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Inference of Surfaces, 3D Curves, and
Junctions From Sparse, Noisy, 3D Data

Gideon Guy and Gérard Medioni, Senior Member, IEEE

Abstract —We address the problem of obtaining dense surface information from a sparse set of 3D data in the presence of spurious
noise samples. The input can be in the form of points, or points with an associated tangent or normal, allowing both position and
direction to be corrupted by noise. Most approaches treat the problem as an interpolation problem, which is solved by fitting a
surface such as a membrane or thin plate to minimize some function. We argue that these physical constraints are not sufficient,
and propose to impose additional perceptual constraints such as good continuity and “cosurfacity.” These constraints allow us to not
only infer surfaces, but also to detect surface orientation discontinuities, as well as junctions, all at the same time. The approach
imposes no restriction on genus, number of discontinuities, number of objects, and is noniterative. The result is in the form of three
dense saliency maps for surfaces, intersections between surfaces (i.e., 3D curves), and 3D junctions, respectively. These saliency
maps are then used to guide a “marching” process to generate a description (e.g., a triangulated mesh) making information about
surfaces, space curves, and 3D junctions explicit. The traditional marching process needs to be refined as the polarity of the surface
orientation is not necessarily locally consistent. These three maps are currently not integrated, and this is the topic of our ongoing
research. We present results on a variety of computer-generated and real data, having varying curvature, of different genus, and
multiple objects.

Index Terms —Segmentation and feature extraction, human visual perception issues, isosurface extraction.

——————————   ✦   ——————————

1 INTRODUCTION

HE human visual system can perform an amazingly
good job of perceiving surfaces from a set of 3D points.

It cannot only infer surfaces, but also segment the scene
into objects, and detect surface orientation and discontinui-
ties. This can be demonstrated by displaying a sequence of
views corresponding to a set of 3D points from different
viewpoints. Consider, for example the scenario in Fig. 1.
First, a sparse set of points is sampled from the plane and
the sphere. Next, these 3D points are presented to the
viewer as a sequence of projections. Human have no prob-
lem perceiving the geometric shapes and segmenting them.

This is the performance of shape inference we are trying
to emulate here. We argue that traditional interpolation
techniques are unable to account for such performance,
except in much restricted scenarios (e.g., one single smooth
surface with a single visible sheet).

Our approach consists of using perceptual constraints
between various 3D primitives in space in order to group
these features, and to reconstruct the underlying surfaces.
This is achieved by a nonlinear voting process implemented
as a convolution of the input features with a predefined
mask (later referred to as the Diabolo Field) resulting in a
dense saliency map of the space. Such a map holds high
values for locations in space which are strong candidates
for surfaces. Also, at each such location, a normal to the

predicted surface is available. Space curves and 3D junc-
tions can be readily derived from the same map, as we shall
show later. The process is noniterative, parameter free, and
allows for any number of objects in the scene, each with any
genus. An earlier 2D work by the authors [9], [11], uses a
similar, but simplified method to extract curves in inten-
sity images.
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Fig. 1. (a) A sparse set of 3D points (with normals) are sampled from a
plane intersecting a sphere. (b) The dotted circle represents the inter-
section contour and is not explicit in the data.
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We start by briefly reviewing some of the existing work
on this problem, then describe our approach, and finally
show results on complex data.

2 PREVIOUS WORK

Much work has been done in fitting surfaces to clouds of
points (for a detailed discussion, see [14]). The three main
trends are physics based, functional minimization, and
computational geometry based approaches.

The deformable model approach (first proposed by Kass
et al. [13] for 2D, and in [23] for 3D) attempt to deform an
initial shape so that it fits a set of points through energy
minimization. Boult and Kender [3] addressed the sparse
data problem specifically. They analyzed and compared
four theoretical approaches, and demonstrated a method
using minimization over Hilbert spaces. Poggio and Girosi
[18] formulated the single-surface approximation problem
as a network learning problem. Blake and Zisserman [4]
addressed similar problems dealing explicitly with discon-
tinuities. Others (e.g., [20], [21], [22], [24]) also studied
similar problems.

Fua and Sander [6] have proposed a local algorithm to
describe surfaces from a set of points. Szeliski et al. [19]
have proposed the use of a physically-based dynamic local
process evolving from each data point, and subject to vari-
ous forces. They are able to handle objects of unrestricted
topology, but assume a single connected object.

The physics based approaches ([21], [22], and [23]) rely
on the Governing Equation which is typically used to de-
scribe multiparticle systems. The model itself is thought of
either as a mesh-like surface composed of a set of nodes
with springs connecting them, or as a surface represented
by an implicit function. The model (or initial surface) is in
equilibrium without external forces exerted on it. The input
data points are now attached to their counterparts on the
model by springs. This interrupts the equilibrium, and re-
quires the system to converge to a new steady state, which
is considered to be the desired surface. In addition to the
external force from the data points, there are two more
forces in this dynamic system. One is from the stiffness of
the spring (or the surface), and the other is the damping for
dissipating the energy of the whole system. Some ap-
proaches based on this might need the correspondence re-
lation between the collected measurements and the points
on the model, which are not always available.

The functional minimization approach (for example, [12]
and [14]) always starts with an initial surface, which is then
made to fit the data. An energy function is associated with
the surface which indicates the present energy of the sur-
face. The energy comes mainly from

1) the smoothness constraint imposed on the fitting sur-
face and

2) the distance between the fitting surface and the data.

A numerical method for function minimization is then ap-
plied to conform the fitting surface to the data by reducing
the energy of the fitting surface. The underlying surface of
the collected data is obtained when the function reaches the
minimum.

The algorithms in the computational geometry category
(for example, [2] and [7]) treat the collected data as vertices
of a graph. The graph is constructed by adding edges be-
tween nodes, based on estimated local properties. The algo-
rithms in this category usually produce results in a polyhe-
dral form where each face is a triangle, and the vertices on
the polyhedron are the input data points themselves. Using
local information only, computational geometry based ap-
proaches cannot handle noise. They can, however, describe
complex objects with any topology.

The above methods are computationally expensive as an
iterative process takes place. They also suffer from one or
more of the following problems:

• Only one genus-zero object—This is true to all de-
formable models approaches.

• A single 2 1/2-D surface can be described at any one
tim—Spatial ordering is known. Such methods fail
when true 3D data is present.

• Smoothing—Surface boundaries and discontinuities
are usually smoothed out as most methods do not
handle specifically surface boundaries.

• Outlier noise—Noisy data can severely interfere with
the convergence to the correct surface. Methods re-
quiring that the resulting surface to pass through all
input data points collapse when noise is present.

3 OVERVIEW OF OUR APPROACH

We consider inputs in three forms:

1) 3D points,
2) short curve segments with partial orientation data, and
3) 3D points with surface normal information (patches).

In all cases, the input consists of a sparse set of data. In our
current implementation, these primitives are quantized in a
3D array.

We consider (3) as the “basic” case. When it is not the
case, we preprocess the data to reduce them into our
“basic” case by estimating the normals for each input point
or sites. As we shall see, the process of normal estimation
does not differ from the main process of recovering surfaces
from the data, which involves a convolution with a vector
field that capture perceptual constraints. The perceptual
constraints we wish to locally enforce for the desired sur-
faces are: Cosurfacity (the 2D counterpart is cocurvilinear-
ity), proximity, and constancy of curvature.

We encode these constraints into a vector field, called the
Diabolo Field, whose design is detailed in Section 4. Such a
field, when aligned with an input site, associates a pre-
ferred direction and strength to every voxel in a large vol-
ume of space around the input site.

By aligning the field with each input site, we produce, at
each voxel location, a collection of vector votes. This com-
plex information is then compressed into the second order
moments of the vector collection, graphically represented
by an ellipsoid, or equivalently, by three orthogonal 3D
vectors. These three vectors are then combined and inter-
preted as three independent saliency volume maps corre-
sponding to surfaces, curves and junctions, as explained in
Section 5.3.
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A subsequent step of integration of the information
contained in these three maps is under investigation. For
each of these maps, we extract the maximal sets (surfaces,
curves and points) with subvoxel precision using an ap-
propriately modified “marching” algorithm, as explained in
Section 5.4.

The flowchart of the approach is described on Fig. 2. It,
however, does not include the off-line computation of the
fields mentioned above. They are performed only once at
the beginning. We shall discuss them in the next section.

4 THE DESIGN OF THE FIELDS

With no loss of generality, we assume that the input con-
sists of separate primitives, or small patches. All samples
are placed on a regular grid, which allows for a much sim-
pler implementation. We next describe the rationale behind
the shape of the fields.

4.1 The Diabolo Field
Given a patch at the origin with a known normal (N), we
ask the following question: for a given point P in space,
what is the most likely normal (at P) to a surface passing
through P, and tangent to the original patch? (Fig. 3 illus-
trates this situation.) We claim that a circular continuation
between the patch and point P is the most appealing one,
since it keeps the curvature constant along the hypothe-
sized circular arc. The most likely normal then is the normal
to that arc at P. Also, symmetry considerations dictate that
it lies on the same plane as the original normal N.

We set the length of these normal vectors to be inversely
proportional to the distance of the point from the patch,
and to the curvature of the underlying circular arc. This
effectively encodes both proximity and the lower curvature
constraints, and represents the likelihood of a surface
passing through that point. It is possible to tune the likeli-

hood values, so as to optimize the behavior of the system.
In our current implementation, we use a Gaussian decay
function that seems to work well on all examples. This pre-
defined mask is named a Diabolo Field (DF) because of its
resemblance to the “Diabolo,” a device used by jugglers, as
shown in Fig 4. In spherical coordinates, the Diabolo Field
thus takes the following form:

DF r e eAr B, ,M T
M1 6  � �

2 2

                            (1)

where A encodes the decay due to proximity, and B the
decay due to higher curvature. The parameters A and B
were selected empirically (A = 0.003, B = 2.85) based on
some simple scenarios so that the desired response is
achieved, and are kept unchanged throughout all of our
experiments (see [10] for details).

The Diabolo Field is illustrated in Fig. 5, and has the
general shape of nested half spheres. Notice that for points
which are farther than 90$ along the spherical surface, a
circular arc is no longer the most likely continuation, and in
fact we assign a zero value to field elements there. This
means that a given patch in space does not vote inside a 45$

cone whose axis aligns with the normal to that patch.

Fig. 2. Flowchart of our system.

Fig. 3. What is the most likely normal to a surface passing through
point P and at the same time tangent to the patch at the origin?
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4.2 The 3D Curve Segment Field
The curve segment field is designed to aid in the pre-
processing step when line segments that are known to be
tangent to the surfaces are present in the input data. Such
data is typical when using a 3D digitizer in its sweep mode,
or when surface markings are matched in a stereo pair.
Matched (true or limb) edges in a stereo pair can also sup-
ply input in the appropriate format. Clearly, having some
information about the site is better than only having the loca-
tion as is the case in the completely nonoriented case. We
thus refer to this type of input as the partially-oriented input.

Again we ask the question: What is the most likely sur-
face to pass through a point P in space and have the seg-
ment at the origin lying on it? The answer is very simple. A
segment and a point in space define exactly one plane. And
since a plane is the most likely surface in terms of the per-
ceptual constraints, it is also the most likely to appear.

A practical way of constructing this field is to take the
Diabolo Field and convolve it with a multidirectional patch.
This last operation is similar to revolving the Diabolo Field
around itself along the x (or y) axis (referring to notation in
Fig. 6). By symmetry considerations, it is simple to show
that the resulting field will have the correct orientations

everywhere in space (as shown in Fig. 6). This construction
also determines the strength values at every site of the field.

4.3 The 3D Point Field
The 3D Point field is necessary for the pre-processing step
to handle nonoriented input samples. Here, we ask the
question: Given a point in space and the origin, what is the
most likely surface to pass through these two points? The
answer is that a family of planes going through the two
points are all equally likely (in the absence of any other cue,
there is no reason to hypothesize a curved surface). That is,
at each point in space, many normals are equally likely (see
Fig. 6). They all lie on a plane perpendicular to the line
formed by the point in question and the origin. We thus
choose to describe the contribution of all these normals
with a single 3D vector pointing in the direction of the
above line (thick arrow in Fig. 6). This treatment results in a
simple radial field with diminishing strength.

We later show how such a voting vector is applied to es-
timate normals for partially- and nonoriented input data.

5 IMPLEMENTATION OF THE ALGORITHM

We now know how to locally impose the constraints of co-
surfacity, proximity, smoothness and low curvature, by
encoding them into a vector field. We show how to aggre-
gate these local inferences.

The algorithm consists of four stages (for oriented inputs):

• Voting
• Representation
• Interpretation
• High-level feature extraction

Fig. 4. Two views of a juggler’s diabolo.

Fig. 5. (a) The general shape of the Diabolo Field. The lower part is a
mirror image of the top and omitted here for clarity. Field vectors (not
shown) are normal to the “bowl” surfaces shown. (b) A cross-section
through the y   0 plane, with actual voting vectors.

Fig. 6. The general shape of the curve segment field. (a) All planes go
to infinity, with diminishing strength. (b) A cross-section at z = 0. The
field elements are normals to the drawn planes.
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Fig. 7. (a) All normals (thin arrows) at point P are equally likely. We
choose to represent all of them with one vector (thick arrow) perpen-
dicular to the plane they all lie on. (b) A cross-section of the Point Field
at y = 0.

5.1 Vector Convolution and Vote Aggregation
The computation of the Saliency maps is implemented as a
vector convolution with the above fields. The resulting map
is then a function of a collection of fields, each oriented
along a corresponding short input normal in 3D. Each site
accumulates the “votes” for its own preferred orientation
and strength from every other site in the volume. These
values are combined at every site as described next.

5.2 Representation at Each Voxel
At this stage in the algorithm, each voxel in the array has
collected votes from every input site. We need to compute
some measure of coherence (or agreement) in this collection
of vectors, in terms of their orientation. If many of the

vectors point in (roughly) the same direction, we say that
there is a high level of agreement in the votes, and for that
reason, the likelihood of a surface passing through that
voxel is high. We should also consider the total weight of
the voting vectors.

In practice, we treat the contributions to a voxel as being
vector weights, and compute central moments of the re-
sulting system. Computing the second order moments of
the system is equivalent to finding a 3D ellipsoid having the
same moments and principal axes. Such a physical model
acts as an approximation to a majority vote (or a statistical
mode), and behaves in the desired way, giving both the
preferred direction and a measure of the agreement.

Outlier locations are likely to produce an incoherent set
of votes, which, as we show later, produces a low saliency
measure.

5.3 Vote Interpretation
It is now that we actually reason about the data in hand.
We claim that the eigenvalues and eigenvectors associated
with the moments at each site can be used to estimate sali-
ency and predicted normals.

For each site in our 3D array we decompose the 3 � 3
variance-covariance matrix, as expressed in (2), into (3),
where Omax, Omid, and Omin represent the three sorted eigen-
values of the system, mabc denote the corresponding sum of
moments at each voxel, and the Vs denote the correspond-
ing eigenvectors of the system. Such decomposition will
always yield real, nonnegative eigenvalues since the matrix
is positive semidefinite:
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The three eigenvectors correspond to the three principal
directions of an ellipsoid in 3D, while the eigenvalues de-
scribe the strength and agreement measures of the 3D
votes, as explained next.

Omax, Omid, and Omin are related to the number of votes re-
ceived. By itself, however, this raw value does not capture
the desired saliency, as it does not capture the agreement

Fig. 8. The three important voting ellipsoids. (a) Omax @ Omid < Omin, high agreement in exactly one direction (a surface). (b) Omax < Omid @ Omin,
high agreement in exactly two orientations (an intersection, or 3D curve). (c) Omax < Omid < Omin, votes are coming from all directions (a 3D junction).
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between votes. In order to interpret these three values, it is
useful to consider what happens on a smooth surface, at the
edge between two surfaces, and at a junction between three
or more surfaces, as illustrated in Fig. 8a.

On a smooth surface, the votes produce high agreement
around one direction, leading to the situation depicted in
Fig. 8a, where Omax @ Omid, Omin.

Along the curve bounding two surfaces, two of the ei-
genvalues are high, and one small, as in Fig. 8b, leading to
Omid @ Omin.

Finally, at a junction of two or more curves, all three
values are similar, as in Fig. 8c.

Based on these observations, we propose to define three
voxel maps defining the surface, curve, and junction salien-
cies, respectively. Each voxel of these maps has a two-tuple
(s, v ), where s is a scalar and v  is a unit vector:

• surface map: s = Omax ��Omid, and v  = Vmax indicating
the normal direction.

• curve map: s = Omid ��Omin, and v  = Vmin indicating the
tangent direction.

• junction map: s = Omin, with v  arbitrary.

Note that these three maps are dense saliency maps, which
need to be processed (maxima extraction) to produce the de-
rived features, as explained in the following (Section 5.4).

5.3.1 Preprocessing for the Nonoriented cases
The basic case we are considering is that a normal is avail-
able at each input site. When we have points or oriented
curve elements as input, we preprocess them to infer a nor-
mal. This is achieved again by convolving each input site
with the appropriate vector kernel (point or curve segment),
and interpreting the resulting votes, but only at the original
input sites, making this step computationally inexpensive.

As a result of this step, each input site now holds a nor-
mal, obtained as the eigenvector Vmax corresponding to Omax.

5.4 High-Level Feature Extraction
We now have, at each voxel site, the three saliency meas-
ures derived from the three eigenvalues and their associ-
ated eigenvectors. We describe below the procedure to ex-
tract the salient features, corresponding to local maxima of
the three saliency maps.

5.4.1 Junction Saliency
3D junctions are isolated points, by definition, so it is
straightforward to extract them as local maxima of the Omin
values.

Our system is limited in resolution, so we do not expect
to detect two close by junctions, and therefore inhibit a
neighborhood of five voxels around each strong local
maximum. Fig. 24d depicts the 3D junctions inferred from
the input data (Fig. 24b).

5.4.2 Curve Saliency
Each voxel in the curve map holds a two-tuple (s, v ),
where the (scalar) saliency measure s is

s = Omid ��Omin                                                         (4)

and v  = Vmin. Since v  is aligned with the tangent, we will
denote it by t  in this section.

Note that the knowledge of t  at every voxel is essential
(otherwise the problem is meaningless). Simply computing
local extrema at each voxel location is a very coarse ap-
proximation which produces a set of points, rather than a
set of connected curves.

We first study the continuous version of the problem of
extracting salient curve from a curve map, in which (s, t ) is
defined for every point p in 3D space. A point p with (s, t )
is on a maximal curve if any displacement from p on the
plane normal to t  will result in a lower s value. In other
words, a point p lies on a maximal curve if at point p the
following differential property holds:

ds
du

ds
dv  0                                    (5)

where u and v define the plane normal to t . This definition
therefore involves the detection of zero-crossing in the u-v
plane normal to t . To do this, we introduce the gradient
vector g  computed on the strengths of adjacent saliencies,
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and define q  as

q t g t � �2 7                                    (7)

By construction, q  is the projection of g  onto the plane
normal to t  (Fig. 9). Therefore, a maximal curve is the lo-
cus of points for which q  0 .

In (discrete) implementation, we need to deal with the
fact that the vector function is digitized and quantized,
rather than continuous. We therefore need to compute an
approximation for g  and q . Then, it is possible to generate
a subvoxel linear approximation of the true location for
which q  0  (if it exists) for each face of a voxel, using an
adapted “Marching Squares” algorithm (a 2D version of
Marching Cubes algorithm [8]).

Fig. 9. A maximal curve. (a) g  is projected onto the plane perpen-
dicular to the tangent to the curve. This projection is achieved by the
first cross product of (7). (b) After repositioning the derivatives (done by
the second cross product), a change in signs of derivatives in both u
and v directions indicates a curve is passing through that face.
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Each voxel in the curve map with coordinates (i, j, k)
holds (si,j,k, ti j k, , ). The discrete version of g , denoted by

gi j k, , , is defined by the first order saliency difference, i.e.,

g
s s
s s
s s
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We can simply define the corresponding discrete qi j k, ,  for

each voxel as

q t g ti j k i j k i j k i j k, , , , , , , , � �4 9                          (9)

Therefore, the set of all qi j k, ,> C  defined for all voxels con-

stitutes a vector array which can be processed by the
adapted “Marching Squares” algorithm, as described below.

We examine the six faces of each voxel. We assume that
a curve will intersect exactly two of the faces if it goes
through the voxel. To each of the four vertices of each face
we attach two signs of the corresponding element of (9).
There are 256 possibilities, but only sixteen of them indicate
a curve is going through that face. So for example, for a face
that is parallel to the z = 0 plane we assign qi j k x, ,4 9  and

qi j k y, ,4 9 , the x and y component of qi j k, , , to each of the verti-

ces, and examine their sign. Fig. 10 shows some of the more
common cases. It can be seen that for a curve to pass
through a given face, all four sides need to have a zero-
crossing somewhere along them. This requires the signs to
alternate as we follow the boundary of the face.

Fig. 10. Discrete version of the maximal curve extraction. (a) and (b) All
four sides have a zero-crossing (denoted by the hollow circle) and the
curve passes through the intersection of the lines connecting opposite
zero-crossings. (c) Only three zero-crossings are found, no curve passes
through that face. (d) A curve passes through two faces of a voxel.

An important issue in ensuring the consistency of the
evaluation of the four vertices is the alignment of the normal
vectors. Recall that the front-end of the system (the one that

produces the saliency map) cannot ensure that all tangents
(or normals) belonging to an underlying curve are oriented
consistently along the curve. Thus, the marching algorithm
must locally align all the neighboring tangent vectors be-
fore applying (9) to them. The alignment involves testing
the sign of the dot product of all vectors against an arbi-
trary vector, and flipping the vector if the sign is negative.

5.4.3 Surface Saliency
Each voxel of the surface map holds a two-tuple (s, v ), where

s = Omax ��Omid                                                (10)

and v  is the unit vector Vmax. Since v  aligns with the nor-
mal, we will denote it by n  in this section.

Note again that the knowledge of n  is essential, and that
extracting local maxima at each voxel produces a thick set
of points, not a surface.

As before, we first study the continuous version of the
problem of salient surface extraction, in which (s, n ) is de-
fined for every point p in 3D space. A point is on a maximal
surface if its saliency s is locally maximal along the direction
of the normal. That is, a point p lies on a maximal surface if
at point p the following differential property holds:

ds
dn  0.                                    (11)

This definition involves the detection of zero-crossing on the
line aligned with n . We therefore compute this projection
by defining a scalar q which is the dot product of n  and g :

q n g ¹ ,                                     (12)

where g  was defined earlier by (6). (Here we have a sim-
pler formulation than in the curve case since q is a scalar.)
Therefore, a maximal surface is the locus of points for
which q = 0.

As before, in implementation, we need to compute an
approximation for g  and q. Each voxel in the surface map

with coordinates (i, j, k) holds (si,j,k, ni j k, , ). gi j k, ,  was defined

in (8). So, qi,j,k for each voxel is simply

qi,j,k = ni j k, ,  ¹ gi j k, , .                              (13)

Therefore, the set of all {qi,j,k} constitute a scalar array, which
can be processed directly by the Marching Cubes algorithm
[8] to extract a zero-crossing surface which corresponds to
the locus of points for which q = 0.

We illustrate the situation in Fig. 11 and Fig. 12. Fig. 11
shows a slice cut from the surface map of a saddle surface
(Fig. 16) parallel to the y-z plane. Each voxel of the surface
map holds a 2-tuple (s, n ), see Fig. 11. The rationale behind
(12) is depicted in Fig. 12. The gradient is zero at the maxi-
mal point, and the dot product described above will change
its sign as it moves across the crest line.

As before, alignment of the normal vector is crucial to
the success of the maximal surface extraction.

5.5 Noise Tolerance
Our scheme is not sensitive to noise in the form of errone-
ous features, or localization errors of the measurements,
since a nonlinear voting scheme is employed. Also, a priori
distribution of noise is expected to be directionally uniform,
such that computed orientations are not corrupted. Further
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discussion regarding the nonmaximum suppression prop-
erty can be found in [10]. We present in Section 6 an exam-
ple in which we add more and more outlier noise to the
data, which is sampled from an oval of Cassini (Fig. 18). In
this instance (Fig. 19), the algorithm degrades very grace-
fully, even in the presence of large amount of noise. It is
also interesting to note that there are similarities with the
Hough transform (see [10] for a more detailed analysis).
The major differences are that we do not give here an explicit
analytic formulation of the target shape, and that the dimen-
sion of the search space is independent of the target shape.

5.6 Complexity
The complexity is O(n3k) in general, where n is the side size
of the volume, and k is the number of available measure-
ments. The complexity of the preprocessing step is O(k2).
Some practical shortcuts can reduce this complexity signifi-
cantly: a truncated field can be used, since the values of the
field get very small away from the center. Also, it is some-
times possible to estimate the minimum true saliency value
from similar examples. In such case it is best to threshold the
input based on that value, to further crop the input set size.

Average running time on a Sparc 10 is about five min-
utes for a 50 � 50 � 50 array with 300 sample points. How-
ever, the code is not optimized, nor do we use any of the
shortcuts mentioned above.

6 RESULTS

We tested the scheme on synthetic as well as real input
data. The real input was acquired by a 3D digitizer
(Microsribe Inc.), as shown in Fig. 13.

6.1 Three Planes
The first example consists of three planes positioned in
space as shown in Fig. 14. We randomly sample the planes
of Fig. 14a and provide position and normal information at
each input site. The grid size is 50 � 50 � 50, and each plane
has about 60 samples. Fig. 15 shows the final description in
terms of space curves, junctions, and polygonal surfaces.

We do not currently produce the expected three planes,
as shown in Fig. 14a, but 12 panel surface patches, six
curves and one junction, as the three saliency maps are not
integrated. This is the focus of our continuing research.

6.2 Saddle Surface
Here we show an example where the input consists of a
cloud of nonoriented points, with a considerable amount of
noise. We embed 120 samples from a saddle function in noise
by adding 50 random points as shown in Fig. 16a. The first
phase is to compute normals to the existing input points. This
is done by convolving the input with the 3D Point field. The
second phase is to perform the standard Diabolo Field con-
volution. The final result is shown in Fig. 16b. We compute
the error surfaces for two cases: noise-free input and noisy
input for this saddle function and show the results in Fig. 17.
In both cases, the approximating surface is quite faithful.

6.3 Cassini Oval
A total of 263 data points were sampled from another syn-
thetic surface, a peanut mathematically defined as Cassini
oval, which is the loci of all points such that the product of
the distances from two given (center) points is a constant.
The formula is given by:

(x2 + y2)2 � 2c2(x2 + y2)2 � (a4 � c4) = 0                 (14)

(a)

(b)

Fig. 11. A slice cut from a surface saliency map along the y-z plane.
(a) Every voxel has n , with different level of saliency s, shown in (b).

Fig. 12. A maximal surface. (a) A surface patch with its normal, n  = Vmax,
(b) the saliency along the normal, and (c) the derivative of the saliency.

Fig. 13. A 3D digitizer is used for sampling input data.
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where a, c > 0 are constants. The final results are shown in
Fig. 18.

To illustrate the behavior of the system in the presence of
outlier noise, we than add, to n = 263 points on the object,
random points in increments of n. Note that it is only the
injection of 5n noise points that the object becomes less sali-
ent, and that some parts of the object are still extracted after
6n noise points (Fig. 19).

6.4 Torus
Our last synthetic example demonstrates the performance
when holes are present in the sampled data set, making it a
genus one object. Fig. 20 shows a sampled torus, and two
corresponding views of the reconstructed surface.

6.5 Multiple Objects
We generated two scenes to present the capability of our
approach to describe multiple objects. The input data of
two hemispherical surfaces, one lying inside the other, are
shown in Fig. 21. These two surfaces are only six voxels
apart. Finally, two separate ellipsoids lying side by side
constitute the input data in Fig. 22.

  
Fig. 14. Three orthogonal planes. (a) A schematic model of input (the
dotted lines denote the intersections between surfaces, and the dot is
the 3D junction). (b) Projection of input samples.

(a)

(b)

Fig. 15. Final description of the three planes data. (a) Two different views
of the 12 reconstructed surfaces. (b) Detected curves and junctions.

(a)

(b)

Fig. 16. Recovering a complex nonconstant curvature sheet surface.
(a) Two views of the sampled saddle function (f(x, y) = x

2 
��y

2
) about

120 points and 50 random points. (b) Two different views of the recon-
structed surfaces.

(a)

(b)

Fig. 17. Error surface for “saddle” (a) with no noise and (b) with noise.
The mean, standard deviation, and the maximum absolute error (in
voxels) are also shown.
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(a)

(b)

Fig. 18. Peanut-shaped Cassini oval. (a) Two different views of the
input (263 points) and (b) resulting surface.

6.6 Real Data
We used a 3D digitizer to digitize a curved wooden block,
as shown in Fig. 23. About 170 points are sampled. The
tangent vectors were estimated as the vector adjoining pairs
of consecutive points. The curve segment field was applied
for estimating the normals to the data points, followed by
convolution with the Diabolo field.

We also digitized another object, a wedge, and the re-
sults are as shown in Fig. 24. Note that we correctly infer
the six corners, and the surface orientation discontinuity
curves together with the surface. These three independent
feature sets should be integrated, which is the focus of our
current research effort.

Fig. 25 illustrates the performance of the system when
curve segments are presented as input. The preprocessing
step here involves convolving the input with the curve
segment field, followed by the Diabolo field.

Fig. 19. Graceful degradation of our approach with various amount of additive outlier noises. The example is “peanut,” with n = 263 true data
points. A view of the input data and a view of the reconstructed surface are shown, (a) with 2n additive noises, (b) with 3n additive noises, (c) with
4n additive noises, (d) with 5n additive noises, (e) and (f) two views of the data and result with 6n noises.
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(a)

   
(b)

Fig. 20. Torus (genus 1 object). Two different views of the (a) input
data (< 700 points) and (b) reconstructed surface.

(a)

(b)

Fig. 21. Dealing with close-by objects. Two views of the (a) input data
(< 130 points) of two hemispheres with one inside another and (b) the
result.

7 CONCLUSION

We have presented a method to infer surfaces, while de-
tecting intersection between surfaces, and 3D junctions by
applying perceptual grouping rules. The method presented
is an extension of a 2D approach proposed earlier by the
authors, and uses a noniterative algorithm. The method can
handle scenes with any number of objects, each having an
arbitrary genus number, without any a priori knowledge.
In particular, an initial guess is not needed. The current

(a)

   
(b)

Fig. 22. Dealing with multiple objects. Two views of the (a) input data
(< 500 points) of two ellipsoids lying side by side and (b) the result.

(a)

(b)

(c)

Fig. 23. Curved block. (a) Intensity view, (b) input data (< 170 points),
and (c) reconstructed surface.
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limitations are that the three maps are not integrated. As a
result, the curves and the junctions are detected but not
well localized, and the surface itself may be disturbed or
interrupted by the presence of curves and junctions. An-
other issue relates to the size of the mask, which is related
to the scale of the analysis. These issues, together with ex-
tension of the methodology to other problems, is the topic
of our current research effort.
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