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Abstract. In digitizing 3D objects one wants as much as possible object
properties to be preserved in its digital reconstruction. One of the most
fundamental properties is topology. Only recently a sampling theorem for
cubic grids could be proved which guarantees topology preservation [1].
The drawback of this theorem is that it requires more complicated re-
construction methods than the direct representation with voxels. In this
paper we show that face centered cubic (fcc) and body centered cubic
(bcc) grids can be used as an alternative. The fcc and bcc voxel repre-
sentations can directly be used for a topologically correct reconstruction.
Moreover this is possible with coarser grid resolutions than in the case
of a cubic grid. The new sampling theorems for fcc and bcc grids also
give absolute bounds for the geometric error.

1 Introduction

In 3D image analysis one often has to deal with the huge amount of data of volu-
metric images. Using non-standard grids, like bcc and fcc grids for digitizing 3D
objects is a very promising method in order to reduce the amount of data, since
these grids have a very high packing density (i.e. the ratio between the volume of
the largest ball completely enclosed in a voxel and the volume of the voxel itself)
in comparison to cubic grids [2, 3]. The advantages of the bcc and fcc grids has
led to various applications in very different areas, e.g. in fuzzy segmentation [4]
and in computer graphics and data visualization, [2,5,6]. Also, image processing
algorithms on which many applications rely have been developed for these grids,
e.g. weighted distance transforms [7] and multiscale representation of images [8].

The question addressed in this paper is, if these grids can be used for topol-
ogy preserving digitization and if they are advantageous regarding this problem
relatively to the common cubic grid.

While first solutions to topology preserving digitization in 2D have already
been published in 1982 [9,10], the 3D generalization remained unproved for over
20 years. In fact it is proved that topological changes can never be avoided if
one uses the digital reconstruction on a cubic grid, i.e. the union of the voxels



whose sampling points lie inside the object [11]. At least connectivity and the
number of the objects components could be reliably detected with the digital
reconstruction, as shown in [12]. But this is not all the topological information.
Only recently one of the authors showed together with Siqueira and Latecki that
one can digitize 3D r-regular objects with a sufficiently dense sampling grid, such
that the whole topological information is unchanged, if one uses not the digital
reconstruction based on the voxels, but certain other reconstruction methods [1].

As we will show in this paper, the use of a sufficiently dense bcc or fcc grid
leads to a topologically correct digital reconstruction, i.e. one does not need to
use more complicated reconstruction methods. Moreover the grid density which
is necessary for proving the preservation of topology is for both fcc and bcc grids
smaller than for cubic grids, i.e. one needs much less sampling points in order
to guarantee the right topology.

2 Preliminaries

The (Euclidean) distance between two points x and y in R
n is denoted by d(x, y),

and the Hausdorff distance dH(·, ·) between two subsets of R
n is the maximal

distance between each point of one set and the nearest point of the other. Let
A ⊂ R

n and B ⊂ R
m be sets. A function f : A → B is called homeomorphism if

it is bijective and both it and its inverse are continuous. If f is a homeomorphism,
we say that A and B are homeomorphic. Let A, B be two subsets of R

3. Then
A homeomorphism f : R

3 → R
3 such that f(A) = B and d(x, f(x)) ≤ r, for

all x ∈ R
3, is called an r-homeomorphism of A to B and we say that A and B

are r-homeomorphic. A Jordan curve is a set J ⊂ R
n which is homeomorphic

to a circle. Let A be any subset of R
3. The complement of A is denoted by Ac.

All points in A are foreground while the points in Ac are called background. The
open ball in R

3 of radius r and center c is the set B0
r(c) = {x ∈ R

3 | d(x, c) < r},
and the closed ball in R

3 of radius r and center c is the set Br(c) = {x ∈ R
3 |

d(x, c) ≤ r}. Whenever c = (0, 0, 0), we write B0
r and Br. We say that A is open

if, for each x ∈ A, there exists a positive number r such that B0
r(x) ⊂ A. We say

that A is closed if its complement, Ac, is open. The boundary of A, denoted ∂A,
consists of all points x ∈ R

3 with the property that if B is any open set of R
3

such that x ∈ B, then B ∩ A 6= ∅ and B ∩ Ac 6= ∅. We define A0 = A \ ∂A and
A = A ∪ ∂A. Note that A0 is open and A is closed, for any A ⊂ R

3. Note also
that B0

r(c) = (Br(c))
0 and Br(c) = B0

r(c). The r-dilation A⊕B0
r of a set A is the

union of all open r-balls with center in A, and the r-erosion A⊖B0
r is the union of

all center points of open r-balls lying inside of A. We say that an open ball B0
r(c)

is tangent to ∂A at a point x ∈ ∂A if ∂A∩∂B0
r(c) = {x} and ∂A∩B0

r(c) = ∅. We
say that an open ball B0

r(c) is an osculating open ball of radius r to ∂A at point
x ∈ ∂A if B0

r(c) is tangent to ∂A at x and either B0
r(c) ⊆ A0 or B0

r(c) ⊆ (Ac)0.
Since all of the known topology preserving sampling theorems in 2D require the
object to be r-regular [9–11], we will use the 3D generalization for our approach
(refer to Fig. 1):



Definition 1. A set A ⊂ R
3 is called r-regular if, for each point x ∈ ∂A, there

exist two osculating open balls of radius r to ∂A at x such that one lies entirely
in A and the other lies entirely in Ac.

2r

Fig. 1. For each boundary point of a 2D/3D r-regular set there exists an outside and
an inside osculating open disc/ball of radius r.

Note, that the boundary of an r-regular set is a 2D manifold surface.
A countable set S ⊂ R

3 of sampling points with dH(R3, S) ≤ r′ for some
r′ ∈ R+ such that S ∩ A is finite for each bounded set A, is called r′-grid. r′ is
called the covering radius. The voxel VS(s) of a sampling point s is its Voronoi
region, i.e. the set of all points lying at least as near to this point as to any other
sampling point.

Given a translation vector t and a rotation matrix R in 3D, the bcc and fcc
r′-grids are defined by S := {t + R · 2√

5
(x1, x2, x3)|x1, x2, x3 ∈ Z, x1 ≡ x2 ≡

x3(mod2)} and S := {t+R · (x1, x2, x3)|x1, x2, x3 ∈ Z, x1 +x2 +x3 ≡ 0(mod2)}.
Due to the scaling factor these grids are r′-grids. Note that the Hausdorff dis-
tance between a 3D object and an r′-grid is at most r′, thus different sampling
grids with the same covering radius lead to results with a geometrically compa-
rable accuracy (see Fig. 10(2) to (4)). Note, that both bcc and fcc grids can be
embedded in a cubic grid, as is illustrated in Fig. 2.

The intersection of A ⊆ R
3 with S is called the digitization of A with S.

The digital reconstruction of A with S is the union of all voxels belonging to the
sampling points of the digitization. Two voxels are face-adjacent or adjacent if
they share a face. They are vertex-adjacent if they intersect in exactly one point
(this is not possible for bcc grids).

3 Digital Reconstruction of r-Regular Sets

Let A ⊂ R
3 be an r-regular object, let S be a bcc or a fcc r′-grid, and consider

the digital reconstruction Â of A with respect to S. Assume that no sampling
point of S lies on ∂A. This assumption is not a restriction, as if some sampling
point lies on ∂A, there always exists an ε > 0 such that the ε-dilation A⊕Bε is
(r − ε)-regular with r − ε > r′, and A ⊕ Bε has the same digital reconstruction
as A, thus by updating r to the value of r − ε, the assumption is true.

In this section we will show that certain configurations of neighboring voxels
in an fcc or a bcc grid can not occur in a sufficiently dense digitization of an



(a) (b) (c)

Fig. 2. Both fcc (a),(b) and bcc (c) grids can be embedded in cubic grids of higher
resolution. The points are neighboring sampling points of the shown voxel of the fcc,
respectively bcc grid, and the dashed lines show the cubic grid. The shown spheres
have radius r

′. The dual grid of an fcc r
′-grid consists of octahedra (a) and tetrahedra

(b). All line segments of them have length
√

2r
′. The faces of both octahedra and

tetrahedra are equilateral triangles. Based on the included cubic grid, a bcc r
′-grid can

be completely separated into octahedral configurations (c). Four of the line segments

of the octahedra have length 4√
5
r
′ and eight have length 2

q
3

5
r
′. The faces of the

octahedra are isosceles triangles with one angle of 2 arcsin
�

1√
3

�
≈ 70.53◦ and two

angles of arccos
�

1√
3

�
≈ 54.74◦. Note that the fcc r

′-grid is embedded in a cubic
√

3

2
-

grid, while the bcc r
′-grid is embedded in a cubic

q
5

3
r
′-grid.

r-regular set and we will use this to show that the topology does not change
during digitization. Therefore we need some definitions and lemmas about the
local behavior of r-regular sets, which have already been introduced in [1]:

Definition 2. Let x, y be two points in R
3. Further let s > d(x, y). Then, the

intersection Ps(x, y) of all closed s-balls containing x and y,

Ps(x, y) =
⋂

{Bs(v) | x, y ∈ Bs(v)},

is called s-path region between x and y.
Now, let x, y, z be three points in R

3, and assume that s > 1

2
max{d(x, y), d(x, z),

d(y, z)}. Then, the intersection Ps(x, y, z) of all closed s-balls containing x, y
and z,

Ps(x, y, z) =
⋂

{Bs(v) | x, y, z ∈ Bs(v)},

is called s-surface region between x, y and z.
A nonempty set B is called an r-simple-cut set if it is the intersection of (a

maybe infinite number of) closed balls with radii smaller than r.

Lemma 1. Let A be an r-regular set and x, y be two different points in A with
d(x, y) < 2r. Further, let L be the straight line segment from x to y. Then, the
function f mapping each point of L to the nearest point in A is well-defined,
continuous and bijective, and the range of f is a simple path from x to y.

Proof. Each point L ∩ A is its own nearest point in A. Since the intersection of
surface normals of r-regular sets has a minimal distance of r to the surface [13],
there exists for each point in L\A exactly one nearest point in ∂A because each



of these points has a distance smaller than r to the boundary. Thus f must be a
continuous function since if f would not be continuous at some point, this point
would have more than one nearest point in ∂A. Note that any point of L lies on
the normal vector of ∂A in its nearest boundary point. Now suppose one point
p of ∂A would be the nearest point to at least two different points l1 and l2 of
L. Then l1 and l2 both lie on the normal of ∂A in p. This implies that any point
in L including x and y lies on this normal. Since the normal vectors of length r
of an r-regular set do not intersect, the distance between x and y has to be at
least 2r which contradicts d(x, y) < 2r. Thus f is bijective. Since every bijective
continuous function of a compact metric space is continuous in both directions,
f must be a homeomorphism. This implies that the range is a simple path from
x to y. ⊓⊔

Definition 3. Let A be an r-regular set and x, y be two different points in A
with d(x, y) < 2r. Further, let L be the straight line segment from x to y. Then,
the range of the function f mapping each point of L to the nearest point in A is
called the direct path from x to y regarding A.

Lemma 2. Let A be an r-regular set and x, y be two points both inside A or both
outside A with d(x, y) < 2r. Then, Ps(x, y) is a simple-cut set for any s with
1

2
·d(x, y) ≤ s < r, the direct path from x to y regarding A lies inside A∩Ps(x, y)

and the direct path from x to y regarding (A ⊖ Bε)c lies inside Ac ∩ Ps(x, y) for
a sufficiently small ε > 0.

Proof. First, let x, y ∈ A. Since d(x, y) < 2r, Ps(x, y) is a simple cut set for any
s with 1

2
· d(x, y) ≤ s < r. Now, suppose there exists a point p on the direct

path lying outside of Ps(x, y). Then the outside osculating open r-ball of A in p
must cover either x or y which implies that they cannot lie on ∂A or inside A.
Thus, the direct path has to be inside Ps(x, y). If x, y ∈ Ac the analog is true by

looking at the (r − ε)-regular set (A ⊕ Bε)c for a sufficiently small ε > 0, since
there alway exists an ε such that x and y remain outside A⊕Bε and s < (r− ε).

⊓⊔

Lemma 3. Let A be an r-regular set and let B be an s-simple-cut set with s < r.
Further, let B0∩A0 6= ∅ and B∩Ac 6= ∅. Then, the intersection of the boundaries
of A and B, ∂A ∩ ∂B, is a Jordan curve.

Proof. Let c1 and c2 be two arbitrary points in B ∩ A and let P be the direct
path from c1 to c2. Then P lies inside of B due to lemma 2 and Ps(c1, c2) ⊂ B.
This implies that B ∩ A must be one connected component.

Now, consider the two points c1 and c2 lying in B∩Ac. Then the direct path
does not necessarily lie in Ac since this set is open, but in Ac. Thus for any open
superset of the intersection of all r-balls containing c1 and c2 there exists a path
from c1 to c2 inside this superset having a minimal distance to the direct path
in Ac. (B ∩ Ac)0 is such a superset, since ∂(B ∩ Ac) intersects the intersection
only in c1 and c2.



Thus both B ∩ A and B ∩ Ac have to be one component and thus the inter-
section of the boundaries, I = ∂A ∩ ∂B, must also be one component.

It remains to be shown that I is a Jordan curve. Since I separates ∂B in one
part inside of A and one part outside of A, it is a Jordan curve if and only if
there exists no point where B and A meet tangentially. Such a point would imply
that either the inside or the outside osculating ball of A at this point covers B.
Both cases are impossible since then B0 ∩A0 = ∅ or B ∩Ac = ∅. Thus, ∂A∩ ∂B
is a Jordan curve. ⊓⊔

Definition 4. Let A be an r-regular set and let x, y, z be three arbitrary points
inside of A0 ⊕ Br. Then, the inner surface patch Is(x, y, z) of x, y, z regarding
A is the set defined by mapping each point of the triangle T spanned by points
x, y, z to itself if it lies inside of A and mapping it to the nearest boundary point
in ∂A otherwise.

Now, let x, y, z be three arbitrary points inside of Ac ⊕ Br. Then the outer
surface patch Os(x, y, z) of x, y, z regarding A is the set defined by mapping each

point of the triangle T between the points to itself if it lies inside of (A ⊕ Bε)c

and mapping them to the nearest boundary point ∂(A ⊕ Bε)c otherwise, with ε
being half the minimal distance from the sampling points in Ac to ∂A.

Lemma 4. Let A be an r-regular set and x, y, z be three points inside A with
max{d(x, y), d(x, z),
d(y, z)} < 2r. Then Ps(x, y, z) is a simple cut set for any s with 1

2
·d(x, y) ≤ s < r

and the inner surface patch is homeomorphic to a disc, lies inside A∩Ps(x, y) and
is bounded by three paths, one going from x to y inside of Ps(x, y, z) ∩ Ps(x, y),
another going from y to z inside of Ps(x, y, z)∩Ps(y, z) and the third going from
z to x inside of Ps(x, y, z) ∩ Ps(z, x). The analog is true for x, y, z lying outside
of A and the outer surface patch.

Proof. The mapping used in definition 4 is a direct generalization of the mapping
in definition 3 and it is a homeomorphism for the same reasons if x, y, z lie inside
A and max{d(x, y), d(x, z), d(y, z)} < 2r. Its boundaries are equal to the direct
paths between each two of the three points. If x, y, z lie outside of A the proof
is analog. ⊓⊔

In the next two subsections we will use these properties of r-regular objects for
our proofs of the topology preservation. Therefore let s be an arbitrary but fixed
number with r′ < s < r − ε.

3.1 Digital Reconstruction on FCC Grids

Let us have a closer look at fcc grids. The Delaunay grid separates the space
R

3 into octahedra and tetrahedra due to the two types of voxel corners in an
fcc grid with 6 respectively 4 neighboring voxels (see Fig. 2(a) and (b)). The
digital reconstruction inside an octahedron respectively tetrahedron is totally
determined by the sampling points at its vertexes. By our above assumption,



each vertex of such an octahedron is either inside (i.e., a foreground point) or
outside (i.e., a background point) A. So, there are at most 26 = 64 distinct
configurations for a octahedron and 24 = 16 configurations for a tetrahedron
with respect to the binary “status” of the vertices. However, up to rotational
symmetry, reflectional symmetry, and complementarity (switching foreground
and background points), these configurations are equivalent to the 6 canonical
configurations for the octahedron and the 3 configurations for the tetrahedron
shown in Fig. 3. In the following we will show that case 4 of the 6 octahedron

(1) (2) (3) (4) (5)

(6) (7) (8) (9)

Fig. 3. There are 64+16 distinct configurations in an fcc grid for neighboring sampling
points that are either inside or outside a digitized set. However, up to rotational symme-
try, reflectional symmetry, and complementarity (switching foreground and backgroud
points), these 80 configurations are equivalent to the above 9 canonical configurations.

configurations can not occur if one digitizes an r-regular object with a sufficiently
dense fcc grid. The problem of topology preserving digitization is that in case
of configuration 4 a non-manifold surface is reconstructed, which can not be
guaranteed to be topologically equivalent to the surface of the original object.
This can be avoided by using a sufficiently dense sampling grid for digitizing an
r-regular object, as shown by the following theorem:

Theorem 1. Configuration 4 in Fig. 3 cannot occur in the digital reconstruction
of an r-regular object with an fcc r′-grid with

√
2r′ < r.

Proof. In the following let the dark sampling points in Fig. 3 be in the foreground
and the white sampling points in the background. Further, let the sampling
points p1, p2, . . . p6 of an octahedron be numbered as shown in Fig. 3(a).

Suppose to the contrary, configuration 4 occurs in the digital reconstruction
of an r-regular object A. Since the distance from p1 to p6 is 2r′ and thus smaller
than 2r, there exists a foreground path between these points lying completely
inside Ps(p1, p6).

On the other side, the three background points p2, p3, p4 have each a distance
being smaller than 2r. Thus, due to Lemma 4, there exists an outer surface patch
between them. This patch lies inside Ps(p2, p3, p4) with its surface boundary lying
inside the union of Ps(p2, p3), Ps(p2, p4) and Ps(p3, p4). Analogously there exists
a outer surface patch between the three background points p2, p4, p5 with its
boundary in Ps(p2, p4), Ps(p2, p5) and Ps(p4, p5). Due their definition, the two



outer surface patches have the boundary part inside Ps(p2, p4) in common such
that together they form a surface patch between the four points p2, p3, p4, p5.
Fig. 4(b) and (c) show that Ps(p1, p6) goes through this surface patch without
intersecting the bounding r-path regions for

√
2r′ = r (Obviously this is also true

for smaller r′). Since both p1 and p6 lie outside Ps(p2, p3, p4)∪Ps(p2, p4, p5), the
path from p1 to p6 must go through the combined surface patch and thus there
has to exist a point lying both in A and Ac. It follows that case 4 cannot occur
in the digital reconstruction of an r-regular object if

√
2r′ < r. ⊓⊔

(a) (b) (c)

Fig. 4. Case 4 is impossible in dense digitizations (a) of r-regular objects with an fcc
grid, since the path region crosses the outer surface region (b) and topview (c).

We have seen that case 4 is impossible if we use a sufficiently dense sampling grid.
As one can see, in the remaining cases the intersection of one of the octahedra
and the boundary of the digital reconstruction is always either empty (case 1)
or homeomorphic to a disc, such that the octahedron is divided into an inner
and an outer part, both homeomorphic to a ball (cases 2,3,5 and 6), see Fig. 5.
This fact allows us to derive the following sampling theorem: The above theorem

(1) (2) (3) (4) (5)

(6) (7) (8) (9)

Fig. 5. Local reconstructions with the fcc grid inside the octahedra and tetrahedra.
Note that for all cases except of cases 1, 4 and 7 the surface of the reconstruction
inside the octahedra and tetrahedra is homeomorphic to a disc.

allows us to derive a sampling theorem for fcc grids, since it implies that the
surface of the reconstruction is locally disc-shaped, which is also the case for the
original r-regular object.

Theorem 2. Let A be an r-regular object and S be an fcc r′-grid with
√

2r′ < r.
Then the digital reconstruction is 2r′ + ε-homeomorphic to A.



Proof. Due to Theorem 1, the only cases which can occur in the digitization of
an r regular object with an fcc r′-grid with

√
2r′ < r are cases 1 to 9 except of

case 4.
Now consider a configuration of case 2,3,5 or 6 and let O denote the octa-

hedron defined by the six sampling points. In these cases the intersection of ∂O
and the boundary of the digital reconstruction is a Jordan curve (see Fig. 5).
The same is true for cases 8 and 9 in the tetrahedron. Now each face Fi of the
octahedron respectively tetrahedron is a triangle with its corner points having a
distance of

√
2r′, i.e. smaller than 2r. We define a new surface patch for such a

triangle between three sampling points in the following way:
If all three sampling points p1, p2, p3 lie inside of A, we take the inner surface

patch. Analogously if all three sampling points lie outside of A, we take the outer
surface patch.

(a) (b) (c) (d)

Fig. 6. In order to construct a surface between three sampling points being not all in
the foreground (a), we combine the inner (b) and the outer surface patch (c) such that
the result (d) is cut by ∂A into exactly two parts.

If only one sampling point p1 lies inside of A, we use the mapping of the inner
surface patch for each point lying inside the smaller triangle △(p1,

p1+p2

2
, p1+p3

2
)

and the mapping of the outer surface patch otherwise, see Fig. 6 for an illus-
tration. In order to get a connected surface, we further add the straight line
connections between the inner and the outer surface patch for any point lying
on the straight line from p1+p2

2
to p1+p3

2
. If one sampling point lies outside and

the other two inside of A, we define the mapping analogously.
This leads to a surface patch between the three points which is always home-

omorphic to a disc. Furthermore, since any of the added straight line connections
follows a normal of ∂A and thus cuts ∂A exactly once, the intersection of the
surface patch with ∂A is a simple curve.

By combining the surface patches of the octahedron respectively tetrahedron
faces we get a surface homeomorphic to the octahedron respectively tetrahedron
surface intersecting ∂A in a Jordan curve.

In order to guarantee that the new surface patches can be combined without
topological errors, we have to show that they can only intersect in their bound-
aries. This is true if any two path regions can only intersect in common sampling
points. Since any angle α of any of the equilateral octahedron or tetrahedron tri-
angles is 60◦, we only have to ensure that the opening angle β of the cigar shaped
path regions is smaller than 60◦. One can easily show that β = 2arcsin

(

l
2r

)

with

l =
√

2r′ being the distance between the two sampling points, and thus β < 60◦

for
√

2r′ < r.



If we have a octahedron of case 1 or a tetrahedron of case 7, we also can
take the above surface patch construction, since it only consists of triangles
lying completely inside respectively completely outside of A and thus the surface
patches are well-defined. The resulting combined surface does not intersect ∂A
at all.

Thus we have partitioned the whole space into deformed octahedral and
tetrahedral regions separated by the new surface patches. The original object
is homeomorphic to the result of the digital reconstruction inside each of the
regarded regions. The combination of the local homeomorphisms (each being a
(2r′ + ε)-homeomorphism) leads to a global r-homeomorphism from A to the
reconstructed set. ⊓⊔

The above theorem states that an r-regular object can be reconstructed without
any change in the topological information by using an fcc r′-grid with

√
2r′ < r.

This means that one only needs 4 sampling points per cube of sidelength 2r′ and
thus only a bit more than

√
2 sampling points per cube of sidelength r. This is

much better than using a cubical sampling grid: The sampling theorem for cube
grids derived in [1] needs 2r′ < r and thus more than 8 sampling points per cube
of sidelength r in order to guarantee topology preservation. This is more than
5.6 times the number of sampling points needed with an fcc-grid! See Fig. 10(5)
to (7) for an example.

In addition to that topology preserving digitization on a cubic grid needs
more complicated reconstruction methods than the digital reconstruction, as
shown in [11] and [1] – whereas by using an fcc grid one can directly use the
digital reconstruction.

There is another interesting implication of the above sampling theorem:
Given an r-regular object we have to use a sampling grid with 2r′ < r if we want
to guarantee topology preservation and if we use cubic sampling grids. Now we
make use of the fact that one can construct an fcc 2√

3
r′-grid by removing every

second sampling point in a cubic r′-grid. Then we only need
√

2 · 2√
3
r′ < r.

Thus by throwing away half of the sampling points of the cubic grid and using
the digital reconstruction on the resulting fcc grid, we can derive the correct
topology at resolutions where this is not possible by reconstructing directly on
the cubic grid, as can be seen in Fig. 10(8) to (13).

3.2 Digital Reconstruction on BCC Grids

In this subsection we will derive an analogous result to the ones of the last
section for bcc grids. The voxels of a bcc grid are truncated octahedra having
eight hexagonal and six square faces (see Fig. 2(c)). Thus two face-adjacent bcc
voxels share either a hexagonal face or a square face.

Similarily to the fcc grid, we can partition the space R
3 into octahedra based

on the bcc grid. These octahedra are not directly given by the Delaunay grid.
They are instead each a union of 4 tetrahedra of the Delaunay grid and they
can be defined as follows: The bcc grid S = { 2√

5
(x1, x2, x3)|x1, x2, x3 ∈ Z, x1 ≡



x2 ≡ x3(mod2)} contains the cubic grid S′ = { 4√
5
(x1, x2, x3)|x1, x2, x3 ∈ Z},

such that the remaining sampling points of S \ S′ are the center points of the
dual cubes in S′. Now we can define for each face of a dual cube an octahedron
by connecting its four corner points with the center points of the two adjacent
dual cubes (see Fig. 2(c)). Each octahedron connects two bcc voxels sharing a
square face and their common four neighbors (see Fig. 8(a)). The same partition
into octahedra is used in [6] for building a polygonal surface reconstruction.

In contrast to the regular octahedra of the fcc grids, these octahedra are
not regular, but square dipyramids with baselength 4√

5
and pyramid height 2√

5
.

Thus not 6 but 10 different canonical configurations have to be distinguished,
see Fig. 7. Analogously to case 4 of the fcc grid we will now show that cases 4a

(1) (2a) (2b) (3a) (3b)

(4a) (4b) (5) (6a) (6b)

Fig. 7. There are 64 distinct configurations in a bcc grid for sampling points in an
octahedron. However, up to rotational symmetry, reflectional symmetry, and comple-
mentarity (switching foreground and backgroud points), these 64 configurations are
equivalent to the above 10 canonical configurations.

and 4b can not occur if one digitizes an r-regular object with a sufficiently dense
bcc grid.

Theorem 3. Configuration 4a and 4b in Fig. 7 cannot occur in the digital re-

construction of an r-regular object with a bcc r′-grid with
√

33

10
r′ < r.

Proof. In the following let the dark sampling points in Fig. 7 be in the foreground
and the white sampling points in the background. Further, let the sampling
points p1, p2, . . . p6 be numbered as shown in Fig. 7(a).

Suppose configuration 4a occurs in the digital reconstruction of an r-regular
object A. Since the distance from p1 to p6 is 4√

5
r′ and thus smaller than 2r, there

exists a foreground path between these points lying completely inside Ps(p1, p6).
Analogously to the proof for the fcc grid, there exists a surface patch between

the four points p2, p3, p4, p5, since their pairwise distance is at most 4
√

2√
5
r′ < 2r.

Fig. 8(b) and (c) show that Ps(p1, p6) goes through this surface patch without

intersecting the bounding r-path regions for
√

33

10
r′ = r (Obviously this is also

true for smaller r′). Since both p1 and p6 lie outside Ps(p2, p3, p4)∪Ps(p2, p4, p5),
the path from p1 to p6 must go through the combined surface patch and thus
there has to exist a point lying both in A and Ac.



Now suppose configuration 4b occurs in the digital reconstruction of an r-

regular object A. Then the distance from p2 to p4 is 4
√

2√
5
r′ and thus smaller

than 2r, such that there exists a foreground path between these points lying
completely inside Ps(p2, p4).

In this case there can be constructed a surface patch between the four points

p1, p3, p5, p6, since their pairwise distance is at most 4
√

2√
5
r′ < 2r. Fig. 8(d) and

(e) show that Ps(p2, p4) goes through this surface patch without intersecting the

bounding r-path regions for
√

33

10
r′ = r (Obviously this is also true for smaller

r′). Since both p2 and p4 lie outside Ps(p1, p3, p5)∪Ps(p3, p5, p6), the path from
p2 to p4 must go through the combined surface patch and thus there has to exist
a point lying both in A and Ac.

It follows that both cases 4a and 4b cannot occur in the digital reconstruction

of an r-regular object if
√

33

10
r′ < r. ⊓⊔

(a) (b) (c) (d) (e)

Fig. 8. Cases 4a (see (b) and (c)) and 4b (see (d) and (e)) are impossible in dense
digitizations (a) of r-regular objects with a bcc grid.

We have seen that cases 4a and 4b are impossible if we use a sufficiently dense
sampling grid. Fig. 9 illustrates that again in any of the remaining cases the
boundary of the digital reconstruction intersects the octahedron in a simple
surface, being homeomorphic to a disc, such that we can derive the following
sampling theorem for bcc grids:

(1) (2a) (2b) (3a) (3b)

(4a) (4b) (5) (6a) (6b)

Fig. 9. Local reconstructions with the bcc grid inside the octahedra. Note that for all
cases except of cases 1, 4a and 4b the surface of the reconstruction inside the octahedra
is homeomorphic to a disc.

Theorem 4. Let A be an r-regular object and S be a bcc r′-grid with
√

33/10r′ <

r. Then the digital reconstruction is 4
√

2/5r′ + ε-homeomorphic to A.



Proof. Due to Theorem 3, cases 4a and 4b can not occur in the digitization of
an r regular object with a bcc r′-grid with

√

33/10r′ < r.
Now consider a configuration of one of the other cases except of case 1 and

let O denote the octahedron defined by the six sampling points. In these cases
the intersection of ∂O and the boundary of the digital reconstruction is a Jordan
curve (see Fig. 9). Now each face Fi of the octahedron is a triangle with its corner
points having a distance smaller than 2r. We define a new surface patch for such
a triangle between three sampling points in the same way as in Theorem 2.

Again, by combining the surface patches of the octahedron faces we get a
surface homeomorphic to the octahedron surface intersecting ∂A in a Jordan
curve.

In order to guarantee that the new surface patches can be combined with-
out topological errors, we have to show that they can only intersect in their
boundaries. This is true if any two path regions can only intersect in com-
mon sampling points. There exist two different angles α1 = arccos(1/3) and
α2 = 2arcsin(1/

√
3) in the corners of the octahedron triangles (see Fig. 7(a)).

In both cases we have to ensure that these angles are bigger than the sum of
the opening angles of the two corresponding path regions. While α1 is between a
triangle side of length l1 = 4/

√
5 · r′ and a triangle side of length l2 = 2

√

3/5r′,
the angle α2 is between two triangle sides of length l2. Thus the two inequalities
arcsin(l1/2) + arcsin(l2/2) < α1 and 2 arcsin(l2/2) < α2 have to be true, which
is the case for

√

33/10r′ < r.
Analogously to the proof of Theorem 2 it follows the existence of a homeomor-

phism from A to its digital reconstruction. This homeomorphism is a 4
√

2/5r′ +

ε-homeomorphism, since 4
√

2/5r′ is the maximal diameter of the octahedra. ⊓⊔

Thus not only fcc grids but also bcc grids can directly be used to reconstruct
an r-regular object without any change in the topological information. In case
of bcc grids one only needs 2 sampling points per cube of sidelength 4/

√
5 · r′

and thus only a bit more than 33

64

√

33/2 ≈ 2.09 sampling points per cube of
sidelength r. This is 3.8 times better than a cubic grid, although it is not as
good as an fcc grid.

4 Conclusions

We have analysed the problems of topology preservation during digitization of
r-regular objects in 3D with fcc and bcc grids. We showed that with a sufficient
sampling density both fcc and bcc grids directly lead to a topology preserving
reconstruction, which is not the case for cubic grids as shown in [1], where
one needs more complicated reconstruction methods. Thus we derived the first
sampling theorem for topology preserving digitization with non-standard grids
in 3D.

Both fcc and bcc grids outperform cubic grids in the sense that (1) less
sampling points are needed and (2) a bigger covering radius of the sampling grid
is allowed if one wants to guarantee the correct topology of the digitized object.



(1)

(2) (3) (4)

(5) (6) (7)

(8) (9) (10)

(11) (12) (13)

Fig. 10. Digitization of an r-regular object (1) with different r
′-grids. Second row:

Digital reconstruction with cubic (2), fcc (3) and bcc (4) r
′-grid with 4r

′ = r. As one
can see, the quality of the reconstructions seems to be comparable for different grid
types with the same r

′, while a different number of voxels is needed (972 voxels in
(2), 774 voxels in (3) and 537 voxels in (4). Third row: Digital reconstruction with r

′

chosen near the critical values of the different grid types, i.e. 2r
′ = r − ε for the cubic

grid (5),
√

2r
′ = r − ε for the fcc grid (6) and

q
33

10
r
′ = r − ε for the bcc grid (7). For

this example the topologically correct digital reconstruction needs 125 voxels in (5), 30
voxels in (6) and 43 voxels in (7). Fourth and fifth row: Digital reconstruction based
on a cubic r

′-grid with 1.5r
′ = r. This resolution is not enough to guarantee topology

preservation on cubic grids, as can be seen in the marked region in (8), but it allows
topology preserving digitization on the two fcc subgrids (9) and (10). As can be seen
in (11), (12) and (13), the sampling points of (8) are divided into two disjunct subsets
of sampling points in fcc grid order.



We got better results for the fcc grid than for the bcc one. We even showed that at
certain resolutions, where a cubic grid does not guarantee topology preservation,
one can remove half of the sampling points from the cubic grid such that one
gets an fcc grid with a resolution which is enough to reconstruct the topology!
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