
Final Technical Report 5

2 Description of Complex Objects
from Multiple Range Images Using

an Inflating Balloon Model
Yang Chen and Gérard Medioni

We address the problem of constructing a complete surface model of an object us-
ing a set of registered range images. The construction of the surface description is car-
ried out on the set of registered range images. Our approach is based on a dynamic
balloon model represented by a triangulated mesh. The vertices in the mesh are
linked to their neighboring vertices through springs to simulate the surface tension,
and to keep the shell smooth. Unlike other dynamic models proposed by previous re-
searchers, our balloon model is driven only by an applied inflation force towards the
object surface from inside of the object, until the mesh elements reach the object sur-
face. The system includes an adaptive local triangle mesh subdivision scheme that re-
sults in an evenly distributed mesh. Since our approach is not based on global
minimization, it can handle complex, non-star-shaped objects without relying on a
carefully selected initial state or encountering local minimum problem. It also allows
us to adapt the mesh surface to changes in local surface shapes and to handle holes
present in the input data through adjusting certain system parameters adaptively.
We present results on simple as well as complex, non-star-shaped objects from real
range images.

2.1 Introduction
The task of surface description using 3-D input can be described as finding a fit

of a chosen representation (model surface) to the input data. This process can be for-
malized in a number of ways involving the minimization of a system functional that
explicitly or implicitly represents the fit of the model to the input data. Another very
important aspect of such a system is to construct a mapping or correspondence be-
tween the surface of an object and the structure of the model. This mapping exists be-
cause the surface of the model and the surface of the object are topologically
equivalent, considering genus zero type of objects. Therefore there exists a one-to-one
mapping between the model structures and the object surface elements. Previous re-
searchers have studied such mappings in a variety of ways using different represen-
tation schemes and model fitting methods. Examples of these approaches include the
dynamic system using energy minimization in [4] and the dynamic mesh in [12] and
[13]. The drawbacks of these approaches is that they must rely on an initial guess of
the model structure which is relatively close to the shape of the object. The reason is
that, in the absence of mapping or correspondence information, some other approxi-

6 Final Technical Report

mations have to be used, such as the nearest data point to the model [13] in order for
the system to converge to the desired results under the attraction force between the
correspondence points in the model and the data. Such an approximation would have
problems in cases where there are data points that are not the closest to their true
corresponding points of the model, and thus inevitably lead the system towards a sub-
optimal situation (local minimum). This is why those approaches can only deal with
star-shaped objects.

In this paper we present a new approach for surface description using a dynamic
balloon model represented by a triangular mesh. We start with a small triangulated
shell placed inside the object and apply a uniform inflation force on all vertices in the
direction normal to the shell’s surface. The vertices are also linked to their neighbor-
ing vertices through springs to simulate the surface tension and to keep the shell
smooth. The applied inflation force moves the vertices towards the object surface until
they “land” on it. This process is similar to that of blowing up a balloon placed inside
the hollow object until it fits the shell of the object. Thus the goal of mapping the mod-
el to the object surface is achieved through the physics of a growing balloon in a very
natural way (see Figure 2.1). Of course, we also need to handle noisy data, and holes
(lack of data), as described later.

Our system is not based on global minimization methods, and it can make deci-
sions based on local information about the shape of the object surface. During the pro-
cess of the growth of the triangular mesh, the triangles will be subdivided
dynamically to reduce spring tension and to allow the mesh surface area to increase
in order to cover the larger object surface. As the mesh expands and the vertices start
to reach the object surface, the entire mesh surface is gradually subdivided into pieces

Figure 2.1 The inflating balloon model as illustrated in a 2-D case: (a)
the initial state, (b) and (c) intermediate states, (d) the final state.

(a) (b)

(c) (d)

Final Technical Report 7

of connected triangular regions, which allows us to treat the surfaces in a local context
by tailoring the parameters, and possibly strategy, of the system in dealing with each
region separately based on local information.

Another aspect of our approach is its role in data integration. Most of the previ-
ous research make use of scattered 3-D points or a single range image as input. Very
few researchers (e.g. [10]) try to use multiple densely sampled range images. There
are two difficulties in using these range images. First the images must be precisely
registered. We have previously presented a method [1] to register multiple range im-
ages, which is used to register the range images used in this paper. The second is the
issue of integration. Integration can not be performed without an appropriate repre-
sentation for the integrated data. While star-shaped objects can be simply mapped
onto a unit sphere, and the integration can then be performed easily [1]. This is not
true for complex objects, since it is difficult to find an integrated representation. Thus
finding a suitable representation is very important. While it is not the main theme of
this paper, we believe that our approach leads to a good solution to combine and take
advantage of multiple range images in surface description for complex objects in
terms of integration.

In the following sections, we first review some of the related previous work and
then present our balloon model in detail. Section [2.3] describes our surface model and
how it works, Sections [2.4] and [2.5] define the dynamics of the system. Section [2.6]
explains the adaptive mesh subdivision scheme. In Sections [2.7] and 8, we give an
algorithmic description of our system and describe how to set system parameters. Sec-
tion Chapter 2 discusses issues on how to adapt the parameters locally and dealing
with noise. Several test results from real range images, from both simple and complex
objects, are presented in Section [2.10]. The conclusion follows in Section [2.11].

2.2 Related Work
Dynamic mesh models have been proposed by previous researchers for shape de-

scription. [12] introduced a shape reconstruction algorithm using a dynamic mesh
that can dynamically adjust its parameters to adapt to the input data. [13] then ex-
tended this approach by introducing an attraction force from the 3-D input for shape
description. [6] also proposed a similar system with dynamic nodal addition/deletion
for shape description and nonrigid object tracking. [4] proposed a deformable model
with both internal smoothness energy and external forces from both the input data
and features. There exist other deformable model approaches that differ in the repre-
sentation schemes of the model and in the approaches to solving the system [5][11].

The main difference between our method and those used by previous research-
ers is that we do not explicitly introduce a data force into our model, as discussed in
details in the following sections. Our model is driven by an inflation force introduced
inside the balloon. Balloon models have been used by [3] and [7], but in these ap-

8 Final Technical Report

proaches, the introduced balloon force is used mostly to overcome noise in the data so
that the system can converge to the desired results more easily.

2.3 The Inflating Balloon Model
Our balloon model is represented by a shell of triangulated patches. The initial

triangulated shell is an icosahedron. A triangulated shell can be either considered as
a mesh consisting of triangular patches or a mesh consisting of vertices (or nodes) con-
nected to their neighbors. In the following discussion, a mesh element may refer to
either a vertex or a triangle patch. But in this paper, we mainly explore the properties
of the vertices.

When placed inside the object, and under the influence of the inflation force, the
shell grows in size as the vertices move along the mesh surface normal in the radial
direction, maintaining an isotropic shape, until one or more vertices reaches the ob-
ject surface. During the process of inflation, the triangles may be subdivided adaptive-
ly, which also creates new vertices. Once it reaches the surface, a vertex is considered
anchored to the surface and thus can no longer move freely. The remaining vertices,
under the influence of the anchored vertices, will gradually change their course of
movement, until finally reaching their corresponding surface point. As can be seen
from this process, the movement of the vertices is not influenced directly by any force
from the surface of the object. This seems to be bad from the viewpoint of a fitting pro-
cess, which tries to minimize some distance measure between the object surface and
the model. But this is important to us because our main concern is to find the mapping
between the mesh elements and the object surface. Not using any attraction force
from the surface data allows us to avoid incorrect mappings, which is a similar situ-
ation to the local minimum problem in energy minimization approaches. An example
of the growing balloon is shown in Figure 2.2 .

2.3.1 The Correspondence Problem

So far, we have not discussed how to test whether the mesh has reached the sur-
face of the object. This is the key difference between our approach and other dynamic
model systems or energy minimization systems. In order to test whether a vertex has
reached the object surface, one must measure the distance between the mesh surface
and some point on the object surface. Ideally this point on the object surface should
be the corresponding point of the vertex, which is not possible before the vertex reach-
es the surface. Previous researchers have used the closest point on the object surface
to an mesh element as an alternative, but it may provide incorrect information. In [7]
the distance from the data points on the surface to the nearest model point is used
instead, which is an improvement over the above approach. This approach, however,
is not practical when there is a large number of surface sample points from the object,
as in our case.

In our approach, we look for potential corresponding points only in the direction
normal to the mesh surface. This is the best knowledge locally available to the points

Final Technical Report 9

on the mesh surface at any time during the mesh’s growing process, because the
equivalent mesh surface movement in the neighborhood of a mesh element is only in
the direction normal to the mesh surface. So it is only natural to look for correspond-
ing point from the object surface in the direction of the normal, which also changes in
the process of inflation. In our implementation, this is done by computing the prospec-
tive correspondence point P (Figure 2.3), the closest intersection of a line in the nor-
mal direction and the object surface represented in range images (see Appendix for
details). Once the intersection is found, the distance from the mesh surface to the in-
tersection can be used as a measure of whether the mesh has reached the object sur-
face.

When there are holes in the input data (parts of the object surface not covered
by the input data), we will not be able to find the intersections described above. In
such cases, there are no prospective correspondence points for the affected vertices
and thus there is no reason to continue applying inflation force. This kind of decision,

Figure 2.2 Stages of an inflating balloon inside the Phone, showing the
movement of the right front only (see Section Chapter 2). The wireframes are
superimposed with sample points from the used range images.

(a) (b)

(c) (d)

(e)
(f)

10 Final Technical Report

however, should not be made locally for each vertex point. We will discuss the han-
dling of holes when we discuss our algorithm in details later, in Section [2.8].

2.4 A Simplified Dynamic Model
The motion of any element i on the model surface can be described by the follow-

ing motion equation [12]:

(2.1)

where xi is the location of the element, and are the first and second deriva-
tives with respect to time, mi represents the mass, ri is the damping coefficient, gi is
the sum of internal forces from neighboring elements due to, e.g., spring attachments
and fi is the external force exerted on the element. Because of the nonlinear nature of
the forces gi and fi involved, the systems of ordinary differential equations in Equa-
tion (2.1) can be solved using explicit numerical integration [12].

The dynamic system will reach the equilibrium state when both and be-
come 0, which can take a very long time since it is usually an exponential process. A
simplified system can be obtained if we make mi = 0, and ri = 1 for all i, in which case
Equation (2.1) reduces to

(2.2)

There are several reasons for this simplification. First, a zero-inertia system is
simpler and easier to control. Second, since there is no inertia, the system will evolve
faster in general. Although we are not seeking an equilibrium state for the entire sys-

Figure 2.3 Line-Surface intersection: searching
for a correspondence point in the normal direction.

P

V

Object

Balloon fronts

L

Anchored Vertices

mi ẋ̇i riẋ gi+ + fi i, 1…N= =

ẋi ẋ̇i

ẋi ẋ̇i

ẋ fi gi i,– 1…N= =

Final Technical Report 11

tem, a simplified system will help speed up reaching local equilibrium states and
therefore accelerate the overall dynamic process. Third, a simplified system involves
less computation. Also, since we do not intend to have a special treatment for any par-
ticular elements in the mesh at this time, all ri should be equal, in which case we can
normalize the parameters so that ri = 1. The set of first-order differential equations
in Equation (2.2) has a very simple explicit integration form as follows:

(2.3)

2.5 Spring Force and Inflation Force
The spring force exerted on vertex i by the spring linking vertex i and j can be

expressed as [12]:

(2.4)

where is the stiffness of the spring, is the spring deformation,
, is the vector length operator and is the natural length of the

spring. The total spring force a vertex receives is the vector sum of spring forces
from all springs attached to it.

The inflation force a vertex receives takes the form of:

(2.5)

where k is the amplitude of the force and is the direction normal to the local
model surface. In our implementation, the normal at a mesh vertex is estimated from
the vector sum of the normal vectors of the surrounding triangles:

, . (2.6)

where is the direction normal to the jth triangle surrounding the
vertex, and is the direction normal to triangle that is the neighbor of but

. This estimation is more stable than the one we get when only the trian-
gles in are used.

2.6 Subdivision and Adaptation of the Triangular Mesh
In a simulated physical system, during the process of the growth of the mesh

model, the mesh triangles increase in size, and tensions due to the spring force also
build up, which eventually stops the movement of the mesh, as the inflation force and
the spring tension equalize. This is not desirable in our system since we do not con-
sider force from the input data, so that an equilibrium state does not mean a good fit.
In order to keep the balloon growing, we can keep the inflation force unchanged

xt ∆t+ fi
t gi

t
–

 ∆t xt
+=

sij

cijeij
rij

------------rij=

cij eij rij lij–=
rij xj xi–= lij

gi

hi kn̂i=

n̂i

n̂i
ni
ni

----------= ni
nij n'ij+()
nij n'ij+()

----------------------------------∑=

nij Tj Tj{ }∈
n'ij T'j Tj

T'j Tj{ }∉
Ti{ }

12 Final Technical Report

(which actually means to keep on inflating) and at the same time reduce the spring
tension by subdividing the triangles in the mesh into smaller triangles. Alternatively,
we can increase the inflation force and allow the spring tension to increase. But in-
creasing the inflation force also has the side effect of increasing the maximum dis-
placement. As can be seen from Equation (2.3), the spring force gi usually acts as a
balance force to the inflation force fi = hi (assuming a convex local structure), thus the
maximum displacement is directly related to the inflation force once a time step is
chosen. So we choose not to increase the inflation force in our system, but to subdivide
the mesh instead.

The purpose of subdividing triangles is twofold. Once a triangle is subdivided,
the sides of the triangles becomes shorter and if we keep the natural length and stiff-
ness of the springs constant, the spring tension is reduced. Also, subdividing the tri-
angles helps maintain an evenly distributed mesh. Subdividing triangles in a certain
region, as will be discussed later, also allows the mesh surface to adapt to the local
object surface geometry without affecting other parts of the mesh surface.

Before introducing the details of the triangle subdivision process, we first define
some terms.

 A vertex is said to be anchored if it has reached the object surface and has been
marked as such. A triangle is said to be anchored if all of its vertices are anchored. At
any time in the mesh growing process, the triangles in the mesh can be classified into
anchored triangle regions, consisting of anchored triangles, and unanchored triangle
regions, consisting of movable triangles, called front. Each front is a connected com-
ponent of triangles, in which two triangles are said to be connected iff they share an
edge.

2.6.1 Adaptive Triangle Mesh Subdivision

Triangle subdivision is carried out only on the front, since anchored triangles are
not allowed to move. This allows the triangular mesh to adapt to the object surface
better without globally adjusting the position of all vertices. A good subdivision
scheme is one that yields an evenly distributed mesh and produces few degenerate
(i.e. long and thin) triangles. The algorithm that we use in this paper first selects a
set of triangles that needs to be subdivided through bisection. Then, after these trian-
gles are bisected on their longest edges, adjacent triangles are also bisected or trisect-
ed to make the triangles conforming, the state in which a pair of neighboring triangles
either meet at the a vertex or share an entire edge. In our implementation, only those
triangles that exceed certain size limit are subdivided first. The algorithm presented
below is adapted from Algorithm 2 (local) in [8], which is developed for refining trian-
gular mesh for finite element analysis.

Final Technical Report 13

2.6.2 Algorithm 1

Let be the set of the triangles from a given front, and is the selected set of
triangles to be subdivided.

1) Bisect T by its longest edge, for each .

2) Find the set of non-conforming triangles generated in step 1. Set .

3) For each with non-conforming point (mid-point on the non-con-
forming edge): (a) bisect T by the longest edge; (b) if P is not on the longest edge
of the T, then join P with the midpoint of the longest edge.

4) Let be the triangulation generated in step 3. Find the set of non-
conforming triangles generated in step 3.

5) If , stop, the subdivision is done. Else, set and go to step
3.

This subdivision algorithm has the feature that the subdivision is only propagat-
ed towards large triangles from the longest edge of a subdivided triangle. It is also
proven that the resulting triangles’ smallest inner angle is lower-bounded by half of
the smallest inner angle of the original triangles [8].

This algorithm, however, does not guarantee that the triangles on the boundary
areas of a front conform with the rest of the triangles in the triangulation. Hence, af-
ter the algorithm terminates, we must bisect the affected non-conforming triangles
accordingly. Thus we have:

2.6.3 Algorithm 2

1) Carry out Algorithm 1 on the set of triangles .

2) For each non-conforming triangle but connected to , bisect T by its
non-conforming edge.

An example of the result from this algorithm is shown in Figure 2.4 , where tri-
angle A is to be subdivided and C does not belong to the region (front). As can be seen
from the figure, the subdivision is propagated to B, and finally C is bisected to make
the triangles at the region boundary conforming (step [2] above).

2.6.4 Local Mesh Adjustment

The above algorithm works very well under most circumstances, but degenerate tri-
angles that are long and thin may still occur. These triangles are undesirable since
they do not represent local surface shape well and are often the cause of self-intersec-
tion of the mesh surface. Currently, we use a simple algorithm that checks for pairs
of such triangles and rearrange the triangle configuration locally . After each subdivi-
sion, we check for triangles that are thin and long, and if two such triangles share an

τf0 τ0 τf0⊂

T τ0∈

R1 τ0⊂ k 1←

T Rk∈ P T∈

τ0
k Rk 1+ τ0

k⊂

Rk 1+ 0{ }= k k 1+←

τ0 τf0⊂

T τf0∉ τf0

14 Final Technical Report

edge that is the longest for both triangles, then we simply switch the cross edge as
shown in Figure 2.5 .

2.7 Description of the Algorithm
In this section we give a brief description of the entire algorithm of our approach.

A discussion on how to set the system parameters will follow. We assume that regis-
tered range image views of the object to be modeled are available, although we believe
the algorithm can be adapted to other types of 3-D input.

We start with selecting an initial point inside the object and constructing an
icosahedron shell [13] at this location. The selection process is currently done by hand
and the size of the shell should be small enough so that it is completely inside the ob-
ject. Since the algorithm does not depend on the actual location of the initial shell, as

A

B
C

(a) (b)

Figure 2.4 Subdivision of triangle mesh. (a) before A is
subdivided, (b) after A is subdivided and the subdivision is
propagated to both B and C.

Figure 2.5 Rearranging the local
configuration to eliminate long and thin
triangles

Final Technical Report 15

long as it is inside the object, an alternative to manually selecting the initial position
is to choose a smooth patch in any range image and place the shell under the patch.
The system algorithm can be described as follows.

2.7.1 Algorithm 3

Let all the triangles on the initial mesh be front F0 and push it into the front
queue Q, then until queue is empty, do the followings repeatedly:

1) F ⇐ top of the queue Q, pop the queue.

2) Subdivide the triangles in F if appropriate (see next section).

3) For each vertex , whose 3-D coordinates at time t is vi
t, do

a) compute the internal forcegi and external forcefi = hi based on Equations (2.4) and
(2.5).

b) compute the new vertex locationvi
t+∆t for the current iteration according to Equation

(2.3).

c) compute prospective correspondence point ofvi, which is the intersectionwi of the sur-
face and the line throughvi and in the direction of the mesh normal atvi (see below).

d) if , thenvi
t+∆t ⇐ wi and mark vertexVi anchored.

4) For each , update its position with the corresponding new positions vi
t+∆t.

5) Discard triangles from F that have thus become anchored (section [2.6]).

6) if then go to 1.

7) recompute connected triangle regions in F and push them into Q. Go to 1.

In step (3)(c) above, an algorithm that computes the intersection between a 3-D
line and the object surface in range image form is called for. This algorithm gives the
closest intersection of a line, which passes through a given vertex point and is in the
direction of the estimated local mesh surface normal at the vertex, and the object sur-
face (point P in Figure [2.3]). This is for the purpose of estimating the distance of the
vertex to the prospective corresponding points on the surface of the object (Section
[2.3.1]). Details of the algorithm can be found in the appendix.

2.8 Setting up the Parameters
In our current implementation, triangles that have areas larger than a thresh-

old St are subdivided at each iteration. St is directly related to the precision of the fit
of the final mesh to the input surface data. Assuming that our goal is to approximate
the object surface to have a triangle fitting error for surfaces with maximum curva-
ture of , St can be easily computed by tessellating a unit sphere of radius
with equilateral (or near equilateral) triangles of sizes smaller or equal to St. This
also gives us a sample configuration of an ideal front structure when the maximum

Vi F∈

vi
t ∆t+ vi

t
– wi vi

t
–>

Vi F∈

F ∅{ }=

δ
1 Rt⁄ Rt

16 Final Technical Report

mesh tension is achieved. Let be the maximum spring force exerted onto
a vertex under such conditions. .The inflation force needed to overcome the spring
force (in order for the vertices to move) is therefore

(2.7)

The inflation force is also constrained by Equation (2.3), since once a time step and a
maximum displacement per iteration are set, the allowed inflation force should then
be (considering 0 spring force):

(2.8)

where is the maximum displacement. Since a large infla-
tion force tends to dominate the mesh’s evolution, which is undesirable, we prefer a
smaller one. We choose to use the minimal inflation force as shown in Equation (2.7).
We can then compute the needed inflation force amplitude k according to Equation
(2.5).

Now the whole issue comes down to determining , and the time
step . The maximum spring force is determined by the spring natural length and
the spring stiffness which are related (Equation (2.4)). In our experiments, we have
used and . and are selected to allow the mesh to evolve
smoothly and quickly relative to the object size and complexity. For all the tests in this
paper, we have used and 0.05 respectively.

Finally, the user needs to select and . For the purpose of simplicity, in our
experiments, however, we manually set and allow a fixed number of N triangles to
fit the sphere with a radius , which gives a nominal approximation error of about

 with and .

2.9 Adaptive Local Fitting, Holes and Noise
It is also worth mentioning that our algorithm is parallelizable since the compu-

tations on each front in the queue Q are independent of each other. Furthermore, the
computation for each vertex within each front is also independent during each itera-
tion.

Another advantage that this computation structure brings us is that we can
adaptively adjust system parameters independently for each front based on the infor-
mation that we gather from the prospective correspondence points of the vertices in
the front. For example, if we have detected that the movement of the front is virtually
stopped and yet the prospective correspondence points are still certain distance away,
this tells us that the preset parameter Rt in previous section is too large and we should
adjust it accordingly.

Another example of such adaptation is in handling holes in data. In this case,
there exist areas of the object surface that are not covered by any of the input range

fspring max–

finflate fspring max–>

finflate

dmax
∆t

-------------≤

dmax max xt ∆t+ xt
–()=

fspring max– dmax
∆t lij

lij 0= cij 4.0= dmax ∆t

2mm

δ Rt
Rt

Rt
0.6mm N 80= Rt 10mm=

Final Technical Report 17

images, we will not be able to find prospective correspondence points for some of the
vertices in the related front. Eventually, when the rest of the vertices in the front have
settled down to their correspondence points, we are left with a front for which none of
the vertices have a prospective correspondence point. In such situations, the system
automatically sets the inflation force to zero (k = 0 in Equation [2.5]), which makes
the mesh reach an equilibrium state that interpolates the surface over the hole.

Another important issue is the issue of noise. There are two type of noises that
may affect out results. One is the noise introduced by the small misalignment among
the range images. The other is the spontaneous outliers from each range image. Our
system is very stable with respect to both types of noise. The first one is effectively
solved by the weighted sum line-surface intersection algorithm (see Appendix) since
the misalignment causes the actual intersections to form a cluster. The second type of
noise usually cause the intersection algorithm on the related range image to fail to
converge, in which case it does not contribute to the result of the intersection. Even if
the noise does produce a wrong intersection, it can easily be filtered out as an outlier
that does not belong to the correct cluster.

2.10 Test Results
We now present examples of our system in modeling a telephone handset

(Phone) and an automobile part (Renault) using 20 and 24 range image views respec-
tively, along with two examples for simpler objects. The range images are acquired us-
ing a Liquid Crystal Range Finder (LCRF) [9], and then registered using the range
image registration algorithm described in [1]. Some sample range images used in the
experiments are shown in Figure 2.6 . Figure [2.7] shows two examples of the balloon
model in fitting two simple objects: the W ood Blob and the Tooth. In Figure 2.8 , the
final rendered views of the constructed model of the Phone are shown below the wire-
frame drawing. Figure 2.9 shows a wireframe and the rendered image of the Renault
part. The final model for the Phone has 1694 vertices and 3384 triangles, the Renault
part has 2850 vertices and 5696 triangles. The total run time excluding registration
on a Sun Sparc-10 running Lucid Common Lisp version 4.0 is 16’17” for the Phone and
32’26” for the Renault. Both the Phone and the Renault part measure about
across their longer sides. Note that the wireframe drawings in the presented results
are not produced using a hidden-line elimination algorithm, which is the cause of
most of the spurious triangles seen in the wireframe drawings, including the “defects”
in the middle which actually corresponds to a step at the back of the object.

As can be seen from the results presented above, our algorithm works very well
for both simple, compact objects, as well as non-star shaped objects with complex
structures. The resulting triangulated model surfaces preserve most of the important
geometry feature of the objects with evenly distributed meshes. Our initial guess are
all set in the neighborhood of the center of the objects and yet our balloon can success-
fully grow to cover all parts of the object with complex geometric structures such as
the Renault part. Also, it is hard to visualize this, but the data that we use for the

200mm

18 Final Technical Report

Renault part contain holes on top of both of the arms, and the resulting mesh was able
to interpolate them very well. There is, however, a defect under the right arm of the
Renault part, as can be seen in the wireframe drawing. It is a small opening in the
mesh that tends to self-intersect which is caused by a small narrow ridge section
(about 8mm thick, much smaller than 2 times Rt, where). We believe that
this can be solved by examing and identifying local surface changes more closely and
adjusting system parameters accordingly in that area.

2.11 Conclusions and Future Research
We have presented a surface description method based on a dynamic balloon

model using a triangular mesh with springs attached to the vertices. The balloon

Figure 2.6 Sample range images used in constructing the Phone
model and Renault model in Figures [2.8] and [2.9], shown here
as shaded intensity images.

Rt 10mm=

Final Technical Report 19

model is driven by an applied inflation force towards the object surface from inside of
the object, until all the triangles are anchored onto the surface. The model is a phys-
ically based dynamic model and the implementation of the algorithm is highly paral-

(a)

(b)

(c)

Figure 2.7 Examples of the balloon model for fitting simple objects: (a)
the original intensity images of the objects, (b) the wireframes of the
obtained balloon models and (c) the rendered shaded images of the
models.

20 Final Technical Report

lelizable. Furthermore, our system is not a global minimization based approach and

Figure 2.8 The final balloon model for the Phone: (a)
wireframe (b), (c) smoothly shaded.

(a)

(b)

(c)

Final Technical Report 21

can allow the model to adapt to local surface shapes based on local measurements.
Tests showed very good results on complex, non-star-shaped objects.

Figure 2.9 The wireframe and the rendered image of the
reconstructed model for the Renault automobile part. The
inserted picture is the intensity image of the actual object.
Note that the wireframe is not produced by a hidden-line
removal algorithm (see Section Chapter 2 on page 17).

22 Final Technical Report

As stated earlier, our goal is to achieve a correct mapping of a triangulated mesh
to the surface of an object, hence there are still many ways to improve the resulting
model we have achieved, including using the algorithms presented in [2] to improve
triangle fitting errors, or the method in [10] to merge small triangles into larger ones
without affecting the fitting error for constructing a hierarchical representation. Lo-
cal smooth patches can also be constructed for high level surface property analysis.
Alternative surface models, such as a smooth finite element surface model ([7]), can
also be used so that the implementation of the system elements can be made more
precisely. In addition, our future research consists of detecting and avoiding possible
self-intersections of the mesh surface.

2.12 References
[1] Y. Chen and G. Medioni, “Object Modelling by Registration of Multiple Range

Images,” International Journal of Image and Vision Computing, 10(3):145–155,
April 1992.

[2] Y. Chen and G. Medioni, “Surface Level Integration of Multiple Range Images”,
in Proceedings of the Workshop on Computer Vision for Space Applications, An-
tibes, France, September 1993.

[3] L. D. Cohen and I. Cohen. Finite-element Methods for Active Contour Models
and balloons for 2-D and 3-D Images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15:1131–1147, 1993.

[4] H. Delingette, M. Hebert, K. Ikeuchi, “Shape Representation and Image Seg-
mentation Using Deformable Surfaces,” CVPR 1991 pp.467-472.

[5] Andre Gueziec, “Large Deformable Splines, Crest Lines and Matchings”, Pro-
ceedings of the International Conference on Computer Vision, pp. 650-657, Ber-
lin, Germany, May 1993.

[6] W.-C. Huang and D. B. Goldgof. Adaptive-Size Meshes for Rigid and Nonrigid
Shape Analysis and Synthesis. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 15(6):611–616, June 1993.

[7] T. McInerney and D. Terzopoulos, “A Finite Element Model for 3D Shape Recon-
struction and Nonrigid Motion Tracking”, Proceedings of the International Con-
ference on Computer Vision, pp. 518-523, Berlin, Germany, May 1993.

[8] M. Cecilia Rivara, “Algorithms for Refining T riangular Grids Suitable for Adap-
tive and Multigrid Techniques”, International Journal for Numerical Methods in
Engineering, Vol. 20, pp. 745-756, 1984.

[9] K. Sato and S. Inokuchi, “Range-Imaging System Utilizing Nematic Liquid
Crystal Mask,” In Proceedings of the IEEE International Conference on Comput-
er Vision, pages 657–661, London, England, June 1987.

Final Technical Report 23

[10] M. Soucy and D. Laurendeau, “Multi-resolution surface modeling from range
views,” In Proceedings of the Conference on Computer Vision and Pattern Recog-
nition � �������	��
������
���
 ������� ����������� ��!"�#��$%�&� ��')(���*,+ �-�/.�0�0�1�2

[11] D. Terzopoulos and D. Metaxas. Dynamic 3D Models with Local and Global De-
formations: Deformable Superquadrics. IEEE Transactions on Pattern Analysis
and Machine Intelligence � .�
�354�68794�:,
���4,.�� ��*,+�;=< .�0�0,.�2

[12] D. Terzopoulos and M. Vasilescu, “Sampling and Reconstruction with Adaptive
Meshes” Proceedings of the Conference on Computer Vision and Pattern Recogni-
tion, pp.70-75, Maui, HI, June 1991.

[13] M. Vasilescu and D. Terzopoulos, “Adaptive Meshes and Shells: Irregular Trian-
gulation, Discontinuities, and Hierachical Subdivision,” Proceedings of the Con-
ference on Computer Vision and Pattern Recognition, pp. 829-832. Urbana-
Champaign, IL, June 1992

2.13 AppendixThe Line-Surface Intersection Algorithm
We describe an algorithm for computing the intersection of a directed line (a ray)

and the object surface represented by a set of registered range images. This algorithm
is based on the line-surface intersection algorithm in [1], which computes the inter-
section between a line and a digital surface represented by a single range image.

We begin with a brief description of the original algorithm. As shown in
Figure 2.10 , we are given a directed line l that passes through a certain point p, the
intersection, q, of l and the surface Q can be computed as follows. We first project p
onto Q in its image space and find the tangent plane of Q at the projection. Then we
compute the intersection q0 of the plane and l, which becomes the first approximation
of the intersect we are looking for. We repeat the process by projecting the intersection
approximation qk onto Q at each iteration. When this process converges, the resulting
intersection is taken as . Note that in this approach, we also have a directional con-
straint for the found intersection, which states that the local surface normal at the
computed intersection point must be within 90° of the direction of the ray, which is
the direction of the mesh surface normal in this paper.

When we have more than one range images, the intersection of the line with all
the range images are computed. Let , be the set of range images and
l be the line in consideration. The intersection of l and the surface can be de-
fined as the weighted sum of all the intersections:

(2.9)

q

Qi{ } i, 1…m=
Qi{ }

q
aiwiqi

i 1=

m

∑

aiwi
i 1=

m

∑
---------------------------,= wi n̂qi

ns⋅()=

24 Final Technical Report

where qi is the intersection of l and Qi, is a unit vector normal to Qi at qi, is the
vector pointing towards the sensor and ai is a binary number depending on the inter-
section of l and Qi, and

The reason behind taking a weighted sum of the intersection points is that the
sensor measurement of the position of a surface point is less reliable if the local sur-
face is facing away from the sensor. The weight wi is a reflection of this heuristic. In
general, the sensor direction information is available from the range image sensor
setup and calibration. For a Cartesian range image (depth map) without sensor infor-
mation, we can simply take .

If there are more than one intersections between l and the object surface, we can
perform a clustering to separate the intersections into groups corresponding to each
real intersection, and choose the closest cluster to compute the above weighted sum.
In practice, we have not had to use such a clustering algorithm. This is because the
result of the intersection algorithm depends on an initial point p (which is the vertex
point in this paper). When the vertices are far from the object surface, can be from
any clusters. But we are less concerned with the actual location of the intersection at
the time. As the mesh grows and the vertex get closer to the surface, almost all the
intersections computed are from the closest cluster, since it is the closest local mini-
mum when considering the intersection process as a minimization. For robustness
purpose, we have implemented a simple filtering scheme to eliminate gross outliers
in the intersections based on the distribution of the intersections found.

Figure 2.10 Intersecting a line with a digital surface
illustrated in a 2-D case.

Directed Line l
Tangents

Q

P

Start point

True intersection

Approximate Intersection

Projections

p

q0

q1

0

Y

X

np

n̂qi
ns

ai
1 if the intersection exists,
0 if there is no intersection,

=

ns

ns 0 0 1, ,() τ
=

qi

