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Abstract

Measuring volume and surface area of objects given
its digitizations are important problems in 3D image
analysis. Good estimators should be multigrid conver-
gent, i.e. the error goes to zero with increasing sam-
pling density. We will give such estimators both for
volume and for surface area estimation based on sim-
ple counting of voxels.

1 Introduction

A fundamental task of knowledge representation and
processing is to infer properties of real objects or situa-
tions given their representations. In spatial knowledge
representation and, in particular, in computer vision
and medical imaging, real objects are represented in
a pictorial way as finite and discrete sets of pixels or
voxels. The discrete sets result by a quantization pro-
cess, which is naturally realized by technical devices
like Computer Tomography scanners, CCD cameras or
document scanners. A fundamental question addressed
in spatial knowledge representation is: How can we
measure certain properties of an object by looking at
its discrete representation? Two of the most important
object properties are volume and surface area. While
there exist a lot of approaches for precise volume mea-
surement, surface area estimation seems to be not as
simple: With increasing sampling density most known
algorithms do not necessarily converge to the original
surface area. We analyse the problem of multigrid con-
vergent surface area estimation and suggest that one
should use semi-local algorithms, since local algorithms
do not seem to be multigrid-convergent and there exists
no proof for any global algorithm. We give an example
of a semi-local surface area estimator and prove that it
is multigrid-convergent.

2 Preliminaries

Let A be any subset of R
3. The complement of A

is denoted by Ac. All points in A are foreground while
the points in Ac are called background. The open ball
in R

3 of radius r and center c is the set B0
r(c) = {x ∈

R
3 | d(x, c) < r}, and the closed ball in R

3 of radius r

and center c is the set Br(c) = {x ∈ R
3 | d(x, c) ≤ r}.

Whenever c = (0, 0, 0) ∈ R
3, we write B0

r and Br. The
r-dilation A ⊕B0

r of a set A is the union of all open r-
balls with center in A. We say that an open ball B0

r(c) is
tangent to ∂A at a point x ∈ ∂A if ∂A∩∂B0

r (c) = {x}.
We say that an open ball B0

r(c) is an osculating open
ball of radius r to ∂A at point x ∈ ∂A if B0

r(c) is tangent
to ∂A at x and either B0

r(c) ⊆ A0 or B0
r(c) ⊆ (Ac)0.

Now, we define r-regular sets in R
3 (refer to Fig. 1):

Definition 1 A set A ⊂ R
3 is called r-regular if, for

each point x ∈ ∂A, there exist two osculating open balls
of radius r to ∂A at x such that one lies entirely in A

and the other lies entirely in Ac. 3
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Figure 1. For each boundary point of a 2D/3D
r-regular set there exists an outside and an
inside osculating open disc/ball of radius r.

Any set S which is a translated and rotated version
of the set 2·r′

√
3

Z
3 is called a cubic r′-grid and its ele-

ments are called sampling points. Note that the dis-
tance d(x, p) from each point x ∈ R

3 to the nearest
sampling point s ∈ S is at most r′. The voxel VS(s)
of a sampling point s ∈ S is its Voronoi region R

3:
VS(s) = {x ∈ R

3 | d(x, s) ≤ d(x, q), ∀q ∈ S}, i.e.,
VS(s) is the set of all points of R

3 which are at least



as close to s as to any other point in S. In particular,
note that VS(s) is a cube whose vertices lie on a sphere
of radius r′ and center s. The following method for
reconstructing the object from the set of included sam-
pling points is the 3D generalization of the 2D Gauss
digitization (see [1]) which has been used by Gauss to
compute the area of discs in 2D:

Definition 2 Let S be a cubic r′-grid, and let A be
any subset of R

3. The union of all voxels with sampling
points lying in A is the digital reconstruction of A with
respect to S, Â =

⋃

s∈(S∩A) VS(s). 3

3 Volume and Surface Estimation

The estimation of object properties like volume and
surface area given only a digitization is an important
problem in image analysis. Here we will show that both
can be computed with high accuracy if the original ob-
ject is r-regular. In [2] and [3] we introduced several
methods to reconstruct a sampled 3D object with only
a small geometric and no topological error. This can di-
rectly be used to give absolute bounds for the difference
between the reconstructed and the original volume:

Let A′ be the digital reconstruction of an r-regular
object A with a cubic r′-grid S with 2r′ < r. With-
out loss of generality let S = Z

3 (A and S can al-
ways be transformed such that this is true). Now let
{ci} = Z

3 − ( 1
2 , 1

2 , 1
2 ) be the set of corner points of vox-

els centered in si ∈ S. Then each r′-ball Br′(ci) has
exactly eight sampling points si on its surface. The
voxels of these eight sampling points contain ci as cor-
ner point. Now let C ⊂ {ci} be the set of corner points
whose eight sampling points are not all inside or all
outside the object A. Then due to r-regularity of A

the union U of all r′-balls with centers in C super-
covers the boundary ∂A (a proof can be found in [4]).
Moreover U covers not only the surface of the digi-
tal reconstruction, but also the surface of any topol-
ogy preserving reconstruction method being presented
in [2] and [3], i.e. the surfaces of trilinear interpolation,
marching cubes reconstruction, majority interpolation
and sphere union. Thus the original set and all the
different reconstruction methods differ only inside of U

and since V(U) ≤ nπr′2 with n being the number of
points in C, the difference between the original volume
and the volume of one of the reconstructions, i.e. the
volume reconstruction error is at most nπr′2. With
limr′→0 V(U) = 0 follows that this volume estimation
method is multigrid convergent for any r-regular im-
age.

Multigrid convergence of a function fr′ on a digital
representation of an object with sampling grid size r′

means that limr′→0 fr′ is equal to the value for the
continuous object.

Surface estimation is not as simple as volume estima-
tion. Kenmochi and Klette showed that local surface
estimation methods are not multigrid convergent [5].
This is quite reasonable, since any local surface area
estimation method (local means that the size of the
area around a local cube which is used for approximat-
ing the surface locally is fixed relatively to the sam-
pling grid size) based on binary images allows only a
finite number of different surface patches, while even
the number of different orientations of planar surfaces
is infinite.

This means we need a non-local method in the sense
that the size of the area around a local cube which
is used for approximating the surface locally has to
increase with increasing sampling density.

In the literature, two main approaches for global
surface area estimation exist. While Klette et al. [6]
use a digital plane segmentation process without giv-
ing a proof of multigrid convergence, Sloboda et al. [7]
define a multigrid convergent method based on the rel-
ative convex hull of the discrete object, but no efficient
algorithm exists to compute the relative convex hull.

The first and as far as we know up to now the only
approach giving a multigrid convergent algorithm was
introduced by Coeurjolly et al. [8]. They estimate the
surface normals and use this to compute a surface area
approximation. They prove that their algorithm is
multigrid convergent if the size of the local area which
is used to estimate a surface normal vector decreases
with O(

√
θ), where θ is a measure for the grid size.

Thus their approach is local in the sense that the used
area converges to zero relatively to the object size, but
it is global in the sense that it converges to infinity rel-

atively to the grid size, since limθ→0
O(

√
θ)

θ
= ∞. We

will call such methods semi-local. Note that in their
experiments Coeurjolly et al. used a fixed minimal size
for the used local area, such that their implementation
is not multigrid convergent, in contrast to the theory.

We think that using a semi-local approach for sur-
face area estimation is the right choice. In this paper
we will show that semi-local surface area estimation
can be done in a much more simple way than proposed
by Coeurjolly et al. by simply counting certain sam-
pling points. While in [8] the estimation of surface
normals was used to approximate the surface area, we
will measure the volume of a thick representation of the
surface. The idea is that with the thickness of this vol-
ume going to zero, the surface can be approximated by
dividing the volume by the thickness. The volume can
be estimated by counting voxels. Since the volume es-
timation has to converge faster than the size reduction
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of the surface, we have to increase the sampling density
faster than decreasing the thickness of the surface rep-
resentation. That is why our approach is semi-local.
The basic property which makes our approach possi-
ble, the connection between surface area and volume,
is given by the following lemma:

Lemma 3 Let A be an r-regular object. Then the sur-
face area A(∂A) is equal to lims→0

1
2s

V(∂A⊕Bs), where
∂A ⊕ Bs can be seen as a thick representation of the
surface ∂A with thickness 2s.

Proof: Let {Tk} be a polygonal surface approximation
of ∂A such that each polygon Tk is a triangle such
that the distance between any two of the three triangle
points tk,1, tk,2, tk,3 ∈ ∂A is bounded by s (This can be
done by using the MMC algorithm introduced in [3]).
Now let nk,1, nk,2, nk,3 be the normal vectors of ∂A in
tk,1, tk,2, tk,3, and let Vk and Wk be the triangles which
one gets by projecting Tk along the normals onto the
two planes being parallel to the plane containing Tk

with distance s. Further let Pk be the convex hull of the
six corner points of Vk and Wk. Then Pk is a prismoid
and its volume is V(Pk) = s

3 (A(Vk)+4A(Tk)+A(Wk)).
The union of the prismoids approximates V(∂A⊕B(s)),
thus:

∑

k∈N

V(Pk) =
∑

k∈N

(s

3
(A(Vk) + 4A(Tk) + A(Wk))

)

=
s

3
(
∑

k∈N

A(Vk) + 4
∑

k∈N

A(Tk) +
∑

k∈N

A(Wk))

For s → 0 the vectors of any triangle Tk become parallel
and thus A(Vk) → A(Tk) and A(Wk) → A(Tk). This
leads to

lim
s→0

1

2s
V(∂A ⊕ Bs) = lim

s→0

∑

k∈N

V(Pk)

2s

= lim
s→0

1

6

(

∑

k∈N

A(Vk) + 4
∑

k∈N

A(Tk) +
∑

k∈N

A(Wk)

)

= lim
s→0

1

6

(

6
∑

k∈N

A(Tk)

)

= lim
s→0

∑

k∈N

A(Tk) = A(∂A).

2

Now we can use the measurement of volumes for sur-
face area estimation. In order to get a multigrid conver-
gent method for surface estimation, we must measure
the volume of a thick representation of the surface and
we must guarantee that (1) the thickness parameter s

converges to zero and (2) the estimation accuracy of
its volume also converges to zero. This is possible by
choosing lim

r′→0
s = 0 and lim

r′→0

r′

s
= 0, i.e. r converges

faster to zero than s. The last remaining problem is
to estimate the volume of a thick representation of the
surface by using only the information which sampling
points are inside the object and which sampling points
are outside. This is done as follows:

We know that the union U of all r′-balls with cen-
ters in C covers ∂A. Thus the s + r′-dilation of
C covers ∂A ⊕ Bs, i.e. the thick representation of
∂A of thickness 2s. Otherwise since ∂A ⊕ Br′ ⊃ C

for any r-regular set A with r′ < r, we know that
∂A⊕B(r′+(s−r′)) covers the (s−r′)-dilation of C. Thus
the volume of ∂A⊕Bs can be approximated by count-
ing the sampling points inside C ⊕ Bs (see Fig. 2).
With N := ♯

{

si

∣

∣ |si − cj | ≤ s, cj ∈ C
}

follows for the
volume of the thick representation:

V(∂A ⊕ Bs) = lim
r′→0

2√
3
r′3 · N.

Thus

A(∂A) = lim
s→0

1

2s
V(∂A ⊕ Bs)

= lim
s→0, r

′

s
→0

1

2s

2√
3
r′3 · N = lim

s→0, r
′

s
→0

r′3√
3s

· N

Thus the output of the following algorithm converges
to the true surface area:

(1) Let A be an r-regular set ; n = 0
(2) do
(3) r′ =

(

1
2

)n
; s =

(

3
4

)n
.

(4) Compute the intersection of the sampling points
si of the r′-grid 2√

3
r′ · Z3 with A.

(5) Compute the set C of center points cj of the
cubic neighborhood configurations Cj which consist of
both foreground and background sampling points.
(6) Count the number N of sampling points si with
distance smaller than s to some cj ∈ C.

(7) An = r′3

√
3s

· N ; n = n + 1

(8) loop until convergence of An.
(9) return An.

The presented method is local relatively to the regu-
larity constraint r, i.e. relatively to the object size, but
it is global relatively to the size of the sampling grid.
That’s why we call our approach semi-local. We think
that the idea of a semi-local method is the best choice
for dealing with the problem of surface area estima-
tion, since local methods are not multigrid convergent
and it seems to be difficult to prove the convergence of
global methods. Our solution to the problem of multi-
grid convergent surface area estimation is extremely
simple. In order to find the sampling points with dis-
tance smaller than s (step (6) of the algorithm), one

3



can use a linear-time algorithm for Euclidean distance
transform [9]. Then the above algorithm only needs
linear time for a given sampling resolution relatively
to the number of sampling points. Experiments show
that the convergence rate is nearly as good as in [8].
Although the class of r-regular objects is very general,
a lot of objects of interest are not r-regular for any r.
Nevertheless our algorithm is multigrid convergent if
the surface of an object is almost everywhere differen-
tiable, since then the percentage of the surface which
behaves r-regular (i.e. there exists an outside and an
inside osculating r-ball) approaches 100% for r → 0.
Note that this is true for nearly any object of interest.

Theorem 4 Let A be a continuous object with bounded
curvature with except a set E that is a finite union of
curves of finite length (sharp edges). Then the above
surface area estimation algorithm converges to the true
surface area A(∂A) (i.e. multigrid convergence).

Proof: Let Bt = ∂A \ (E ⊕ Bt) be the surface of A

without a t-neighborhood of E. Then Bt is a finite
union of compact surface patches A1 ∪ · · · ∪ An. The
patches are disjoint, and their curvature is bounded
by some constant u. Taking r = min(t, u), Bt is an
r-regular surface, i.e., for every surface interior point
x ∈ Bt, there exist two different r-balls that intersect
Bt in exactly x. This implies the convergence of the
above algorithm to A(Bt). If t goes to zero, the error
due to the wrong surface area measurement inside
∂A ∩ (E ⊕ Bt) converges to zero and the surface area
of Bt goes to the surface area A(∂A). 2

4 Conclusions

We have showed that the concept of 3D r-regular
sets is applicable for volume and surface area estima-
tion in digital images. Several 3D object reconstruction
methods which we introduced in two previous papers
and which reconstruct the correct topology of the orig-
inal object can directly be used for volume estimation.
We discussed why surface area estimation is much more
complicated and is not possible by using such local re-
construction methods. As an alternative we introduced
a new surface area estimation algorithm and proved
that it is multigrid convergent not only for r-regular
objects but for nearly every object of interest. This al-
gorithm is semi-local, i.e. local relatively to the object
and global relatively to the size of the sampling grid.
We think that the concept of semi-local surface area
estimation is the key method for developing multigrid-
convergent algorithms.

n = 1 n = 2 n = 3

Figure 2. C⊕Bs appoximates ∂A with increas-
ing number n of iterations of our algorithm.
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