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Abstract  1 Introduct ion 

The problem of computing a piecewise linear 
approximation to a surface from a set of sam- 
ple points on the surface has been a focus of 
research in solid modeling and graphics due to 
its many applications. The input to this sur- 

face  reconstruct ion problem consists of the three 
dimensional coordinates of the sampled points. 
The crust algorithm of [1] reconstructs a surface 
with topological and geometric guarantees using 
the Voronoi diagram of the input point set. We 
present new observations that  simplify both the 
algorithm and the proofs for the crust, and we 
give for the first t ime a proof that  the crust is 
homeomorphic to the input surface. 
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A number of applications ranging over CAD, 
computer graphics and mathematical  modeling 
involve the computation of a piecewise linear ap- 
proximation to a surface from sample points. In 
practice, the input point set is generated using a 
variety of tools such as laser range scanners, con- 
tact probe digitizers and medical imageries like 
CT or MRI scanners. The input  may contain 
additional information such as estimated surface 
normals, which can be quite useful; for example, 
see [7]. Although such additional information 
can be helpful, it is not always available. Hoppe 
et al. [15] pointed out the need for addressing 
the problem of surface reconstruction under a 
general setting, where no additional information 
is available other than the space co-ordinates of 
the sample points. The two dimensional ver- 
sion of the problem, namely the curve recon- 
struction in plane from sample co-ordinates has 
been well researched. A variety of approaches 
[2, 4, 5, 8, 9, 13, 14, 17] are known to work with 
theoretical guarantees. 

In three dimensions, only a few algorithms 
known to date provide performance guarantees. 
Hoppe et. al [15] presented an algorithm based 
on zero sets  of a signed distance function. Us- 
ing the same basic idea, Curless and Levoy gave 
an algorithm which reconstructs surfaces very 
rapidly from large, noisy laser range scanner data 
sets [7]. Recently, Boissonnat and Cazals used 
the zero set of an implicit function defined with 
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natural  interpolation to reconstruct smooth sur- 
faces [6]. Edelsbrunner reports success with a 
proprietary commercial program [10]. The a- 
shapes algorithm, as described by [11] by Edels- 
brunner and Mficke is useful for reconstructing 
surfaces that  have been sampled with uniform 
density. However, these results do not provide 
any assurance that  the output  surface is topolog- 
ically equivalent to the sampled surface. Clearly, 
it is not possible to compute a surface that  is 
faithful to the topology and geometry of the 
original unless the sampling is sufficiently dense. 

Amenta  and Bern [1] proposed that  the sam- 
pling density be proportional to the local feature 
size of the surface and presented an algorithm 
based on Delaunay triangulations. They proved 
that  the output  of their algorithm, the crust of 
the sample set, is geometrically close to the sur- 
face S assuming that  S is a smooth 2-manifold 
without boundary and that  the sampling is suf- 
ficiently dense. Their algorithm uses two passes 
of Voronoi diagram (or its dual Delaunay tri- 
angulation) computation,  and also two postpro- 
cessing steps, called filtration by normals and 
trimming. In this paper, we propose a simpler, 
single pass Delaunay algorithm for reconstruc- 
tion. Also, Amenta and Bern [1] did not prove 
that  the crust is homeomorphic to S. In this 
paper, we present the first such proof. 

Our algorithm is based on the following ob- 
servation. Let T be a set of triangles spanning 
all sample points and satisfying three conditions, 
namely, I. T contains all triangles whose dual 
Voronoi edges intersect S, II. each triangle in T 
is small, that  is, their circumcircle has a small 
radius compared to the local feature size, III .  
all triangles in T are "fiat", that  is, their nor- 
mals make small angles with the normals to the 
surface at their vertices. A piecewise linear 2- 
manifold spanning all samples can be extracted 
from T due to condition I. Then, using condi- 
tions II and I I I  we show that  any piecewise lin- 
ear 2-manifold extracted from T that  spans all 
of its vertices must be homeomorphic to S. 

The algorithm computes T from the Delau- 

nay triangulation as follows. Let p be a sample 
point and e be a Voronoi edge in the Voronoi cell 
of p. The algorithm determines if e has a point 
x, where px makes an angle close to ~/2  with an 
estimated normal at the sample point p. If this 
condition is satisfied for all three Voronoi cells 
adjacent to e, its dual is included in the candi- 
date set T. We prove that  T satisfies conditions 
I and II and condition II implies condition III.  
Thus, one needs not check the condition I I I  ex- 
plicitly. 

Our observations not only simplifies the crust 
algorithm of [1] by eliminating one Delaunay 
pass and normal t r imming step, but  also sim- 
plifys the proofs. 

The paper is organized as follows. Section 2 
contains definitions and the preliminaries. Sec- 
tion 3 describes the algorithm. Section 4 con- 
tains the proofs of all three conditions I, II and 
III. Section 5 shows the homeomorphism be- 
tween the output  and the sampled surface. We 
describe our implementation experience in Sec- 
tion 6 and conclude in Section 7. 

2 Def init ions  and Pre l iminaries  

We assume that  the sampled surface S is a smooth 
manifold without boundary, embedded in R a. 
We adopt the following definition of sampling 
density from [1]. 

2.1 M e d i a l  a x i s  a n d  e - s a m p l i n g  

The medial axis of a surface S in R 3 is the clo- 
sure of points that  have more than one closest 
point on S. The local feature size, f(p),  at a 
point p on S is the least distance of p to the 
medial axis. The medial balls at p are defined 
as the balls that  touch S tangentially at p and 
have center on the medial axis. Notice that  f (p)  
is not necessarily same as the radius of the me- 
dial balls at p. A very useful property of f( .)  is 
that  it is 1-Lipschitz, that  is, f (p)  < f(q)  + IPql 
for any two points p, q on S. A point set P is 

214 



called an e-sample of a surface S if every point 
p E S has a sample within a distance of ef (19). 

2.2 Restricted Delaunay triangulation 

We assume that  the input sample P E R 3 is in 
general position to keep the description simple. 
L e t / g p  and Vp denote the Delaunay triangula- 
tion and the Voronoi diagram of P.  A Voronoi 
cell Vp E Vp for each point p ~ P is defined as 
the set of points x E R 3 such that Ipxl < Iqxl for 
any q E P and q ~ p. The Delaunay triangula- 
tion has an edge pq if and only if Vp, Vq share a 
face, has a triangle pqr if and only if Vp, Vq and 
Vr share an edge, and a tetrahedron pqrs if and 
only if Vp, Vq, Vr and Vs share a Voronoi vertex. 

Consider the restriction of Vp on the sur- 
face S which defines the restricted Voronoi di- 
agram Vp, s containing restricted Voronoi cells 
Vp,s = Vp (q S. The dual of these restricted 
Voronoi cells defines the restricted Delaunay tri- 
angulation Dp, s. Specifically, an edge pq is in 
Dp, s if and only if Vp,s n Vq,s is nonempty; a tri- 
angle pqr is in Dp, s if and only if Vp,sf3Vq,snVr,s 
is nonempty. Assuming that  S does not pass 
through a Voronoi vertex in general position we 
do not have any tetrahedron in Dp, s. A result 
of Edelsbrunner and Shah [12] shows that  the 
underlying space of Dp, s is homeomorphic to S 
if the following closed ball property holds. Each 
Vp,s is a topological 2-ball, each nonempty pair- 
wise intersection Vp,s f3 Vq,s is a topological 1- 
ball, and each nonempty triplet-wise intersec- 
tion Vp,s n Vq,s A Vr,s is a single point, that  is, 
a 0-ball. Amenta and Bern used this result to 
show that  if P is a e-sample of S with e < 0.1, 
then Vp, s satisfies the closed ball property and 
hence DR contains the set of triangles of Dp, s 
whose underlying space is homeomorphic to S. 

2.3 Conditions for homeomorphism 

Our algorithm extracts a piecewise linear mani- 
fold N from a set of candidate triangles T that  
satisfy the following three conditions. 

I. RESTRICTED DELAUNAY CONDITION. The 
set of triangles include all restricted Delaunay 
triangles. 

II. SMALL TRIANGLE CONDITION. The circum- 
circle of each triangle t E T is small, that  is, its 
radius is O(e)f(p), where p is a vertex of t. 

III .  FLAT TRIANGLE CONDITION. The normal 
to each t E T makes small angle O(e) with the 
surface normal at the vertex p, where p contains 
the largest face angle inside t. 

The algorithm makes sure that  the candidate 
triangles computed by it satisfy conditions I and 
II. We show that small triangles are always flat, 
i.e., condition II implies condition III.  Condi- 
tion I is necessary for the manifold extraction 
step of the algorithm and conditions II  and III  
axe used to show that any piecewise linear 2- 
manifold extracted from T which spans all of its 
vertices is homeomorphic to S. 

3 Algorithm 

The algorithm selects the candidate triangles us- 
ing co-cones at each sample point and then ex- 
tracts a manifold from them using a step similar 
to [1]. 

v \ 

Figure 1: The co-cone for a sample in two di- 
mensions (left), and three dimensions (right). 
In the left the co-cone is shaded, in the right 
its boundary is shaded. 
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C o - c o n e s .  

The normal to S at each sample point is esti- 
mated using the concept of "pole" as introduced 
in [1]. For each Voronoi cell Vp, the Voronoi ver- 
tex that  is farthest from the sample point p is 
taken as the pole. The line through p and the 
pole is almost normal to S and is called the es- 
timated normal line at p; see Figure 1. For an 
angle 0, we define the complemented cone called 
co-cone at a sample p as the complement of the 
double cone with apex p which makes an angle 
~T/2 -- O with the estimated normal line at p. We 
determine the set of Voronoi edges in Vp that  
intersect the co-cone of p. The dual triangles 
of these Voronoi edges for each p constitute the 
candidate set T. We will argue that  these set of 
triangles satisfy the three conditions I, II and 
I I I  if 0 is sufficiently small, say 0 = r /8 .  

The set of Voronoi edges intersecting co-cones 
are computed as follows. Let np denote the line 
normal to S at p and v E Vp be the farthest 
Voronoi vertex from p in Vp. Denote any ray 
f r o m p  to a point y E Vp as g. For e a c h p  E 
P ,  the algorithm determines the set of Voronoi 
edges in Vp that  has a point x where Z makes an 
angle in the range I -~ [7r/2 - 0, 7r/2 + 0] with ~7, 
where 0 is chosen to be 7r/8. Let e be an edge in 
the Voronoi cell Vp, and wl, w2 be its two end- 
points. We compute /vYl0" and Lu72~7 and check 
if the range of angles determined by these two 
angles intersects the desired range I. If it does, 
we mark e. We include e in E if it is marked for 
all three Voronoi cells adjacent with e. 

M a n i f o l d  e x t r a c t i o n .  

The candidate set T is the dual Delaunay tri- 
angles of E. A piecewise linear manifold N is 
extracted from T using the last step of the crust 
algorithm [1]. This step first deletes all the tri- 
angles incident on sharp edges. An edge is called 
sharp if the angle between the two consecutive 
triangles around the edge is more than 31r/2. 
An edge with a single incident triangle is also 
sharp. Deleting such triangles are safe since the 

restricted Delaunay triangles are not incident 
with sharp edges and they are included in the 
set (condition I). Next, a depth-first walk over 
the adjacency graph of the remaining triangles 
extracts the outer boundary N of the underlying 
space of them. The result in section 5 implies 
that  this boundary is homeomorphic to S. 

T h e o r e m  1 The above algorithm computes a 
piecewise linear surface homeomorphic to a sur- 
face for which P is an e-sample with e ~ 0.06. 

We remark that  the condition e < 0.06 comes 
from the fact that  our proof of homeomorphism 
in section 5 requires this range of e. Actually the 
three conditions are satisfied with larger value of 
e. The required value of e deteriorates in Lemma 
13 that  is used in the homeomorphism proof. 

4 Condit ions  

We need the following two lemmas from [1] that  
says that  the pole estimates the normal at the 
sample point. 

L e m m a  2 Let y be any point in Vp so that IPYl >- 
5f(p) ]or 5 > O. The acute angle between ~7 and 
np is less than sin -1 ~ - ~  + sin -1 1--~7. 

Using Lemma 2 and the fact that  Ipvl > 
f(p), it is shown in [1] that  g approximates the 
normal direction np quite well. 

L e m m a  3 The acute angle between np and ~ is 
less than 2 sin-  1 

l - - e "  

We also need the following lemma from [1]. 

L e m m a  4 Let p,q be two points on S so that 
IPql < pmin{ f (p ) , f (q ) }  with p < 1/3. Then 
the angle between np and rtq is at most l_P3p. 
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4 .1  R e s t r i c t e d  D e l a u n a y  condi t ion  

Condit ion I requires that  the restricted Delau- 
nay triangles are in T. First, we need a technical 
lemma about  local flatness of S. 

L e m m a  5 Let y be any point in Vp,s. The acute 
angle between np and ~7 is larger than ~r/2 - ¢. 

P r o o f .  The distance lYPl < ef(y) ,  since y E 
Vp,s, and by the Lipschitz condition f ( y )  < f (p )+ 

IPYl giving f ( y )  </]i~-~, and hence IPY] < ef(y)  <_ 
le----~_ef(p). Point y must be outside of both  me- 
dial balls at p, each of which has radius at least 
f (p).  The angle in question is thus at least 
~r/2 - sin -1 2 - - ~ ,  which is at least ~r/2 - e for 
e_< 0.1. [] 

T h e o r e m  6 For e < 0.1, all restricted Delau- 
nay triangles are in T. 

P r o o f .  It is shown in [1] that  the restricted 
Delaunay triangulation is homeomorphic to S 
for e < 0.1. Let e be  the dual edge of a restricted 
Delaunay triangle. Consider the point y = eAS .  
We have y E Vp,s for s o m e p  E P .  We show 
that  ~7 makes an angle in the range I with the 
pole direction ~'. The result follows from our 
choice of E. The acute angle between np and ~7 
is larger than 7r/2 - e by Lemma 5. Therefore 
L~Tb' E [~r/2 - e - 5, ~r/2 + e + ~], where ~ is the 
acute angle between ~7 and np. Plugging in the 
upper  bound  of ~ from Lemma 3 we obtain that  
L~Tg E I when e < 0.1. [] 

4.2 Smal l  tr iangle  condi t ion  

Interpreting Lemma 2 differently and plugging 
in a value of 6 = a.3e we obtain the following. 

Corollary 7 Let x be any point in Vp so that 
the acute angle between ~ and np is at least I r /2 -  

1.3e 0 - 2 s i n - 1  ~a-e" Then Ipxl < i:-~f(p) forO = lr/S 
and e <_ 0.09. 

P r o o f .  If  the acute angle between ~ and np is 
at least a = sin -1 6 _ ~ + s i n - 1  ]-~,c then [px{ < 

Jr (p)  according to Lemma 2. With  J = 1.3e w e  

have 

a = sin -1 + s i n - 1  1 - e  

which is less than 7r/2 - 0 - 2 sin -1 e for 0 = 
1r/8 and ( < 0.09. [] 

T h e o r e m  8 Let r denote the radius of any tri- 
angle t E T.  Then, for each vertex p of t, r < 
1.3e f i e f  f o r  e <: 0.09. "l"~ J k.U / 

P r o o f .  Let e be the dual edge of  t. By our 
choice of e, there is a point x E e so that  ~ makes 
an angle in the range I = [~r/2 - 0, lr/2 + 0] with 
g for 0 = 7r/8. Taking into account the angle be- 
tween 77 and np we conclude that  this ray makes 
an acute angle more than ~r/2 - 0 - 2 sin -1 

1--e 

with np. From Corollary 7, [px I < ~_eef(p ). The 
radius of the circumcircle of  t cannot be more 
than this. [] 

4.3 Flat  tr iangle  cond i t ion  

T h e o r e m  9 Any triangle t E T has a normal 
that makes an acute angle no more than c~ + 
s i n - l ( ~  3 sin2~) with np where p is the vertex of 

t with the largest face angle, v~ < sin -11.3e and _ ] " L ' ~  

e < 0.09. 

P r o o f .  Consider the medial balls M1 and M2 
touching S at p with the centers on the medial 
axis. Let D be the ball with t lying on a dia- 
metric plane; refer to Figure 2. The radius r of 
D is equal to the radius of the circumcircle of t. 
Denote the circles of intersection of D with M1 
and M2 as C1 and C2 respectively. The  normal 
to S at p passes through m, the center of M1. 
This normal makes an angle less than ~ with the 
normals to the planes of C1 and C2, where 

c~ <_ s in - l r / Ipm]  

< sin_ 1 1.3e 
- 1 - e  
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since [pm I _> f (p )  by definition and r -< ]-=Tf(P)l"ae 
by Theorem 8. This angle bound also applies to 
the plane of C2, which implies that  the planes of 
C1 and C2 make a wedge, say W, with an acute 
dihedral angle no more than 2a. 

Lvuw < 2a < ~r/2 for sufficiently small e. So, in 

this case ~ s m  jwvl < 1. Thus, /3 _< sin -1 ~ s in2a.  
The normals to t and S at p make an acute 

angle at most a +/3 proving the theorem. [] 

m 

Figure 2: Normal to a small triangle and the 
normal to S at the vertex with the largest face 
angle. 

The vertices q, s of t cannot lie inside M1 
or M2. This implies that  t lies completely in 
the wedge W. Consider a cone at p inside the 
wedge W formed by the three planes; 7rt, the 
plane of t, r l ,  the plane of C1 and 7r2, the plane 
of C2. A unit sphere centered around p in- 
tersects the cone in a spherical triangle uvw, 
where u, v and w are the points of intersections 
of the lines r l  7)~r2, lrt ~lzq and rt  Nzr2 re- 
spectively with the unit  sphere. See the picture 
on right in Figure 2. Without  the loss of gen- 
erality, assume that  the angle Luvw < Luwv. 
We have the following facts. The arc length of 
wv, denoted Iwv[, is at least r / 3  since p sub- 
tends the largest angle in t and t lies completely 
in the wedge W. The spherical angle £vuw is 
less than  or equal to 2a. We are interested 
in the spherical angle /3 = Zuvw which is also 
the acute dihedral angle between the planes of 
t and C1. By standard sine laws in spherical 

. s i n  Lvuw geometry, we have s in~ = sin ~ w ~  < 

sin ~- sin2a If r / 3  < Iwvl < 2zr/3, we have 

f~ ~ sin - I  ~ s in2a.  For the range 21r/3 < Iwvl < 

7r, we use the fact that  luwl + Iwvl < lr since 

5 Homeomorphism 

In this section, we will show a homeomorphism 
between S and any piecewise-linear surface N 
made up of candidate triangles and spanning all 
sample points completing the proof of Theorem 
1. We define the homeomorphism explicitly, us- 
ing a function. We initially define a map it on 
all of R 3, and then use its restriction to N. Let 
it : R 3 --~ S map each point q E R 3 to the closest 
point of S. 

L e m m a  10 The restriction of it to N is a well 
defined and continuous funct ion it : N -+ S. 

P r o o f .  The discontinuities of # as a map on R 3 
are exactly the points of the medial axis. If some 
point q had more than one closest point on the 
surface, q would be a point of the medial axis; 
but it follows from Theorem 8 that  every point 
q ~ N is within l3e~t-)  of a triangle vertex 

1 - -e  J k k ' ]  

p E S. Similarly, # is continuous except at the 
medial axis of S, so that  since N is continuous 
and avoids the medial axis, # is continuous on 
N. [] 

The function # defines a homeomorphism be- 
tween N and S if it is continuous, one-to-one and 
onto. Our approach will be first to show that  # 
is well-behaved on the samples themselves, and 
then show that this behavior continues in the 
interior of each triangle of N. 

L e m m a  11 Let p be a sample and let m be the 
center of a medial ball M tangent to the sur- 
face at p. No candidate triangle intersects the 
interior of the segment pro. 

P r o o f .  In order to intersect segment pro, a can- 
didate triangle t would have to intersect M, and 
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$ 

Figure 3: Proof  of Lemma 11. 

so would the smallest Delaunay ball D of t. Let 
H be the plane of the circle where the bound- 
aries of M and D intersect. We show that  H 
separates the interior of p m  and t. 

The plane H decomposes the ball M into two 
c a p s M  + = M f q H  +, M -  = M f 3 H -  and the 
disk M n H ,  where H + and H -  are the two open 
half spaces delimited by H. Similarly, D is also 
decomposed by H into D +, D -  and D f3 H. It 
follows from sphere geometry that  if M + C D + 
then D + and M -  lie on opposite sides of H. 
Without  loss of generality assume M + C D +. 

Since the vertices of t lie on S and hence 
not in the interior of M,  t C D +. Since D is 
Delaunay, p cannot lie in the interior of D hence 
p ~ M  +. We claim that  m ~ M  + either. (see 
Figure 3.) Indeed if m were inside M + C D +, 
the radius of D would be at least 1/2 f ( f f )  for 
any vertex ff  of t, contradicting, by Theorem 
8, the assertion that  t is a candidate triangle. 
Therefore p, m and hence the segment p m  lies 
in M -  proving that  H separates t and pro. [] 

Since any point q such that  #(q) = p lies on 
such an open segment pro, we have the following. 

C o r o l l a r y  12 The function Iz is one-to-one from 
N to every sample p. 

In what follows, we will show that  # is indeed 
one-to-one on all of N.  One more geometric 
preliminary is required. We already know that  
the normal of a candidate triangle t is close to 
the surface normal at its vertex with the largest 
angle (Theorem 9). To complete the proof of 

homeomorphism, we need to show a stronger as- 
sertion: that  the triangle normal agrees with the 
surface normal at #(q) for every q E t. 

L e m m a  13 Let q be a point on triangle t E N .  
The acute angle between the surface normal nq 
at #(q) and the normal to t measures at most  
59 ° degrees for e < 0.06. 

P r o o f .  The circumcircle of t is small; the dis- 
tance from q to the vertex p of t with the largest 
angle is 2~ f (p) ,  with ~ 1.3e by Theorem 8. 

- -  1 - e '  

The point #(q) = x is the closest point on S to 
q. Since there is a sample, namely, a vertex of t 
within ~f(p) away from q, we have Iqxl < ~f(p).  
We are interested in an upper bound on Ipxl so 
that  Lemma 4 can be applied. 

It can be shown that  Ipxl is maximized when 
the angle pqx is a right angle. Thus, Ipxl < 
x / ~ f ( p )  <<_ 0.19f(p) for e < 0.06. Also, f (p)  < 
1.23f(x) by Lipschitz property  of f ( . )  giving 
Ipxl < 0.23f(x). Thus, applying Lemma 4 the 
angle between nz and np is less than  43 ° tak- 
ing p = 0.23. The angle between the triangle 
normal of t and np is less than  16 ° for e < 0.06 
(Theorem 9). Thus, the triangle normal and nx 
makes an angle less than 59 °. [] 

Now, we show that  selecting a piecewise-linear 
manifold N from the set of candidate triangles 
would be sufficient for reconstruction, under  an 
additional mild assumption. A pair of triangles 
tl,  t2 E N are adjacent if they share at least one 
common vertex. 

A s s u m p t i o n :  Two adjacent triangles meet at 
their common vertex at an angle of greater than  

This assumption excludes manifolds which con- 
tain sharp folds and, for instance, flat tunnels. 

Our proof proceeds in three short steps. We 
show that  # induces a homeomorphism on each 
triangle, then on each pair of adjacent triangles, 
and finally on N as a whole. 

L e m m a  14 Let U be a region contained within 
one triangle t E N or in adjacent triangles of 
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N. The function # defines a homeomorphism 
between U and #(U) C S. 

P r o o f .  We know that  # is well-defined and con- 
tinuous on U, so it only remains to show that  it 
is one-to-one. First, we prove that  if U is in one 
triangle t, # is one-to-one. For a point q E t, 
the vector n~ from #(q) to q is perpendicular  to 
the surface at #(q); since S is smooth the direc- 
tion of n~ is unique and well defined. If there 
was some y E t with #(y) = #(q), then q, #(q) 
and y would all be colinear and t itself would 
have to contain the line segment between q and 
y, contradicting Lemma 13, which says that  the 
normal of t is nearly parallel to n~. 

Now, we consider the case in which U is con- 
tained in more than  one triangle. Let q and y be 
any two points in U such that /z(q)  = #(y),  and 
let v be a common vertex of the triangles that  
contain U. Since # is one-to-one in one trian- 
gle, #(q) = #(y) implies that  q and y lie in the 
two distinct triangles tq and ty. Let g be the 
surface normal at #(q) = #(y). Since the line 
supporting g passes through both tq and ty, and 
the acute angles between the triangle normals of 
tq, ty and ~ are at most 59 ° (Lemma 13), tq and 
ty must meet at v at an acute angle. This would 
contradict  the Assumption, which is that  tq and 
ty meet at v at an obtuse angle. Hence there are 
no two points in y, q with #(q) =/z(y) .  [] 

We finish the theorem using a theorem from 
topology. 

T h e o r e m  15 The mapping # defines a homeo- 
morphism from the triangulation N to the sur- 
face S for e <_ 0.06. 

P r o o f .  Let S' c S be #(N) .  We first show 
that  (N, #) is a covering space of S ~. Informally, 
(N, #) is a covering space for S ~ if function # 
maps N smoothly onto S ~, with no folds or other 
singularities; see Massey [16], Chapter  5. Show- 
ing that  (N, #) is a covering space is weaker than 
showing that  # defines a homeomorphism, since, 
for instance, it does not preclude several con- 
nected components  of N mapping onto the same 

Figure 4: Proof  of Theorem 15. 

component of S ~, or more interesting behavior, 
such as a torus wrapping twice around another  
torus to form a double covering. 

Formally, the (N, #) is a covering space of S ~ 
if, for every x E S ~, there is a path-connected 
elementary neighborhood Vx around x such tha t  
each path-connected component  of #- l (Vx)  is 
mapped homeomorphically onto Vx by #. 

To construct such an elementary neighbor- 
hood, note that  the set of points I#- l (x) l  cor- 
responding to a point x E S ~ is non-zero and 
finite, since # is one-to-one on each triangle of 
N and there are only a finite number  of trian- 
gles. For each point q E # - l ( x ) ,  we choose an 
open neighborhood Uq of around q, homeomor- 
phic to a disk and small enough so that  U a is 
contained only in triangles that  contain q. 

We claim that  # maps each Uq homeomor- 
phically onto #(Uq). This is because it is contin- 
uous, it is onto #(Uq) by definition, and, since 
any two points x and y in Uq are in adjacent 
triangles, it is one-to-one by Lemma 14. 

Let U~(x) = Nqel~-l(x)#(Vq) , the intersection 
of the maps of each of the U a. U~(x) is the in- 
tersection of a finite number  of open neighbor- 
hoods, each containing x, so we can find an open 
disk Vx around x. Vz is pa th  connected, and 
each component of # - l ( v z )  is a subset of some 
Uq and hence is mapped homeomorphical ly onto 
Vz by #. Thus (N,/z) is a covering space for S ~. 

We now show that  # defines a homeomor- 
phism between N and S ~. Since N is onto S ~ 
by definition, we need only show that  # is one- 
to-one. Consider one connected component  G 
of S'. A theorem of algebraic topology (see eg. 
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Massey [16], Chapter  5 Lemma 3.4) says that  
when (N, #) is a covering space of S ~, the sets 
# - l ( x )  for all x E G have the same cardinality. 
We now use Corollary 12, that  # is one-to-one 
at every sample. Since each connected compo- 
nent of S contains some samples, it must be the 
case that  # is everywhere one-to-one, and N and 
S ~ are homeomorphic. 

Finally, we show that  S ~ = S. We must have 
S ~ to be closed and compact since N is. So 
S ~ cannot include part  of a connected compo- 
nent of S, and hence S ~ must consist of a subset 
of the connected components of S. Since every 
connected component of S contains a sample s 
(actually many samples), and #(s) = s, all com- 
ponents of S belong to S ~, S r -- S, and N and 
S are homeomorphic. [] 

6 Implementat ion 

We have implemented the algorithm. Two out- 
puts are shown in Figure 5. The algorithm was 
quite easy to implement with the well known 
qhull code for Delaunay triangulation. In the 
figure we show the output  of co-cone step. The 
surface is computed correctly almost everywhere 
except at the boundaries and near sharp fea- 
tures. This is expected since the algorithm is not 
geared to handle boundaries or sharp features. 
The program ran on a SUN machine with the 
300Mhz processor and 256 MB memory for less 
than a couple of minutes on all tested examples. 
For example, the foot took 153 seconds. It is re- 
ported in [3] that  the same data took 15 minutes 
on a SGI Onyx machine with 512 MB memory. 
The difference can be explained by two factors; 
first, this algorithm requires only one Delaunay 
triangulation step, and second, the implementa- 
tion of [3] used the exact-arithmetic Delaunay 
triangulation program h u l l ,  which we have ob- 
served to be about four times slower than q h u l l  
on these inputs. 

Figure 5: Foot, 50,341 triangles,153 seconds; 
Club, 33,692 triangles, 122 seconds. 

7 Conclusions 

We simplified the crust algorithms of [1]. Simi- 
lar to the original algorithm in [1], our algorithm 
computes an approximation of a surface from its 
sample points with the guarantee of homeomor- 
phism and geometric proximity. The merits of 
our algorithm over the crust algorithm are: (i) 
it requires only one Voronoi diagram computa- 
tion as opposed to two such computations in [1]; 
(ii) it collects a possible set of triangles from the 
Delaunay triangulation by checking a single con- 
dition and thus eliminates normal t r imming step 
of [1]; (iii) the proofs are simpler than [1]. 

We proved that  the output  of our algorithm 
is homeomorphic to the input  surface S, assum- 
ing that  the input surface is smooth, compact 
and sampled sufficiently densely. We should note, 
however, that  in practice many surfaces have 
sharp corners and boundaries, so that  this re- 
sult is mainly of theoretical interest. 

Our theory is supported, however, by the 
output  of our program on some reasonably large 
data sets. 

Important  goals that  remain in this area are 
to correctly reconstruct surfaces with sharp edges 
and corners, to develop reconstruction algorithms 
that  gracefully handles noise, and to find more 
efficient algorithms that  avoid computing the 
Delaunay triangulation of all input  samples. 
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