
Tight Cocone : A Water-tight Surface Reconstructor ∗

Tamal K. Dey
Dept. of CIS

The Ohio State University
Columbus, OH 43210, USA

tamaldey@cis.ohio-state.edu

Samrat Goswami
Dept. of CIS

The Ohio State University
Columbus, OH 43210, USA

goswami@cis.ohio-state.edu

ABSTRACT
Surface reconstruction from unorganized sample points is an im-
portant problem in computer graphics, computer aided design, med-
ical imaging and solid modeling. Recently a few algorithms have
been developed that have theoretical guarantee of computing a topo-
logically correct and geometrically close surface under certain con-
dition on sampling density. Unfortunately, this sampling condition
is not always met in practice due to noise, non-smoothness or sim-
ply due to inadequate sampling. This leads to undesired holes and
other artifacts in the output surface. Certain CAD applications such
as creating a prototype from a model boundary require a water-tight
surface, i.e., no hole should be allowed in the surface. In this pa-
per we describe a simple algorithm called Tight Cocone that works
on an initial mesh generated by a popular surface reconstruction
algorithm and fills up all holes to output a water-tight surface. In
doing so, it does not introduce any extra points and produces a tri-
angulated surface interpolating the input sample points. In support
of our method we present experimental results with a number of
difficult data sets.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling; I.4 [Image Processing and Computer Vision]: Recon-
struction,Image Representation

General Terms
Algorithms, Experimentation, Theory, Design

Keywords
Point cloud, Surface reconstruction, Voronoi diagram, Delaunay
triangulation

∗This work is partially supported by NIMA under grant NMA201-
01-1-2012, NSF under grant CCR-9988216 and an U.S. Army re-
search grant DAAD19-02-1-0347.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SM’03, June 16-20, 2003, Seattle, Washington, USA.
Copyright 2003 ACM 1-58113-706-0/03/0006 ...$5.00.

1. INTRODUCTION
The problem of approximating a surface in three dimensions

from its point samples appears in many applications of science and
engineering. Various formulations of the problem are possible with
different requirements on the input and output. Here we focus on
the problem of computing a piecewise linear surface that approxi-
mates the original surface from which only a set of discrete sample
points are given as input.

Because of its widespread application, this problem has been
studied intensely in recent years. A very early paper on the problem
was by Boissonnat [6] who proposed a sculpting of the Delaunay
triangulation for reconstruction. A more refined sculpting strategy
was designed by Edelsbrunner and Mücke [14] in their α-shape
algorithm. Bajaj, Bernardini and Xu [4] used α-shapes for recon-
structing scalar fields and three dimensional CAD models. The α-
shapes require a uniform sampling and an appropriate choice of α

according to the sampling density. Hoppe et. al [18] reconstructed
the surface by using the zero level set of a distance function de-
fined by the input point samples. Curless and Levoy [11] extended
this distance function approach to multiple range scans. The re-
construction quality was further improved by Turk and Levoy [19].
This approach produces nice results though the reconstructed sur-
face may not interpolate the input data points and it requires the
normal information at the sample points in the input. Bernardini
et al. [5] designed the ball-pivoting algorithm that also requires
the normals in the input. Gopi, Krishnan and Silva [17] proposed
to project the sample points with their neighbors on a plane and
then lift the local two dimensional Delaunay triangulations to re-
construct the surface.

The first algorithm that has been proposed with theoretical guar-
antees in reconstruction is due to Amenta, Bern and Kamvysselis
[1]. This algorithm called CRUST exploits the structures of the
Voronoi diagram of the input point set to reconstruct the surface.
Amenta, Choi, Dey and Leekha [2] introduced the COCONE algo-
rithm which improved CRUST both in theory and practice. Bois-
sonnat and Cazals [7] designed another algorithm based on nat-
ural neighbors following the development of CRUST. Funke and
Ramos improved the theoretical complexity of the COCONE algo-
rithm [15]. Recently Cohen-Steiner and Da have designed another
Delaunay based surface reconstruction algorithm [10]. All these
algorithms work nicely on dense data sets, but they face difficulty
if the data contains undersampling. In most cases these algorithms
produce holes or other artifacts in the vicinity of the undersampling.
Many applications such as CAD need water-tight surfaces so that
the surface bounds a solid. Amenta, Choi and Kolluri [3] devised
POWER CRUST to meet this goal. However, this algorithm intro-
duces many extra points in the output and also does not produce
a triangulated surface. Edelsbrunner [13] proposed a Morse theo-

retic approach to reconstruct surfaces which also produces water-
tight surfaces. However, the algorithm may not recover some small
features of the surface even if it is densely sampled. Along the
same line Giesen and John [16] designed another algorithm based
on the flow complex. This algorithm may not interpolate the sam-
ple points and introduces extra points in the output.

The purpose of this paper is to announce a simple algorithm
called TIGHT COCONE that outputs water-tight surfaces. The al-
gorithm first computes a preliminary surface using COCONE which
almost completes the reconstruction except at the vicinity of the un-
dersamplings. A subsequent marking and peeling phase completes
the reconstruction by filling all holes. This phase computes the out-
put surface as the boundary of a union of Delaunay tetrahedra. This
guarantees that the surface cannot have any holes. TIGHT COCONE

relies on the locality of undersampling. When this property is vi-
olated, the output surface, though water-tight may be improper in-
cluding being non-manifold or empty. In achieving water-tightness
TIGHT COCONE does not introduce any extra points and finds tri-
angles from the Delaunay triangulation to fill up the gaps produced
by COCONE.

2. PRELIMINARY RECONSTRUCTION
The input to our algorithm is a point set in three dimensions. We

assume that this point set has been sampled from a compact surface
S ⊂

� 3 that has no boundary. We use a Voronoi based approach to
obtain an initial approximation to S from its point sample. Amenta
and Bern [1] showed that the Voronoi cells are long and thin along
the direction of the normals at each sample point if the sample is
sufficiently dense. Based on this important observation they pi-
oneered the surface reconstruction algorithm called CRUST. In a
subsequent work, Amenta, Choi, Dey and Leekha proposed the
COCONE algorithm that improved CRUST both in theory and prac-
tice. Further improvements were carried out by Dey and Giesen
[12] which include a detection of undersampling in the input data.
We implemented this modified COCONE algorithm which we use
to obtain a preliminary surface out of the input sample. We review
this algorithm briefly below; a complete description can be found
in [12].

2.1 Definitions
Voronoi diagram and its dual Delaunay triangulation constitute

the main data structure in our algorithm. Let P be a finite set of
points in

� 3 . The Voronoi cell of p ∈ P is given as Vp = {x ∈� 3 : ∀q ∈ P −{p}, ‖x−p‖ ≤ ‖x− q‖}. The sets Vp are convex
polyhedra. Closed faces shared by two and three Voronoi cells are
called Voronoi facets and Voronoi edges respectively. The points
shared by four or more Voronoi cells are called Voronoi vertices.
The Voronoi diagram VP of P is the collection of all Voronoi cells,
faces, edges and vertices. It defines a cell decomposition of

� 3 .
The Delaunay triangulation DP of a set of points P is dual

to the Voronoi diagram of P . The convex hull of four or more
points in P defines a Delaunay cell if the intersection of the cor-
responding Voronoi cells is not empty and there exists no superset
of points in P with the same property. Analogously, the convex
hull of 1 ≤ k ≤ 3 points defines a (k − 1)-dimensional Delau-
nay face if the intersection of their corresponding Voronoi cells is
not empty. A 0-,1-, and 2-dimensional Delaunay face is also called
a Delaunay vertex, Delaunay edge, and Delaunay triangle respec-
tively. The collection of Delaunay cells and their faces defines a
decomposition of the convex hull of all points in P . This decom-
position is a triangulation where the Delaunay cells are tetrahedra
if the points are in general position.

In our case P is the input point sample of a surface S ⊂
� 3 .

It turns out that the Voronoi cells are elongated along the normals
to the surface S if P is sufficiently dense for S. This fact is used
by Amenta, Bern and Kamvysselis to estimate the normals at the
sample points with poles [1].

Poles: The farthest Voronoi vertex p+ in Vp is called the positive
pole of p. The negative pole of p is the farthest point p− ∈ Vp from
p such that the two vectors from p to p+ and p− make an angle
more than π

2
. We call vp = p+ − p, the pole vector for p. If Vp is

unbounded, p+ is taken at infinity, and the direction of vp is taken
as the average of all directions given by unbounded Voronoi edges.

The pole vector vp estimates np, the normal to S at p. Therefore,
the plane passing through p with the normal as vp approximates the
tangent plane at p. A conservative estimate of this plane is given by
thickening it around p. This motivates the following definition of
cocone which turns out to be useful for the surface reconstruction
[2, 12].

Cocone: The set Cp = {y ∈ Vp : � ((y − p),vp) ≥ 3π

8
}

is called the cocone of p where � ((y − p),vp) denotes the acute
angle between the supporting lines of the vectors y − p and vp.
In words, Cp is the complement of a double cone (clipped within
Vp) centered at p with an opening angle 3π

8
around the axis aligned

with vp. See Figure 1 for an example of a cocone.

S

np

p

+

S
p

p +

S p

p

Figure 1: A Voronoi cell Vp is elongated along the normal np.
The pole vector p+ − p approximates np. The cocone Cp is the
region in Vp between the two cones at p (right).

2.2 COCONE algorithm
The COCONE algorithm proceeds as follows. Each sample chooses

a set of triangles from the Delaunay triangulation of the sample P

whose dual Voronoi edges are intersected by the cocones defined
at the sample. All such chosen triangles over all samples are called
the candidate triangles. If the sampling density is sufficiently high,
these candidate triangles lie close to the original surface S. Further
they have normals oriented nearly in the same direction as those
at its three sample vertices [2]. A subsequent manifold extraction
step extracts a manifold surface out of this set of candidate trian-
gles. This manifold is homeomorphic and geometrically close to
S. All these claims are theoretically proved [2].

This algorithm works nicely when the input point set P samples
S densely. However, in practice the input often undersamples the
surface. This undersampling may be caused by non-smoothness,
inadequate sampling or noise. It is our experience that the algo-
rithm computes many undesirable triangles near undersampled re-
gions. The appearance of the undesirable triangles can be attributed

MANNEQUIN with COCONE Holes in nose Holes in lips

PIG with COCONE Holes in legs Holes in the tail

Figure 2: Preliminary surface with COCONE may have holes. The triangles bordering the holes are shaded darker.

to the fact that the samples in the undersampled regions do not have
the normals reliably estimated and as a result they choose ‘garbage’
triangles as candidates.

In a subsequent work Dey and Giesen [12] proposed a method to
detect the undersampled regions from the input point set. The al-
gorithm which is called BOUNDARY detects the sample points that
lie in the undersampled regions. The Voronoi cells of these sample
points are not long and thin along the normals to the surface. This
is detected by two conditions called ratio and normal conditions re-
spectively. The ratio condition tests the ‘skinniness’ of the Voronoi
cells while the normal condition tests if its elongation matches with
those of its cocone neighbors. We refer to [12] for details.

The COCONE algorithm is modified to take advantage of the
detection of sample points in the undersampled regions. It calls
BOUNDARY and then lets only those sample points to choose their
candidate triangles which are not marked by BOUNDARY. This
modification removes most of the unwanted triangles near the un-
dersampled regions creating holes in the surface. In Figure 2 we
show reconstructions with this COCONE algorithm.

3. WATER-TIGHT RECONSTRUCTION
The modified COCONE algorithm detects undersampled regions

and leaves holes in the surface near the vicinity of undersampling.
Although this may be desirable for reconstructing surfaces with
boundaries, many applications such as CAD designs require that
the output surface be water-tight, i.e. a surface that bounds a solid.
Formally, we define:

Water-tight surface: A 2-complex embedded in
� 3

whose underlying space is same as the boundary of
the closure of a 3-manifold in

� 3 .

We design a very simple but elegant algorithm TIGHT COCONE to
compute water-tight surfaces from an input point sample.

The overall idea of TIGHT COCONE is to label the Delaunay
tetrahedra computed from the input sample as in or out according
to an initial approximation of the surface and then peeling off all
out tetrahedra. This leaves the in tetrahedra, the boundary of whose
union is output as the water-tight surface. The output of COCONE

is taken as the initial approximated surface possibly with holes and
other artifacts.

By being the boundary of the union of a set of tetrahedra, the
output surface has to be water-tight. However, it is not only the
water-tightness, but also the geometric proximity to the original
surface that are desired for the output. For this we make some
decisions in the algorithm based on the following principle.

Principle of locality: The undersampling is local.

This means that COCONE computes most of the intended surface
except with holes that are locally repairable. Of course, if this prin-
ciple is not obeyed, the output surface, though water-tight may not
be close to the original one including being empty.

3.1 Marking
The COCONE algorithm as described in the previous section com-

putes a preliminary surface possibly with holes and other artifacts
at the undersampled regions. The sample points in the rest of the
surface have their neighborhoods well approximated. Specifically,
the set of surface triangles incident to these points form a topolog-
ical disk. We call the points whose incident surface triangles form
a topological disk good. The rest of the points are called poor.

DEFINITION 1. The union of surface triangles incident to a
good point p is called its Umbrella denoted as Up.

The marking of tetrahedra walks through the Delaunay triangu-
lation in a depth first manner using the vertex and triangle adjacen-
cies. It maintains a stack of pairs (p, σ) where p is a good point and
σ is a tetrahedron incident to p marked out. Suppose the pair (p, σ)
is currently popped out from the stack. The umbrella Up locally
separates the tetrahedra incident to p into two clusters, one on each
side; see Figure 4. The cluster that contains σ is marked out since σ

is already marked out. The other cluster gets the marking in. This
is done by initiating a local walk from σ that traverses all tetrahe-
dra through triangle adjacency without ever crossing a triangle in
Up and marking each tetrahedron as out. The rest of the tetrahedra
that are not encountered in this walk get the in marking. During
this local walk in the out cluster, when a vertex q of Up is reached
through a tetrahedron σ′, the pair (q, σ′) is put into the stack if q is
good and is not explored yet, see Figure 4.

Now we face the question of initiating the stack. For this we
assume that DP is augmented with ‘infinite’ tetrahedra that are in-
cident to a triangle on the convex hull of P and a point at infinity.
The stack is initiated with a good point on the convex hull paired
with an incident infinite tetrahedron. A pseudo-code for the mark-
ing step is given in Figure 3.

MARK(DP)
1 push an infinite tetrahedron with its incident

convex hull triangle to stack S;
Let Σp denote the set of tetrahedra in DP ;

2 while S 6= φ do
3 let (p, σ) := pop S

4 C := {σ};
5 loop
6 if ∃σ ∈ C and σ′ ∈ Σp \ C

and σ ∩ σ′ is a triangle 6∈ Up

7 C := C ∪ {σ′};
8 if σ′ 6∈ S and a vertex q of σ′ is good

where q ∈ Up

9 push (q, σ′) to S;
10 else exit;
11 forever
12 mark each σ ∈ C out;
13 mark each σ ∈ Σp \ C in;
14 endwhile

Figure 3: Pseudo-code for marking.

For most of the data in practice the surface computed by CO-
CONE is well connected, i.e. all triangles incident to good points
can be reached from any other good point via a series of triangle
adjacencies. Assuming this connectivity of the preliminary surface
computed by COCONE, the above procedure marks all tetrahedra
that are incident to at least one good sample point. However, the
tetrahedra all of whose vertices are poor points are not marked by
this step. We call them poor tetrahedra.

The poor tetrahedra whose vertices lie in a single undersampled
region tend to be small due to the principle of locality. We choose
to mark them in and the peeling process later is not allowed to peel
them away. This allows the surface to get repaired in the undersam-
pled region. See Figure 5 for an illustration.

Other poor tetrahedra that connect vertices from different under-
sampled regions tend to be big. If such a big poor tetrahedron lies
outside the intended surface, we need to take it out. So, it should

c

s

r

p

a
b

q

c

s

r

p

a
b

q

Figure 4: The umbrella of p has three triangles pqr, prs

and pqs. This umbrella separates the the tetrahe-
dra incident to p into two clusters, the upper clus-
ter {absp, asqp, abpq, bqrp, brsp} and the lower cluster
{cqrp, csrp, cqsp}. Suppose the walk entered p with the pair
(p, bprs). The right picture shows that the unexplored point q

has an umbrella. Therefore, the pair (q, bprq) is entered into
the stack since q is a good and unexplored point.

p

Figure 5: The four vertices marked with dark circles border a
hole. The poor tetrahedron with this four vertices is marked in.
The sharp tip p of the long tetrahedron is a good point which
marks it out. When this tetrahedron is peeled, the triangle op-
posite to p fills the hole partially. The other triangle of the hole
also gets into the output by a similar peeling.

be marked out. On the other hand if this big poor tetrahedron lies
inside the intended surface, we need to mark it as in. Otherwise, a
large void/tunnel in the surface is created by taking out this tetra-
hedron. We eliminate this dilemma using the principle of locality.
Call a triangle in a tetrahedron small if its circumradius is the least
among all triangles in the tetrahedron. If a poor tetrahedron has a
triangle with vertices from the same undersampled region, then that
triangle is small. The poor tetrahedra lying inside the intended sur-
face have to be reached by the peeling process that peels away all
out marked tetrahedra. This means that the inner poor tetrahedra
have to be reached through the small triangle. We take this ob-
servation into account during peeling while dealing with the poor
tetrahedra and defer designating them during the marking step.

3.2 Peeling
After the marking step, a walk is initiated to peel off tetrahedra

that are marked out and some others. The boundary of the union of
the remaining tetrahedra form the water-tight surface. This is also
the surface of the union of the peeled tetrahedra, see Figure 6.

The walk maintains a stack of surface triangles that form the
boundary of the union of the tetrahedra peeled so far. It is initiated
with all convex hull triangles. At any generic step, a triangle, say

Figure 6: The boundary of the union of peeled tetrahedra as peeling process progresses.

t, is popped out from the stack. One of the tetrahedra incident to
t is already peeled. If the other incident tetrahedron, say σ, is also
already peeled the triangle t seprates two out tetrahedra and is not
put in the output. Otherwise, there are two possibilities. If σ is
not poor and marked in, we put t in the output list. In the other
case either σ is marked out or σ is poor. When σ is marked out
the walk should move into σ through t, which is done by replacing
t with the other three triangles of σ into the stack. If σ is a poor
tetrahedron, the walk is also allowed to move into σ through t only
if t is not the small triangle in σ. This is done to protect peeling of
the inner poor tetrahedra as we discussed before. Notice that if σ is
a poor tetrahedron outside the intended surface, it will be eventually
reached by the peeling process at triangles other than the small one.
But, if σ is a poor tetrahedron inside, it can only be reached from
outside through its small triangle due to the principle of locality.

The walk terminates with the surface triangles in the output list
when there are no more triangles to process from the stack. A
pseudo-code of the peeling process is given in Figure 7.

PEEL(DP)
1 push all convex hull triangles in DP to stack S;
2 mark all infinite tetrahedra peeled; T := φ;
3 while S 6= φ do
4 t :=pop S;
5 if ∃σ ∈ DP incident to t and not marked peeled
6 if (σ is not poor) and (marked in)
7 T := T ∪ t;
8 else
9 if (σ is marked out) or (σ is poor and t is

not the smallest triangle in σ)
10 mark σ peeled;
11 push all triangles of σ other than t to S;
12 endif
13 endif
14 endif
15 endwhile
16 output T

Figure 7: Pseudo-code for peeling.

4. EXPERIMENTAL RESULTS

4.1 Examples
In Figure 8 we show the results of our implementation of TIGHT

COCONE on some difficult data sets. In MANNEQUIN there are un-
dersamplings in eyes, lips and ears which produce holes. TIGHT

COCONE closes all these holes. In particular, in the ear there is a
relatively large hole since points cannot be sampled for occlusion.

This hole is nicely filled. The PIG data has severe undersampling in
the hoofs, ears and nose. They are mostly due to the fact that these
thin and highly curved regions should have more sample points
to capture the features properly. TIGHT COCONE fills all holes
and produces a water-tight surface for this difficult data set. The
machine part CONNECTOR has undersampling mainly due to non-
smoothness. Sharp edges and corners cause undersampling which
cannot be avoided by any finite sampling. All anomalies caused by
this non-smooth regions are repaired to produce a water-tight sur-
face. The undersampling in the highly curved regions such as the
neck in DINOSAUR is also gracefully handled by TIGHT COCONE.
The code for TIGHT COCONE has been released for academic use.
It can be downloaded from [9].

In Figure 9 we show how TIGHT COCONE handles noise. Re-
call that TIGHT COCONE works on the principle of local under-
sampling. Noise can cause to violate this principle and as a result
TIGHT COCONE may fail to output a surface. In the FOOT example
of Figure 9, TIGHT COCONE reconstructs the surface when there
is undersampling but no noise. We add noise by perturbing the
points randomly within a small ball around each point. The princi-
ple of locality starts getting violated as the amount of perturbation
increased. Figure 9 illustrates how TIGHT COCONE tolerates some
amount of noise and fails when the noise is increased further.

4.2 Timings
The time and space complexities of TIGHT COCONE are domi-

nated by those of the three dimensional Voronoi diagram compu-
tation. Thus, for an input sample of n points, the algorithm runs
in O(n2) time and space in the worst case. However, in prac-
tice we do not observe this quadratic behavior. In Figure 10 we
show the breakup of the timings of TIGHT COCONE for a num-
ber of data sets on a PC with 733 Mhz Pentium III CPU and 512
MB memory. The code was compiled with g++ compiler and at
the O1 level of optimization. CGAL 2.3 is used for all computa-
tions [8]. The timing is broken into the three major steps of TIGHT

COCONE, the Delaunay triangulation, the COCONE surface gener-
ation and the final postprocessing to make the surface water-tight.
It is clear from the table that the Delaunay triangulation is the most
time consuming step. All computations are done with filtered float-
ing point arithmetic for numerical robustness. If one uses floating
point arithmetic, usually a gain of a factor of two in computing time
is observed, but the correctness of the output may be compromised
due to numerical errors.

5. DISCUSSIONS
We designed a simple and elegant algorithm to produce water-

tight surfaces out of point samples. The algorithm guarantees that
the output surface is water-tight. It does not introduce any extra
points to do so. The output is always a subcomplex of the Delau-
nay triangulation. Thus, one can use the Delaunay tetrahedra inside

Water-tight MANNEQUIN Holes in undersampled ear Water-tight ear

Water-tight PIG Holes in high curvature regions Holes are filled

Water-tight CONNECTOR Anomalies near sharp edges and corners Anomalies are repaired

Water-tight DINOSAUR Holes in high curvature regions Holes are repaired

Figure 8: Results of TIGHT COCONE. Second column shows the holes in the preliminary surface while the third column shows how
they are filled. Triangles bordering the holes are shaded darker.

FOOT without noise FOOT with little noise FOOT with more noise

Figure 9: Performance of TIGHT COCONE with increasing noise. Surface is reconstructed when points are perturbed slightly (middle).
No surface is constructed when the perturbation is increased further.

points Delaunay Cocone Mark/peel
object (sec.) (sec.) (sec.)

CACTUS 3337 6.5 2.7 1.3
PIG 3511 2.8 2.7 1.4

MECH 4102 3.6 3.2 1.7
EARCAN 8459 16.5 7.1 3.2

CAT 10000 8.5 8.2 4.0
KNOT 10000 10.0 11.1 5.2

MANNEQ 12772 9.3 10.0 4.8
DINOSAUR 14050 12.6 12.1 5.9
FANDISK 16475 16.1 12.4 6.3

CLUB 16864 23.1 13.4 6.3
CONNECT 26793 41.5 18.5 9.6
FEMALE 30432 38.5 27.6 13.2
OILPUMP 30936 28.6 23.9 11.8
HEART 37912 39.9 30.3 14.5
HORSE 48485 90.2 42.0 19.4
BREVI 56152 54.3 41.8 20.2
HAND 74315 123 64.2 29.8

Figure 10: Time data.

the water-tight surface to produce a three dimensional triangulation
of the model. Our experiments show the effectiveness and the effi-
ciency of the algorithm on many example data sets.

As we have indicated, TIGHT COCONE relies on the locality of
undersampling. Thus, when this condition is not satisfied, TIGHT

COCONE faces trouble in computing a surface. Noisy samples are
examples of such data sets as Figure 9 illustrates. Although it han-
dles some amount of noise gracefully, it may not output any surface
if the noise is beyond its tolerance limit.

The TIGHT COCONE as presented in this paper cannot recon-
struct internal voids as it peels tetrahedra starting from the convex
hull boundary. One needs to modify the marking and peeling rou-
tines to handle internal voids. After one phase of marking, the tetra-
hedra constituting the internal voids remain unmarked. Therefore,
new marking phases can be initiated from an unmarked tetrahedron
in order to mark all tetrahedra in the voids as out. Subsequently,

in the peeling step, new peeling phases can be initiated as long as
there are out tetrahedra not visited yet.

In some applications the output surface needs to produce certain
intended boundaries. The COCONE algorithm/software is designed
for that purpose [9]. Although it detects the intended boundaries, it
also produces holes where undersampling happens unintentionally.
Is it possible to recognize the intended boundaries while filling up
other holes? The problem is ill-posed, but is there a proper formu-
lation of the problem which may lead to an algorithm with certain
reasonable assumptions on input? We plan to pursue this line of
research.

6. REFERENCES

[1] N. Amenta, M. Bern and M. Kamvysselis. A new
Voronoi-based surface reconstruction algorithm. SIGGRAPH
98, (1998), 415-421.

[2] N. Amenta, S. Choi, T. K. Dey and N. Leekha. A simple
algorithm for homeomorphic surface reconstruction.
Internat. J. Comput. Geom. & Applications, 12, (2002),
125–141.

[3] N. Amenta, S. Choi and R. K. Kolluri. The power crust.
Proc. 6th Annu. Sympos. Solid Modeling Applications,
(2001), 249–260.

[4] C. Bajaj, F. Bernardini and G. Xu. Automatic reconstruction
of surfaces and scalar fields from 3D scans. SIGGRAPH 95,
(1995), 109–118.

[5] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva and G.
Taubin. The ball-pivoting algorithm for surface
reconstruction. IEEE Trans. Vis. Comput. Graphics, 5,
349–359.

[6] J. D. Boissonnat. Geometric structures for three dimensional
shape representation, ACM Transact. on Graphics 3(4),
(1984) 266–286.

[7] J. D. Boissonnat and F. Cazals. Smooth surface
reconstruction via natural neighbor interpolation of distance
functions. Proc. 16th. Annu. Sympos. Comput. Geom.,
(2000), 223–232.

[8] CGAL: http://www.cgal.org

[9] COCONE:
http://www.cis.ohio-state.edu/∼tamaldey/cocone.html

[10] D. Cohen-Steiner and F. Da. A greedy Delaunay based
surface reconstruction algorithm. Rapport de recherche 4564,
INRIA, 2002.

[11] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. SIGGRAPH 96, (1996),
303-312.

[12] T. K. Dey and J. Giesen. Detecting undersampling in surface
reconstruction. Proc. 17th Annu. Sympos. Comput. Geom.
(2001), 257–263.

[13] H. Edelsbrunner. Surface reconstruction by wrapping finite
point set in space. Ricky Pollack and Eli Goodman
Festschrift, ed. B. Aronov, S. Basu, J. Pach and M. Sharir,
Springer-Verlag, to appear.

[14] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha
shapes. ACM Trans. Graphics, 13, (1994), 43–72.

[15] S. Funke and E. A. Ramos. Smooth-surface reconstruction in
near-linear time. Proc. 13th ACM-SIAM Annu. Sympos.
Discrete Algorithms, (2002), 781–790.

[16] J. Giesen and M. John. The flow complex: A data structure
for geometric modeling. Proc. 14th. Annu. ACM-SIAM
Sympos. Discrete Algorithms, (2003), 285–294.

[17] M. Gopi, S. Krishnan and C. T. Silva. Surface reconstruction
based on lower dimensional localized delaunay triangulation.
Computer Graphics Forum, 19(3), August 2002.

[18] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W.
Stuetzle. Surface reconstruction from unorganized points.
SIGGRAPH 92, (1992), 71-78.

[19] G. Turk and M. Levoy. Zippered polygon meshes from range
images. Proc. SIGGRAPH 94, (1994), 311-318.

