius S, will generate a junction triangle if 

S > R/2 (1 + cos /2)  

Weak Influence of Contour Point 
Spacing

dense spacing medium spacing coarse spacing

no junction triangles if 
corners are cut
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Stroke Segment Merging

• Segments meeting at a junctionSegments meeting at a junction 
may be merged if they are 
compatible regarding orientation 
and stroke width

• Segments between two 
neighbouring junction triangles 
may be intersections with irregular 
direction and stroke width

• Global criteria and knowledge of 
the writing system must be 
invoked to resolve ambiguities

Results of Stroke Analysis (1) 
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Results of Stroke Analysis (2) 

Thinning Algorithm

Repeat A to D until no more changes:
Example:

Thinning algorithm by Zhang and Suen 1987 
(from Gonzalez and Wintz: "Digital Image Processing")

Assumptions:
• region pixels = 1
• background pixels = 0

Neighbourhood 
labels:

p1

p2 p3

p4p8

p9

Repeat A to D until no more changes:

A Flag all contour points which satisfy conditions (1) to (4)
B Delete flagged points
C Flag all contour points which satisfy conditions (5) to (8)
D Delete flagged points

22

g p
• contour pixels 8-neighbours of background 

p1 p4

p5p6p7

p8

Conditions:

(1) 2 ≤ N(p1) ≤ 6
(2) S(p1) = 1
(3) p2•p4•p6 = 0
(4) p4•p6•p8 = 0

(5) 2 ≤ N(p1) ≤ 6
(6) S(p1) = 1
(7) p2•p4•p8 = 0
(8) p2•p6•p8 = 0

N(p1) = number of nonzero neighbours of p1

S(p1) = number of 0 - 1 transitions in 
ordered sequence p2, p3, ...



03.12.2012

12

B-Splines (1)

B-splines are piecewise polynomial curves which provide an approximation 
of a polygon based on vertices.

•
• • • •

•

••
••

•
•••
•

••

•

Important properties:
• eye-pleasing smooth approximation of control polygon
• change of control polygon vertex influences only small neighbourhood

• •

• •
•

• •
•

precision depends on distances of vertices 
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• change of control polygon vertex influences only small neighbourhood
• curve is twice differentiable (e.g. has well-defined curvature)
• easy to compute

x(s) = Σ viBi(s)   i = 0 .. N+1
s parameter, changing linearly from i to i+1 between vertices vi and vi+1

vi vertices of control polygon
Bi(s) base functions, nonzero for s [i-2 , i+2]

B-Splines (2)

Each base function Bi(s) consists of four parts:

1

( ) C ( i) C ( i) C ( i) C ( i)

C0 C1 C2 C3

24

x(s) = C3(s-i)vi-1 + C2(s-i)vi + C1(s-i)vi+1 + C0(s-i)vi+2

Example:  s = 7.7  i = 7

x(7.7) = C3(0.7)v6 + C2(0.7)v7 + C1(0.7)v8 + C0(0.7)v9
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Shape Description by 
Fourier Expansion (1)

The curvature function k(s) of a region is necessarily periodic:

k(s) = k(s+L) L = length of boundary

Hence k(s) can be expanded by a Fourier series with coefficients:

To avoid problems with curvature discontinuities at corners, it is useful 
to  consider the slope intrinsic function:

25

with tangent angle

mean (dependent on starting point)

normalization to achieve periodicity

Shape Description by 
Fourier Expansion (2)

The shape of a contour can be approximately represented by a limited 
number of harmonics of the Fourier expansion of the slope intrinsic
function ´(s):( )

Example: 
(from Duda and Hart 73: Pattern Classification and Scene Analysis)

original
Caution: 

26

5 harmonics

10 harmonics

15 harmonics

It is questionable whether 
the approximations by a 
limited number of harmonics 
capture the most frequent 
deviations from the normal.
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Templates

A template is a translation-, rotation- and scale-variant shape desription. 
It may be used for object recognition in a fixed, reoccurring pose. 

Example:Example: 
Template for face recognition

• A M-by-N template may be treated as a 
vector in MN-dimensional feature 
space

• Unknown objects may be compared 
with templates by their distance in 
feature space 

Distance measures:

27

gmn pixels of image
tmn pixels of template

squared Euclidean distance

absolute distance

maximal absolute distance

• template 
as point 
in feature 
space

g11

g12

g13

gMN
•••

Cross-correlation

cross-correlation between image gmn and template tmn

Compare with squared Euclidean distance d 2:Compare with squared Euclidean distance de : 

Normalized cross-correlation is independent of 

Image "energy" Σgmn
2 and template "energy" Σtmn

2 correspond to length of 
feature vectors.

28

image and template energy. It measures the 
cosine of the angle between the feature vectors 
in MN-space.

Cauchy-Schwartz Inequality: 

|r´| ≤ 1   with equality iff gmn = c tmn, all mn
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Artificial Neural Nets

Information processing in biological systems is based on neurons with 
roughly the following properties:

• the degree of activation is determined by incoming signals

• the outgoing signal is a function of the activation

• incoming signals are mediated by weights

• weights may be modified by learning

input signal 
for cell j from 
cell i

i ht t t i l

net input for cell j Σ wij oi(t)

activation aj(t) = fj (aj, Σ wij oi(t))

output signal oj(t) = Fj (aj)

29

cell j

weight wij output signal 
of cell j

output signal oj(t)  Fj (aj)

Typical shapes of fi and Fi:

Multilayer Feed-forward Nets

output units
Example:

3 layer net

hidden units

3-layer net

• each unit of a layer is 
connected to each unit 
of the layer below

• units within a layer are 
not connected

• activation function f is

30

input units
• activation function f is 

differentiable (for 
learning) 
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Character Recognition with a 
Neural Net

Schematic drawing shows 3-layer feed-forward net: 

•  input units are activated by sensors and feed hidden units
•  hidden units feed output units

output units

p
•  each unit receives weighted sum of incoming signals

hidden units

Supervised learning

Weights are adjusted 
iteratively until prototypes 
are classified correctly 
(-> backpropagation)

31

input units

Learning by Backpropagation

Supervised learning procedure:

• present example and determine output error signals

dj t i ht hi h t ib t t

nominal 
output 
signal tpj

• adjust weights which contribute to errors
g pj

actual 
output 
signal opj

cell j

cell i

Adjusting weights:

• Error signal of output cell j for pattern p is 

pj = (tpj - opj) fj´(netpj)   

fj´() is the derivative of the activation function f()

• Determine error signal pi for internal cell i recursively from 
error signals of all cells k to which cell i contributes

wij

32
input pattern p

error signals of all cells k to which cell i contributes.

pi =  fi´(netpi) k pkwik

• Modify all weights:  pwij = pjopi      is a positive constant

The procedure must be repeated many times until the weights 
are "optimally" adjusted. There is no general convergence 
guarantee. 
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Perceptrons (1)
Which shape properties can be determined by combining the outputs of 
local operators? 

A perceptron is a simple computational model for combining local BooleanA perceptron is a simple computational model for combining local Boolean 
operations.  (Minsky and Papert, Perceptrons, 69)

0

1

i Boolean functions with local 
support in the retina:
- limited diameter
- limited number of cells
output is 0 or 1

33

Boolean 
functions

linear 
threshold 
element

B/W Retina

p

 compares weighted sum of 
the i with fixed threshold 

  1  if  wi i > 
0  otherwise

Perceptrons (2)

A limited-diameter perceptron cannot determine connectedness

Assume perceptron with maximal diameter d for the support of each i.
Consider 4 shapes as below with a < d and b >> d.

a

b

Boolean operators may distinguish 5 local situations:

 5 is clearly irrelevant for 
distinguishing between the 
2 connected and the 2

34

 1  2  3  4  5

2 connected and the 2 
disconnected shapes

For  to exist, we must have:

w1 1 + w4 4 < 
w2 2 + w3 3 < 

w2 2 + w4 4 > 
w1 1 + w3 3 > 

Σ wi i < 2 Σ wi i > 2 

contradiction, hence 
 cannot exist


