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Abstract. Existing methods for segmentation by edgel linking are based
on heuristics and give no guarantee for a topologically correct result. In
this paper, we propose an edgel linking algorithm based on a new sam-
pling theorem for shape digitization, which guarantees a topologically
correct reconstruction of regions and boundaries if the edgels approx-
imate true object edges with a known maximal error. Experiments on
real and generated images demonstrate the good performance of the new
method and confirm the predictions of our theory.

1 Introduction

The question, whether or when a computed image segmentation corresponds
closely to the underlying real-world partitioning, is fundamental to image un-
derstanding. A number of partial results have been obtained in the past, but
they are not sufficiently realistic to model many actual imaging situations, since
they do not allow measurement errors.

The analysis we are going to present is based on a clear distinction between
the ideal geometric image, which cannot be observed in practice, and the actually
available digital image. The geometric image has infinite resolution (i.e. is an
analog function) and can be thought of as the projection of a 3-dimensional
scene, although we do not consider the details of the projection in this work.
Instead, we think of the analog image as a given geometric partitioning of the
plane into distinct regions. The interior of each region is described by some simple
function (e.g. a constant), but the transitions between regions are discontinuous.
This ideal analog image is then transformed into a digital image by a real camera.
Beyond geometric projection, a real camera is characterized by its point spread
function, the sampling grid and its quantization and noise models. The partition
of the geometric image must be inferred from the limited information in the
digital image. We ask how accurate this reconstruction can be.

Recently we developed a geometric sampling theorem which assumes that
sampling points (edgels) are placed roughly along the contour of the regions
to be segmented. The edgels can be obtained by an arbitrary edge detector, as
long as the accuracy of the detected edges is known. In this paper, we compare
common edge detectors in the context of our theory and show how to use them
for generating a topologically correct image segmentation.



2 The Boundary Reconstruction Algorithm

We consider the task of reconstructing the boundary of a partition of the Eu-
clidean plane from a sampled representation. The plane partition P to be re-
covered is defined by a finite set of points P = {pi ∈ R

2} and a set of pairwise
disjoint arcs connecting these points. The union of the points and arcs is the
boundary of the partition B = P ∪ A, and the regions R = {ri} are the con-
nected components (maximal connected sets) of the complement of B.

Previous proofs about topologically correct reconstruction were restricted to
binary partitions. That is, one can assign two labels (foreground and background)
to the regions such that every arc is in the closure of exactly one foreground and
one background region. Examples are r-regular partitions in [5, 6, 8, 9] and r-
halfregular partitions in [10]. Both are too restrictive for practical use (see [11]
for details). In this paper we use a more general class of feasible plane partitions:

Definition 1. A plane partition P is called r-stable when its boundary B can
be dilated with a closed disc of radius s without changing its homotopy type for
any s ≤ r. We say two points x1, x2 ∈ B delimit a (θ, d)-spike, if the distance
from x1 to x2 is at most d and if every path on B from x1 to x2 contains at
least one point with ∠x1yx2 < θ. We say that P has no (θ, d)-spikes if no pair
of boundary points x1, x2 ∈ B delimits a (θ, d)-spike.

Thus a plane partition is r-stable if we can replace an infinitely thin bound-
ary with a strip of width 2r such that the number and enclosure hierarchy of
the resulting regions is preserved. In particular, “waists” are forbidden, whereas
junctions are allowed, see Fig. 1. Obviously, an r-stable plane partition has no
(π, 2r)-spikes. Intuitively, two points delimit a (θ, d)-spike, if the shortest bound-
ary path between them does not differ too much from a straight line – it lies
inside the shaded region in Fig. 2. In order to digitize such plane partitions, we
approximate the boundary of the partition with a finite set of adaptively placed
sampling points. The sampling points should be “near” the boundary:

Definition 2. A finite set of sampling points S = {si ∈ R
2} is called a (p, q)-

sampling of the boundary B when the distance of every boundary point b ∈ B
to the nearest point in S is at most p, and the distance of every sampling point
s ∈ S to the nearest point in B is at most q. The points in S are called edgels.

The Hausdorff distance dH(B,S) between the boundary and the sampling points
is max(p, q). The exact values of p and q depend on where the edgels come
from. This is discussed in detail in section 4. Our new edgel linking algorithm is
essentially a hysteresis thresholding on the sizes of Delaunay triangles:

1. Compute the Delaunay triangulation D of the edgels S.
2. Mark all triangles in D (including their edges) with a circumradius < α.
3. Additionally mark Delaunay edges whose circumcircle contains no edgel

and has a radius smaller than α.
4. Find connected components of unmarked triangles and edges.



Fig. 1. An r-stable plane partition does
not change the homotopy type when di-
lated with a disc of radius of at most r

(light gray), while dilations with bigger
radius (dark gray) may connect different
arcs as marked by the circle (see Def. 1).
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Fig. 2. Any point which encloses an an-
gle of at least θ with x1 and x2 must
lie inside the shaded region. The shown
y is the one with the maximal distance
to the nearer one of x1 and x2. Thus
there is a path from x1 to x2 inside the
shaded region and each of its points has
a distance of at most d
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θ
2
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5. For each component from step 4 which does not contain any triangle with a
circumradius of at least β, mark all its triangles and edges.

The union of marked triangles and edges is a simplicial complex which we denote
(α, β)-boundary reconstruction from the edgels. The components of its comple-
ment are called (α, β)-holes. Under certain conditions, these holes exactly cor-
respond to the regions of the original r-stable plane partition, as proven in [11]:

Theorem 1 (boundary sampling theorem). Let P be an r-stable plane par-
tition, and S a (p, q)-sampling of P’s boundary B. Then the (α, β)-boundary
reconstruction R defined by S is homotopy equivalent to B, and the (α, β)-holes
of R are topologically equivalent to the regions ri of P, provided the following
conditions are met:

1. p < α ≤ r − q
2. β = α + p + q
3. every region ri contains an open γ-disc with γ ≥ β + q > 2(p + q).

3 Boundary Thinning and Neighborhood Relations

Since the (α, β)-boundary reconstruction may contain triangles, it is not in gen-
eral thin (i.e. locally 1-dimensional). However, many algorithms that build upon
segmentation results cannot handle partially thick boundary representations.
Therefore we propose a topology preserving boundary thinning. We call an edge
in the (α, β)-boundary reconstruction simple if its removal does not change the
topology of the reconstructed regions. Simple edges can be easily recognized: they
bound an (α, β)-hole on one side and a triangle in the boundary reconstruction
on the other. Thinning removes all simple edges iteratively:

1. Find all simple edges of the given (α, β)-boundary reconstruction and put
them in a priority queue (the sorting is discussed below).



Fig. 3. left: original; center : (α, β)-boundary reconstruction; right : minimal reconstruc-
tion after thinning. (Edgels from Canny’s algorithm on a color gradient)

2. As long as the queue is not empty, fetch an edge from the queue and remove
it from the boundary reconstruction if it is still simple (it may have lost this
property after removal of other edges). Put the edges in the triangle of the
removed edge in the queue if they have now become simple.

As far as region topology is concerned, the ordering of the edgels in the priority
queue is arbitrary. For example, we can measure the contrast (image gradient)
along each edge and remove weak edges first. A particularly interesting ordering
is defined by the length of the edges:

Definition 3. A (not necessarily unique) minimal boundary reconstruction is
obtained from an (α, β)-boundary reconstruction by means of topology-preserving
thinning where the longest edges are removed first.

The resulting boundaries are illustrated in Fig. 3. Since region topology is pre-
served, the minimal boundary reconstruction is homotopy equivalent to the
boundary B of the original plane partition ∂P . The two boundaries are not
in general topologically equivalent, because the adjacency relations between re-
gions may differ (see below for details), and the reconstruction may contain short
edges, which end in the interior of a region (they can also be removed iteratively).

Since the minimal boundary reconstruction is the shortest possible one with
correct topology, the surviving edges connect edgels closest to each other. Neigh-
boring edgels therefore align in an optimal way on the thinned boundary. The
length dmax of the longest surviving edge is a measure of the density of the
boundary sampling. The maximum distance p between a true boundary point
and the nearest edgel may be much larger than dmax/2 if the displacement of
neighboring edgels is highly correlated as is usually the case in practice. For
example, edgels along a circular arc are consistently biased toward the concave
side of the curve. When we set α′ = dmax/2+ ǫ < p (with arbitrarily small ǫ), an
(α′, β) reconstruction of the edgel set is still correct in the sense of theorem 1:
since the minimal reconstruction is a subset of the (α′, β) reconstruction, no true
regions can get merged. Since α′ < α, no region can get lost, and since β remained
unchanged, no additional holes can be created. In fact, β′ = α′ + p + q < 2p + q
would have been sufficient.
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Fig. 4. Narrow spikes can lead to a boundary reconstruction where originally uncon-
nected regions (a) look like they had a common boundary edge (b).

Theorem 1 does not guarantee that the neighborhood relations between re-
constructed regions are the same as of the original regions, as can be seen in
Fig. 4. The following theorem shows that neighborhood relations are preserved
when the boundary arcs are long enough and free of (θ, d)-spikes:

Theorem 2. Let P be an r-stable plane partition with regions ri and boundary
B having no (θ, d)-spikes. Further, let S be a (p, q)-sampling of B and R the
(α, β)-boundary reconstruction of S with regions hi, such that all requirements
of theorem 1 are fulfilled. Si = ∂hi ∩S denotes the set of edgels on the boundary
of hi. When d ≥ 2 (α + q) and p′ := d/

(

2 sin θ
2

)

+ q the following holds:

1. If the distance between the two nearest edgels of Si and Sj exceeds 2p′, the
corresponding original regions ri, rj are not adjacent, i.e. ∂ri ∩ ∂rj = ∅.

2. When there exists a point x with dH(x, Si) ≤ p′, dH(x, Sj) ≤ p′ and
dH(x, Sk) > 2p′ for all k 6= i, j, the original regions ri, rj are arc-adjacent.

3. If two regions ri, rj have a distance greater than 2 (p′ + q), the conditions of
item 1 are always fulfilled.

4. If two regions ri, rj have a common boundary point x such that dH(x, rk) >
3p′ for all k 6= i, j, the conditions of item 2 are always fulfilled, i.e. adjacency
of ri and rj can be detected in the boundary reconstruction.

Proof. (1) For any st ∈ Si let xt ∈ ∂ri be the nearest boundary point. Then for
any two st1 , st2 being connected by a line segment of ∂hi, the distance between
xt1 and xt2 is smaller than 2 (α + q). Since (θ, d)-spikes do not exist, the distance
of each point of ∂ri to the nearest xt cannot exceed d/

(

2 sin θ
2

)

and thus the
distance of ∂ri to ∂hi is bounded by p′. The same holds for hj . When the shortest
distance between Si and Sj is larger than 2p′, ∂ri and ∂rj cannot intersect.
(2) Both Si and Sj intersect the disc B0

p′(x). Since dH(x, Sk) > 2p′ for every

k 6= i, j, no part of ∂rk can intersect B0
p′(x). Thus ri and rj are the only regions

which intersect B0
p′(x), which is only possible when they have a common edge.

(3) Since the distance between ri and rj exceeds 2 (p′ + q), Si, Sj have to be
more than 2p′ away from each other.
(4) Due to the absence of (θ, d)-spikes, the distance dH(x, Sk), k 6= i, j must be
greater than 2p′. For the same reasons, dH(x, Si) ≤ p′ and dH(x, Sj) ≤ p′. ⊓⊔
It follows that if every junction of P has degree 3, the boundary sampling only
needs to be sufficiently accurate (i.e. p, q, and α are sufficiently small) in order
to reconstruct not only the topology of every region of a plane partition, but
also the complete neighborhood relations, i.e. a complete combinatorial map [2]
encoding P’s abstract topology, without any error.



(a) (b) (c)

Fig. 5. The interpixel boundary (dashed) can be extracted from the subset digitization
(a). It includes both the midcrack digitization (b) and the endcrack digitization (c).

4 Application to Popular Segmentation Schemes

In order to apply our boundary reconstruction algorithm, we can derive correct
choices for α and β from the error bounds p and q of the edgel detector. First,
let us pretend that we have access to the exact projected image, i.e. to the
plane partition P. One possibility to digitize this partition is the so-called subset
digitization: We assign the same label to two pixels iff their centers are in the
same region. Then, interpixel edges (crack edges) can be defined between pixel
facets with different labels, see Fig. 5a. Crack edges give rise to two natural
kinds of edgels: endcrack and midcrack edgels (located on the end or center
points of the cracks respectively, Fig. 5b and c). When the boundaries of the
plane partition are free of (θ, d)-spikes, the following bounds can be derived [11]:
q = h√

2
(endcrack) and q = h

2 (midcrack) and p = q +
(

h
2 + q

)

/ sin θ
2 (both

cases), where h ≤ d
1+

√
2

is the required pixel distance. For example, when h = 1

and the plane partition has no (60◦, d)-spikes with d > 2.4, we get p ≈ 1.31,
q ≈ 0.7 for endcrack and p = 1, q = 0.5 for midcrack digitization, i.e. the latter
is more accurate.

Many segmentation algorithms (e.g. zero-crossing-based edge detectors and
the watershed algorithm) compute image labelings similar to subset digitization,
which can be used to define endcrack and midcrack edgels. However, their error
bounds differ from the ideal ones obtained above. To quantify these differences,
we model the transformation from analog to digital images in real cameras:

fij = (PSF ⋆ f(x, y))ij + nij (1)

where f(x, y) is the ideal geometric image, PSF is the point spread function,
subscripts denote sampling, and nij is additive Gaussian noise (quantization
is neglected). The PSF (which shall be band-limited) suppresses high spatial
frequencies and the resulting smooth transitions between regions allow for sub-
pixel accurate edge localization. On the other hand, systematic localization errors
are introduced because blurring distorts edges. Noise causes additional statistical
errors in p and q. We estimate these errors for a number of exemplary edge
detectors: we consider two variants of the Haralick detector as representatives
of zero-crossing-based algorithms, and three variants of Canny’s algorithm to
exemplify ridge-based edge detection. Haralick [4] defines edgels at the zero-
crossing of the second derivative along the gradient direction:

b = f2
xfxx + 2fxfyfxy + f2

y fyy
!
= 0 (2)



(a) (b) (c) (d)

Fig. 6. Edgels and boundary reconstruction using α = 1.55, β = 2: (a) midcrack variant
and (b) subpixel variant of Haralicks algorithm. Note the lower density and higher
displacement of the former. (c) Parabola and (d) spline variant of Canny’s algorithm.
Red dots indicate the ground-truth corner locations.

provided that the third derivative along the same direction is negative (indicating
a local gradient maximum), and the gradient magnitude is above a threshold.
Crack edges between positive and negative pixels of b where the constraints are
fulfilled define a set of midcrack edgels. Their fixed accuracy can be improved
when a continuous function b̃ is computed by spline interpolation of b, and edgels
are located in b̃ by means of Newton iteration along the gradient direction. In
our implementation of this variant, edgels are placed roughly at a distance of
0.1 pixels along the edge, Fig. 6a, b.

In contrast, Canny’s algorithm [3] uses the gradient magnitude
√

f2
x + f2

y

and looks for relative maxima along the gradient direction. Better localization
(significantly smaller q) is achieved by either computing the maximum of an ap-
proximating parabola accross the edge, or by Newton iterations on a continously
interpolated version of the gradient image, Fig. 6c and d. We estimate p and q
on a large number of images created by numerical solution of the convolution
integral (1) at various angles and grid positions, Fig. 6. Derivatives are computed
by Gaussian filters at scale σE , and the PSF is also Gaussian with scale σPSF.
To avoid aliasing we use σE ≥ 1 and σPSF = 1 (cf. [12]).

First, consider straight edges. A radial symmetric PSF does not distort
straight edges and q should be close to zero (non-zero values reflect discrep-
ancies between the computational theory and its actual realization). Subpixel
methods achieve q . 0.05 pixels. With the exception of the subpixel Haralick
operator (which places edgels very densely), p roughly equals the pixel radius.
Row 1 in Table 1 lists the maximum errors we found.

The effect of image noise on straight edge localization was analysed by
Canny [3]. When the noise is Gaussian distributed with zero mean and stan-
dard deviation sN , the expected error (in pixels) is

E[ξ] =
sN

a

√
6

4

(

1 +
σ2

PSF

σ2
E

)3/2

(3)

where a is the height of the step, and a/sN is the signal-to-noise ratio (SNR).
When σPSF ≈ σE , we get E[ξ] ≈ 1.7 sN

a . For σE → ∞, the error approaches
0.6 sN

a (the common belief that the error increases with σE is only justified in



Table 1. Experimental estimates of the maximum errors p and q (pixels). Theoretical
predictions are given in brackets. Unless noted, there was no noise and σPSF = σE = 1.

Canny (pixel

coordinates)

Canny

(parabola)

Canny

(spline)

Haralick

(midcrack)

Haralick

(spline)

p q p q p q p q p q

straight line 0.79 0.70 0.71 0.05 0.75 0.02 0.70 0.47 0.19 0.46

[0.7] [0.0] [0.0] [0.5] [0.0]

straight line 1.0 0.82 0.81 0.47 0.92 0.57 0.90 0.93 0.63 0.85

SNR = 10 [0.52] [0.52] [0.52]

straight line 1.0 0.81 1.0 0.28 1.0 0.28 0.79 0.73 0.57 0.81

σE = 2, SNR = 10 [0.26] [0.26] [0.26]

disc, radius = 4 0.73 0.73 0.25 0.74 0.29

[0.2] [0.2]

corner, 90◦ 1.58 0.84 1.38 0.76 1.34 0.69 1.52 0.93 1.15 0.71

[0.71] [0.71] [0.71] [0.71] [0.71]

corner, 15◦ 4.03 1.3 3.99 0.92 3.96 0.94 3.39 1.33 3.96 1.3

[3.1] [3.1] [3.1] [3.1] [3.1]

junction, degree = 3 2.70 1.56 2.66 1.15 2.70 1.40 2.25 1.81 2.20 1.71

1D). In typical images a
sN

is between 5 and 100. The expected statistical error
is then below 0.2 pixels, and the maximum error does not exceed 3E[ξ] = 0.6
pixels with probability 0.997. Rows 2 and 3 of Table 1 confirm these predictions.

Smoothing of curved boundaries with the PSF results in biased edgel posi-
tions. The gradient magnitude of a disc with radius ρ and contrast a is [1]

g(r) = |a| ρ

σ2
e−

r2+ρ2

2σ2 I1

( rρ

σ2

)

(4)

where r is the distance from the center of the disc, I1 is the modified Bessel
function of order 1, and σ2 = σ2

PSF + σ2
e is the combined scale of the PSF and

edge operator. The bias depends on the curvature radius ρ and the scale σ. It is
directed towards the concave side of the curve when σ < 0.8ρ (which is true in
most practical situations). Row 4 of Table 1 compares theoretical predictions and
experimental estimates for ρ = 4. It can be seen that the best methods (using
spline interpolation and Newton iterations) are very close to the theoretical limit.

A bias toward the concave side of the contour is also observed at corners. Its
magnitude depends on σ and the corner angle ϕ and is maximal along the bisec-
tor of the corner. The gradient maximum along the bisector (i.e. the estimated
edge location) is the solution of the implicit equation [7]

1

2πσ2
e−

r2

2σ2 −
(

tan
(ϕ

2

))2 r

2

(

1 + erf

(

r√
2σ

))

= 0 (5)

where erf is the error function. The sharper the corner, the higher the bias.
E.g. for ϕ = 90◦, 45◦, 15◦ it is approximately 0.5σ, 1.2σ, and 2.2σ. Rows 5 and
6 in Table 1 show that actual errors are even higher than theory predicts.

The situation at junctions is even more complicated. The large number of
degrees of freedom (angles, intensities) does not allow the error to be described
in a compact way. The algorithms considered here are usually unable to close all
contours near a junction. The remaining gaps also cause p to attain quite large
values, as row 7 of Table 1 shows.



α = 0.1 α = 0.7 α = 1.2 α = 1.7

Fig. 7. Chinese character (white: contours extracted by levelcontour tracing [13]),
(α, β)-boundary reconstructions with increasing values of α (red : before thinning,
black : minimal boundary reconstruction)

Fig. 3 and Fig. 7 show results of α, β-reconstruction in two real images.
Region topology is correctly recovered when α and β are properly chosen. Since
edgels are considered as isolated points, our new algorithm also facilitates the
combination of edgels from different sources, cf. Fig. 8: The edgels computed by
Canny’s algorithm are not very accurate near corners and junctions, and this
requires large α and β causing the reconstruction to be thick in problematic areas
(gray). In a second step, a maximum likelihood junction position is computed
from the gradient magnitudes and directions at the edgels in a neighborhood of
each thick area, resulting in the red points. These points are simply added to
the set of edgels, and the reconstruction from the new set is much more accurate
than the original one.

5 Conclusions

To our knowledge, this paper exploits the first geometric sampling theorem which
explicitly considers measurement errors. We carefully derive the theoretical prop-
erties of several well-known edge detectors in order to apply our new theorem
and demonstrate theoretically correct edgel linking. The resulting segmentations
are similar to what one gets from traditional heuristic linking, but their prop-
erties can now be formally proven thanks to their theoretical basis in Delaunay
triangulation. The key to these advancements has been the shift of attention
from region-based digitization models to edge based ones: the assumption that
no sampling points are in the interior of any region (beyond the known error
bound) allows us to reliably recover region and boundary connectivity.

We demonstrated that many known digitization and segmentation methods
can be analyzed and applied in the new framework by simply determining their
error bounds. We can predict whether a given image will be handled properly by
an algorithm with a certain error bound. When the error increases, the perfor-
mance degrades gracefully: first, the recovered boundary becomes thick when the
detailed curve shape or junction connectivity can no longer be unambiguously
determined. Then, regions get split at too narrow waists, and finally too small
regions will be lost (cf. Fig. 7). When additional edgels are added within the
thick part of the (α, β)-boundary reconstruction, the accuracy parameters p and
q will never increase. This opens up new possibilities for algorithm combination.
For example, one could start with an edge detector and a large α which produces



Fig. 8. Left: original image and ROI; center: (α, β)-boundary reconstruction from sub-
pixel Canny edgels (black and gray), thinned reconstruction (black only) and additional
edgels to be added (red); right: modified reconstruction including new edgels.

thick boundaries near corners and junctions. Additional edgels can then be com-
puted by a corner detector whose output is confined to these areas, so that it
cannot produce false positives within regions. In fact, false positives (large q)
and false negatives (large p) are the major difficulties in our new algorithm. We
are currently investigating how these can be recognized and removed.
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9. P. Stelldinger, U. Köthe: Towards a General Sampling Theory for Shape Preserva-

tion, Image and Vision Computing, 23(2):237-248, 2005
10. P. Stelldinger: Digitization of Non-regular Shapes, in: C. Ronse, L. Najman, E. De-

cenciere (Eds.): Mathematical Morphology, ISMM, 2005
11. P. Stelldinger, U. Köthe, H. Meine: Topologically Correct Image Segmentation using

Alpha Shapes, University Hamburg, Technical Report, 2006
12. B. ter Haar Romeny: Front-End Vision and Multi-Scale Image Analysis, Kluwer

Academic Publishers, Dordrecht, 2003
13. Allgower, E.L., Georg, K.: Numerical path following. In: P.G. Ciarlet, J.L. Lions

(Eds.), Handbook of Numerical Analysis 5 (1997) 3–207. North-Holland.


