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What is "Pattern Recognition"?

The term "Pattern Recognition" ("Mustererkennung") is used for

Methods for classifying unknown objects based on feature vectors

(narrow sense meaning of Pattern Recognition)

Pattern recognition can be applied to all kinds of signals, e.g.

- images

- acoustic signals

(narrow sense meaning of Pattern Recognition)

Methods or analyzing signals and recognizing interesting patterns

(wide sense meaning of Pattern Recognition)
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acoustic signals

- seismographic signals

- tomographic data

etc. 

The following section deals with Pattern Recognition in the narrow sense.

(see Duda and Hart, Pattern Classification and Scene Analysis, Wiley 73)

Basic Terminology for 
Pattern Recognition

object
K classes 1 ... K

N di i f f t

feature extraction

feature vector

N dimension of feature space

xT = [x1 x2 ...  xN] feature vector

yT = [y1 y2 ...  yN] prototype
(feature vector with known class membership)

yi
(k) i-th prototyp of class k

Mk number of prototypes for class k
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classification in
feature space

object class

gk(x) discriminant function for class k

Problem:

Determine gk(x) such that
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Example: Animal Footprints
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What features can be used to distinguish the 3 footprint classes? 

A Feature Space for Footprints
b

h
x1 = "squareness"  =  

1 = wolf

x2 = "solidness"  =
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Discriminant Functions for Footprints
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g1 = -9x1
2+10.8x1-x2-2.84

g2 = x1+20x2
2-28x2+9.4

g3 = -x1+5.6x2
2-5.6x2-1

Quadratic discriminant 
functions:

Piecewise linear 
discriminant functions:

g1 = 1 if  (x1-x2-0.2 > 0) (x1+5x2-3 < 0)  else 0

g2 = 1 if  (x1+5x2-3 > 0)  (2x1+x2-1.5 > 0)  else 0

g3 = 1 if  (2x1+x2-1.5 < 0)  (x1-x2-0.2 < 0)  else 0

Existence of Discriminant Functions

• For given prototypes, discriminant functions always exist as long as 
no two prototypes belonging to different classes are equal.

• If gi(x), i = 1 ... K, are discriminant functions for given prototypes, then

gi´(x) = a(x) gi(x) + b(x),  a(x) > 0, i = 1 ... K

are also discriminant functions.

• If the classes of a 2-class problem are separable, then there always 
exists a function g(x) such that
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Linear Discriminant Functions

Linear discriminant functions are attractive because they can be 
• easily determined from prototypes
• easily analyzed
• easily evaluated

Basic form of linear discriminant function:

gk(x) = wk
Tx + wk0

gk

discriminant function is 
3D plane
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wk

Tx + wk0 = 0

Class Average 
Minimal Distance Classification

• Represent prototypes by class averages

• Assign object to class with minimum distance between object g j j
and class average
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For a 2-class problem, the  
minimal distance criterion 
always results in a linear 
discriminant function  
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Class average minimal distance classification may not separate 
prototypes even if they are linearly separable! 
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Nearest Neighbour Classification

Assign object to class with nearest prototype
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Piece-wise linear 
discriminant function
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The nearest neighbour criterion classifies all prototypes correctly 
(except equal prototypes of different classes). The decision regions 
are not necessarily coherent.

Generalized Linear 
Discriminant Functions

x2

Example:
P t t t li l bl

x1

Prototypes are not linearly separable

A quadratic discriminant function may work:

Transformation of prototypes into higher-dimensional feature space may 
allow linear discriminant functions.
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Transformation for the example:

Linear discriminant function 
in z-space:

Advantage:  Linear separation algorithms may be applied
Disadvantage: Dimensionality of feature space is drastically increased
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Linear Discriminant Functions for 
2-Class Problems

Normalize prototypes such that

yT = [1 y1 y2 ... yN]

a1

solution 
region for 
weight 
vectors

y  [1 y1 y2 ... yN]

Discriminant function g can be expressed as

g(x) = aTx with   aT = [a0 a1 ... aN]

Prototypes of class w2 are negated such that  

aTy > 0   =>   correct classification of both classes
weight space

a0

o

y(1)

oy(2)

Solution region in weight space (if it exists) is the space at the positive side
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Solution region in weight space (if it exists) is the space at the positive side 
of all hyperplanes aTy = 0. Any weight vector a in this solution region gives 
a correct discriminant function.

Possible further constraints on solution vector a:

||a|| = 1 and aTy > b for all y

b is "margin", i.e. minimal distance of a correctly classified point from the 
hyperplanes defined by the prototypes.

Perceptron Learning Rule

Perceptron criterion function:
a1

A solution vector a can be determined iteratively by minimizing a criterion 
function J(a) by gradient descent.

• •
Jp(a) =  (- aTy )

with B = {all misclassified prototypes}

Gradient:   Jp(a) =  (- y )

Basic gradient descent algorithm:

ak+1 = ak + k  (y )

a0

o

y(1)

o

(2)

•

•

••

•

•

•

12

Weight vector a is modified in negative 
gradient direction. iterations viewed in 

weight space

Example (see illustration) with 

y1
T= [-1 2],  y1

T= [1 -1],  = 2: 

y(2)

k 0 1 2 3 4 5 6 7 8

ak 0 2 0 2 0 2 4 2 4
1 -1 3 1 5 3 1 5 3 solution
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Statistical Decision Theory

Generating decision functions from a statistical characterization of classes
(as opposed to a characterization by prototypes)

Advantages:

1. The classification scheme may be designed to satisfy an objective 
optimality criterion: 

Optimal decisions minimize the probability of error.

2. Statistical descriptions may be much more compact than a collection 
of prototypes.
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p yp

3. Some phenomena may only be adequately described using statistics, 
e.g. noise.

Example: Medical Screening (1)

It is known that every 10th person is sick (prior probability):

 class of healthy people P( ) = 9/10

Health test based on some measurement x (e.g. ECG evaluation)

1 class of healthy people P(1) = 9/10
2 class of sick people P(2) = 1/10

Task 1:  Classify without taking any measurements (to save money)

Decision rule 1a:  Classify every 10th person as sick

P(error) = P(decide sick if healthy) + P(decide healthy if sick)

= 1/10•9/10 + 9/10•1/10 = 0.18
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Decision rule 1b:  Classify all persons as healthy

P(error) = P(decide healthy if sick) = 1/10 = 0.1

•  Decision rule 1b is better because it gives lower probability of error

•  Decision rule 1b is optimal because no other decision rule can give a    
lower probability of error (try "every n-th" in 1a and minimize over n)
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Example: Medical Screening (2)

Task 2:  Classify after taking a measurement x

Assume that the statistics of prototypes are given as p(x|i), i = 1, 2

Person No. x indication
• • •
• • •
• • •
134 7.4 neg
135 6.8 neg
136 4.2 pos
137 5.6 neg
138 5.8 pos
139 7.2 neg
• • •
• • •
• • •

1: healthy2: sick

1 2 3 4 5 6 7 8
x

0.1

0.2

p(x|i)
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P(e|x) is minimized by choosing the class which maximizes P(|x).
Hence gi(x) = P(i|x) are discriminant functions.  

P(e|x) = P(error given x) = P( ≠ ´| x) = 1 - P(|x) 
where ´ is the class assigned to x by the decision rule.

How do we get the "posterior" probabilities P(i|x)?

Example: Medical Screening (3)

The posterior probabilities P(i|x) can be computed from the 
"likelihood" p(x|i) using Bayes´ formula:

P(i|x) =                          = 
p(x|i)•P(i)

p(x)

p(x|i)•P(i)

For the example, using Bayes´ Formula, one could get:

decision 
P(i|x)
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1 2 3 4 5 6 7 8
x

0.1

0.2

p(x|i) boundary

1 2 3 4 5 6 7 8
x

1.0

0.5
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General Framework for 
Bayes Classification

Statistical decision theory minimizes the probability of error for 
classifications based on uncertain evidence

1 ... K K classes

P(k) prior probability that an object of class k will be observed 

x = [x1 ... xN] N-dimensional feature vector of an object

p(x|k) conditional probability ("likelihood") of observing x given 
that the object belongs to class K

P(k|x) conditional probability ("posterior probability") that an 
object belongs to class K given x is observed
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Bayes decision rule:

Classify given evidence x as class ´ such that ´ minimizes the 
probability of error  P( ≠ ´| x) 

=> Choose ´ which maximizes the posterior probability  P( | x)

gi(x) = P(i|x) are discriminant functions. 

Bayes 2-class Decisions

If the decision is between 2 classes 1 and 2, the decision rule can be 
simplified:

Choose  ifChoose 1 if 

Several alternative forms are possible for a discriminant function:

g(x) = P(1|x) - P(2|x)

is called the "likelihood ratio"
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For exponential and Gaussian distributions it is useful to take the logarithm:

g(x) = P(1|x) - P(2|x)
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Normal Distributions
Gaussian ("normal") multivariate distribution:

 = E[(x - )T(x - )] N-by-N covariance matrix

 = E[x] mean vector

For decision problems, loci of points of constant density are interesting. 
For Gaussian multivariate distributions, these are hyperellipsoids: 

(x - )T-1(x - ) = constant
x2
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x1

x2
Eigenvectors of  determine directions 
of principal axes of the ellipsoids,
eigenvalues determine lengths of the 
principal axes.

d2 = (x - )T-1(x - )   is called "squared
Mahalanobis distance" of x from .

Discriminant Function for 
Normal Distributions

General form:

gi(x) = log p(x|i) + log P(i)

For p(x|i) ~ N(i, i):

gi(x) = -1/2 (x - i)Ti
-1(x - i) - 1/2 log|i| + log P(i)

We consider the discriminant functions for three interesting special cases:

- univariate distribution N=1
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- univariate distribution N=1

- statistically independent, equal variance variables xi

- equal covariance matrices i = 
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Univariate Distribution

p(x|i) are univariate Gaussian distributions. 

Example: 2 classes 1 and 2

x

p(x|i)

x

P(i|x)

Example:  2 classes 1 and 2

1 2
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Decision rule:

gi(x) = log P(i|x)

gi(x) = -1/(2i
2) (x - i)2 - 1/2 log i + log P(i)

Statistically Independent, 
Equal Variance Variables

In case of insufficient statistical data, variables are sometimes assumed 
to be statistically independent and of equal variance. 

i = 2 I
gi(x) = -1/(22) ||x - i||2 + log P(i)

If P(i) = 1/N, then the decision rule is equivalent to the 
minimum-distance classification rule.

By expanding gi(x) and dropping the xTx term, one 
t th d i i l

x2
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gets the decision rule:

gi(x) = -1/(22)[-2i
Tx + i

Ti] + log P(i)

which is linear in x and can be written

gi(x) = wi
Tx + wi0

The decision surface is composed of hyperplanes. x1
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Equal Covariance Matrices

If i =  the decision rule can be simplified:

gi(x) = -1/2 (x - i)T-1(x - i) + log P(i)

By expanding the quadratic form and dropping xT-1x one gets again 
a linear decision rule which can be written:

gi(x) = wi
Tx + wi0

x2

If the a-priori probabilities are 
equal the decision rule assigns
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•

•

x1

equal, the decision rule assigns 
x to the class where the 
Mahalanobis distance to the 
mean i is minimal.

Estimating Probability Densities

Let R be a region in feature space with volume V. 
Let k out of N samples lie in R. x2

x3

R

x1

relative frequency of samples per volume

A sequence of approximations pn(x) may be obtained by changing the 
volume Vn as the number of samples n increases.
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Conditions for a 
converging
sequence of 
estimates pn(x):

n p

Examples:

Vn 1/√n Parzen Windows

kn√n  adjust volume for
k nearest neighbours
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Estimating the Mean in a 
Univariate Normal Density

p(x|) = N(, 2)
known normal probability density for x except of unknown mean 

p() = N(0, 0)
prior knowledge about  in terms of a normal density with known 0 and 0

X = {x1 ... xn}
samples drawn from p(x)

Estimation using Bayes Rule:

 is scale factor independent of 
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with and

Best estimate of mean  after observing n samples


