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Abstract. Existing theories on 3D surface reconstruction impose strong
constraints on feasible object shapes and often require error-free mea-
surements. Moreover these theories can often only be applied to binary
segmentations, i.e. the separation of an object from its background. We
use the Delaunay complex and α-shapes to prove that topologically cor-
rect segmentations can be obtained under much more realistic conditions.
Our key assumption is that sampling points represent object boundaries
with a certain maximum error. We use this in the context of digitization,
i.e. for the reconstruction based on supercover and m-cell intersection
samplings.

1 Introduction

A fundamental question of image analysis is how closely a computed image seg-
mentation corresponds to the underlying real-world partition. Existing geometric
sampling theorems are limited to binary partitions, where the space is split into
(not necessarily connected) fore- and background components. In this case, the
topology of the partition is preserved under various reconstruction schemes when
the original regions are sufficiently smooth and the sampling is dense enough,
e.g. see [1,2] for the case of 3D surface reconstruction.

However, these results have two important limitations: they do not make
any predictions about the consequences of measurement errors, and they are not
applicable when there are more regions than just fore- and background. While
the second limitation is still valid today, there exist solutions for the first one:
recently alternative surface reconstruction methods have been developed, which
can deal with measurement errors [8,10].

Digital images consist of a finite number of sampling values in a regular grid.
Segmentation means to group the sampling points (i.e. pixels) into meaningful
regions. These regions can completely be described by their boundary. Thus seg-
mentation can also be done by reconstructing the segment boundaries based on
the subset of sampling points, which lie near the boundary. Our treatment of
adaptively placed sampling points on the boundary is inspired by research on
laser range scanning. Here, a number of isolated sampling points is scattered over
the surface of the object of interest, and the task is to reconstruct the surface
from the set of points. A successful solution of this problem is the concept of
α-shapes [5,6]. The α-shape is essentially defined as the subset of the Delaunay
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triangulation of the points where the Delaunay cells’ radius is below α ∈ R
+.

Under certain conditions, an α-shape is homotopy equivalent or even homeo-
morphic to the desired object surface. By applying this idea to the problem of
image segmentation, a new condition on object shape could recently be derived
that ensures homotopy equivalence of the digital segmentation with the original
analog partitioning of the space [13]. In this work we prove such properties even
when the segmentation is subject to measurement errors.

2 Preliminaries

To segment a geometric image means to partition the image space (i.e. the
domain of the image function) into meaningful regions. The image space does not
have to be the two-dimensional plane, e.g. for CT or MRT scans it is the three-
dimensional space. Each region corresponds to a relevant (part of an) object
in the real world and its reconstruction should preserve as much properties as
possible. The partition of the image space to be recovered is defined as follows:

Definition 1. Let the image space I be R
n with n ∈ N. A partition of the image

space is defined by a finite set of pairwise disjoint regions R = {ri ⊂ I}, such
that each region ri ∈ R is a connected open set and the union of the closures of
the regions covers the whole space,

⋃
i ri = I. The boundary of the partition is

B :=
⋃

i ∂ri. Two regions ri, rj are called m-neighbors if the intersection ri ∩ rj

contains an m-dimensional manifold with boundary, but no (m+1)-dimensional
manifold with boundary. Two (n− 1)-neighbors are also called direct neighbors.

The simplest case of a partition is a binary partition, where the regions can be
classified into foreground and background, such that every direct neighbor of
a foreground region is a background region and vice versa. Then segmentation
means separation of one (not necessarily connected) set from the background.
Such a set is called a shape.

Most of the known results on topologically correct object or surface recon-
struction are restricted to certain subclasses of shapes, having minimal bounds
on the surface curvatures, like r-regular sets [9,4,12] or sets with certain local
feature size [1,2]. This implies that regions cannot have corners, and junctions
of three or more regions are impossible. These restrictions are somewhat relaxed
by the notion of r-halfregular partitions, where an osculating r-ball must exist
at least in the foreground or the background, and the topology must not change
under either morphological opening or closing with a ball of radius ≤ r [11].
Corners are now possible, but the partition is still binary and has no junctions.
In this paper, the class of feasible partitions of the space is extended as follows:

Definition 2. A plane partition of the space is r-stable when its boundary B

can be dilated with a closed disc of radius s without changing its homotopy type
for any s ≤ r.

In other words, we can replace an infinitely thin boundary with a strip of width
2r such that the number and enclosure hierarchy of the resulting regions is
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Fig. 1. (a) The homotopy type of an r-stable plane partition does not change when
dilated with a disc of radius of at most r (light gray), while dilations with bigger radius
(dark gray) may connect different parts as marked by the circle. The α-dilation (b) of
the boundary of a two-dimensional α-stable partition may not be homotopy equivalent
to the union (c) of the α-discs centered at the boundary sampling points. Thus the α-
shape (d), which is always homotopy equivalent to the union of discs (c), may contain
unwanted holes consisting of Delaunay triangles of radius greater than α. Thus there
exists an α-disc centered in the hole which does not cover any boundary sampling
point, as shown in (d).

preserved. In particular, “waists” are forbidden, whereas junctions are allowed,
see Fig. 1(a). This includes r-regular and r-halfregular partitions, but also allows
non-binary partitions and junctions and models real images much better. Since
we want to deal with measurement errors (i.e. noise) when sampling the partition,
we define a sampling of the surface as an approximation of the boundary of the
partition with a finite set of adaptively placed sampling points. The sampling
points are selected somehow “near” the boundary. We formalize this as follows:

Definition 3. A finite set of sampling points S = {si ∈ R
2} is called a (p, q)-

sampling of the boundary B when the distance of every point b ∈ B to the nearest
point in S is at most p, and the distance of every point s ∈ S to the nearest point
in B is at most q. The elements of S are called boundary sampling points. The
sampling is said to be strict when all boundary sampling points are exactly on
the boundary, i.e. q = 0.

Non-zero values of q can be caused by systematic or statistical measurement er-
rors, but also by the sampling method used. Boundary sampling points may be
determined in various ways (section 3), but this only matters in so far as it de-
termines the accuracy of the sampling, i.e. the values of p and q. Once computed,
we consider boundary sampling points as isolated points that somehow define
the digital boundary and connect them by means of the Delaunay complex. Each
element of the Delaunay complex is either the convex hull of a finite subset of
the sampling points, such that all chosen sampling points lie on the boundary of
a common hypersphere and no other sampling point is inside the hypersphere,
or the intersection of two other elements of the complex. The hypersphere center
of such a Delaunay cell is called the center point of the cell and the hypershpere
radius is also called the radius of the cell. An m-dimensional cell of the complex
is called m-cell. In order to approximate the boundary of the partition, we want
to remove those edges and triangles from the Delaunay triangulation that are
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not related to the boundary. A useful subset of the Delaunay complex is defined
by the α-complex introduced in [5]:

Definition 4. The α-complex Dα(S) of a set of points S is defined as the sub-
complex of the Delaunay complex of S which contains all cells C such that

– the radius of the smallest sphere containing the sampling points of C is
smaller than α, and it contains no other point of S, i.e. C0 ∩ S = ∅, or

– an incident cell C ′ with higher dimension is in Dα(S).

The polytope |Dα(S)|, i.e. the union of all elements of Dα(S), is called α-shape.

Since cells are removed from the Delaunay complex, the α-complex has holes
which hopefully correspond to the regions we are trying to segment. In order
to determine when this is the case, the following theorem is of fundamental
importance (the proof can be found in [6]):

Theorem 1 (Edelsbrunner). The union of closed α-balls with centers at the
points si ∈ S covers |Dα|, and the two sets are homotopy equivalent.

Consequently, the α-shape |Dα| is homotopy equivalent to the original partition
of the space if and only if the dilation of the boundary sampling points with α-
balls is homotopy equivalent to the boundary of the partition. This requirement
is indeed fulfilled in certain situations: In [4] it is proved that |Dα| is even
homeomorphic to B if B is the boundary of a two-dimensional r-regular set with
p < α < r and q = 0. In three dimensions the authors recently derived an analog
result [12]. There the α-shape itself cannot be guaranteed to be homeomorphic,
but it can be used to derive a homeomorphic surface approximation in a very
simple way: with defining the outer boundary of the α-shape as the union of all
triangles of the corresponding α-complex, which can be seen from the outside (i.e.
from a point being outside the original object), one gets the following theorem
(the proof can be found in [12]):

Theorem 2 (Stelldinger). Let A be a three-dimensional r-regular set and S be
an α-sampling of its boundary ∂A such that 2α < r. Then the polytope |Dα| is of
the same homotopy type as ∂A, and the outer boundary of |Dα| is homeomorphic
to ∂A.

Unfortunately, these approaches no longer apply when the original partition is
not r-regular and/or the boundary sampling points are not exactly on the origi-
nal boundary, i.e. they are noisy. Fig. 1(b)-(d) shows a two-dimensional example
where the r-dilation of the boundary is homotopy equivalent to the boundary
(i.e. the partition is r-stable), but the dilation of the boundary sampling points
is not. This problem has already been solved for the two-dimensional case in [13].
There it is shown that by filling small regions one gets a boundary representation
with correct homotopy type such that the separated regions are homeomorphic
to the original ones. These small regions can uniquely be identified if the sam-
pling is dense enough. In three or higher dimensional spaces filling such small
regions is not enough, since reconstruction artifacts can have a more compli-
cated topological structure, like e.g. tunnels or bridges. The rest of the paper is
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devoted to the question what can be said under these more general conditions
in case of higher dimensional spaces.

p1

p2

p4

v

p5

p3

(a) (b) (c)

Fig. 2. (a) Any circumcircle around p4 and p5 contains p1, p2, and p3 (see text). (b)
The supercover digitization contains all sampling points whose pixel facets intersect
the arc. (c) Where the boundary intersects the dual grid, the nearest sampling points
form the grid intersection digitization.

As can be seen in Figure 1(b)-(d), if we have an object which is not r-regular,
but also if the sampling is not strict, i.e. a (p, q)-sampling with q > 0, the
complement of the α-shape reconstruction may have new small regions, which
lie inside the α-dilation of the original boundary. In order to get a topologically
correct boundary reconstruction we must at least fill these small regions. In the
following, the components of |Dα(S)|c will be called α-holes. As we will see, the
spurious holes are restricted in their size. Thus we define (α, β)-holes in order to
distinguish between spurious and wanted α-holes:

Definition 5. Let Dα(S) be the α-complex of a sampling S and |Dα(S)| be
its α-shape. Then the α-holes of |Dα(S)| are the components of |Dα(S)|c. The
(α, β)-holes of |Dα(S)| are the α-holes H, where the largest radius of some n-cell
in H is at least β ≥ α. The union of the α-shape |Dα| with all α-holes of Dα

that are not (α, β)-holes is called the (α, β)-shape reconstruction.

For simplicity, we also use the term “hole” for the component which contains the
infinite region. It is an (α, β)-hole for arbitrary large β. It follows from Theorem
1 that there is a 1-to-1 relation between α-holes and the holes in the union of α-
discs around the sampling points. The following lemma establishes that a similar
relationship exists for (α, β)-holes (we prove the lemma for the n-dimensional
case):

Lemma 1. An α-hole h is an (α, β)-hole if and only if it contains a point v

whose distance from the nearest sampling point is at least β.

Proof. I (dH(v ∈ h, S) ≥ β ⇒ h is an (α, β)-hole): when v is in the infinite re-
gion, the claim follows immediately. Otherwise, v is contained in some Delaunay
n-cell. By assumption, the corners of this triangle must have distance ≥ β from
v. Therefore, the radius of the n-cell must be at least β, and the claim follows.
II (h is an (α, β)-hole ⇒ ∃ v ∈ h with dH(v, S) ≥ β): by assumption, the closure
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of h contains a Delaunay n-cell t with radius of at least β. Consider its center
point v (i.e. the center of its Delaunay sphere). If it is within the n-cell t, it
is also in h and the claim follows. Otherwise, it is at least in some (α, β)-hole,
and we must prove that t is in the same hole. Suppose to the contrary that v

and t are in different α-holes. Then there exists a Delaunay cell t′ (this does not
have to be an n-cell)between t and v whose covering radius (i.e. the radius of
the smallest covering ball) is smaller than α. The corners of t′ cannot be inside
the Delaunay sphere of t because otherwise t would not be a Delaunay n-cell.
t′ cannot contain v because its covering radius would then be at least β. Now
consider Figure 2(a). It shows for the two-dimensional case the 2-cell t with cor-
ners p1, p2, p3 and its Delaunay circle (gray) with center point v. The points p4

and p5 are the end points of one side of t′. Their distance |p4p5| must be greater
than |p1p3|. Consequently, any covering circle with radius ≤ α (dashed) around
p4 and p5 contains t, contrary to the condition that it must not contain any
other sampling point. This obviously also holds in higher dimensions. The claim
follows from the contradiction. ⊓⊔

Now we can use the notion of (α, β)-holes to “repair” α-complexes that con-
tain too many holes. After filling all α-holes which are not (α, β)-holes we get
a one-to one-mapping of the components of ∂Ac to the components of the com-
plement of the (α, β)-shape reconstruction:

Theorem 3. Let P be an r-stable partition of the space R
n, and S be a (p, q)-

sampling of P’s boundary B. Then the (α, β)-shape reconstruction R preserves
connectivity and neighborhood relations and defines a one-to one-mapping of the
(α, β)-holes of R to the regions ri of P, if (1) p < α ≤ r − q, (2) β = α + p + q

and (3) every region ri contains an open γ-disc with γ ≥ β + q > 2(p + q).

Proof. Let U be the union of open α-balls centered at the points of S. Further-
more, let B⊕ = B ⊕ B0

α+q be the dilation of B with an open (α + q)-ball, and

r⊖i = ri ⊖ Bα+q the erosion of region ri ∈ P with a closed (α + q)-ball.

– According to the definition of a (p, q)-sampling, the dilation of B with a
closed q-ball covers S. Consequently, B⊕ covers U . Therefore, U cannot have
fewer connected components than B⊕. B⊕ has as many components as B

due to the r-stability of the partition P. Conversely, since α > p, every open
α-ball around a point of S intersects B, and the union U of these balls covers
the entire boundary B. It follows that U cannot have more components than
B. The number of components of B and U is thus equal. Due to the same
homotopy types of U and |Dα| (according to Lemma 1), this also holds for
the components of |Dα|.

– Since P is r-stable with r ≥ α + q, each r⊖i is a connected set with the same
topology as ri. The intersection r⊖i ∩ B⊕ is empty, and r⊖i cannot intersect
U ⊂ B⊕ and |Dα| ⊂ U . Hence, r⊖i is completely contained in a single α-hole
of |Dα|.

– Due to condition 3, ri contains a point whose distance from B is at least
γ = β+q. Its distance from S is therefore at least γ−q = β. Due to Lemma 1,
the α-hole which contains r⊖i is therefore also an (α, β)-hole.
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– Since B⊕ covers U and U covers B, no (α, β)-hole can intersect both r⊖i
and r⊖j (i 6= j). It follows from this and the previous observation, that every
region ri can be mapped to exactly one (α, β)-hole which will be denoted hi.

– An α-hole that does not intersect any region r⊖i must be completely con-
tained within B⊕. Every point v ∈ B⊕ has a distance d < α + q to the
nearest point of B. In turn, every point in B has a distance of at most p to
the nearest point in S. Hence, the distance from v to the nearest point of
S is d′ < α + p + q = β. According to Lemma 1, this means that an α-hole
contained in B⊕ cannot contain an n-cell with radius β and cannot be an
(α, β)-hole.

– The previous observation has two consequences: (i) All holes remaining in
R intersect a region r⊖i . Therefore, the correspondence between ri and hi

is 1-to-1, and B and |R| enclose the same number of regions. (ii) All dif-
ferences between R and Dα (i.e. all Delaunay cells re-inserted into R) are
confined within B⊕. This implies that |R| cannot have fewer components
than B⊕ and B. Since all re-inserted cells are incident to Dα, |R| cannot
have more components than |Dα|, which has as many components as B (see
first observation). Hence, B and |R| have the same number of components.

– Consider the components of the complement (r⊖i )C and recall that r⊖i is a
subset of both ri and hi for any i. Since B and |R| have the same number
of components, it is impossible for hC

i to contain a cell that connects two
components of (r⊖i )C . This means that the sets rC

i and hC
i have the same

number of components. This finally proves that the constructed one-to one-
mapping preserves the neighborhood relations. ⊓⊔

Filling spurious holes in the α-shape reconstruction is a necessary step for
getting a topologically correct boundary reconstruction. But for n ≥ 3 there are
also other problems regarding topology: although the (α, β)-shape reconstruction
separates the different regions from each other, these regions may have small
tunnels and/or other topological changes inside B⊕. In order to identify and
remove these cases, we will at first apply a homotopy type preserving thinning:

We will denote an m-cell C in a cell complex D as simple if the number
of cells of D which contain C is equal to one. Now the containing cell must
be an (m + 1)-cell and the removal of the two cells does neither change the
homotopy type of the complex nor the topology of the background regions. Now
the thinning algorithm for the (α, β)-shape reconstruction is as follows:

1. Find all simple m-cells (n > m ≥ 0) of the given (α, β)-shape reconstruction
and put them in a priority queue (the sorting will be discussed below).

2. As long as the queue is not empty:
(a) Get the m-cell e with the highest priority from the queue.
(b) If e is not simple anymore, it has lost this property during the removal

of other cells. Skip the following and recommence with step 2.
(c) Otherwise, remove e and the adjacent (m+1)-cell t ∈ R from the bound-

ary reconstruction.
(d) Check whether the other cells adjacent to t have now become simple and

put them in the queue if this is the case.
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Obviously the algorithm terminates for any finite cell complex, and the re-
sulting boundary reconstruction contains no n-cells, i.e. it is thin. Since we want
a boundary reconstruction which is as simple as possible in a topological sense
(i.e. as few as possible tunnels, etc.), but which still separates the different regions
from each other, we want to have a cell complex, where every cell is adjacent
to at least two different background components (i.e. regions of the (α, β)-shape
reconstruction). Thus we remove every cell, which is not adjacent to two different
background regions. Since an (n− 1)-cell, which is not adjacent to two different
background regions, will already be removed by the above thinning algorithm,
we only have to check m-cells with m < n − 1. This can be done locally, since
these cells are characterized by having no adjacent (m + 1)-cell in the complex.
Thus the whole algorithm is as follows:

Thinned (α, β)-shape reconstruction algorithm:

1. Given a (p, q)-sampling S of the boundary of some partition of the space,
compute the α-complex of S with some α > p.

2. Add all cells to the complex, which belong to an α-hole which is no (α, β)-
hole for β = α + p + q.

3. Find all simple m-cells (for any m with n > m ≥ 0) of the given (α, β)-
shape reconstruction and put them in a priority queue (the sorting will be
discussed below).

4. As long as the queue is not empty:
(a) Get the m-cell e with the highest priority from the queue.
(b) If e is not simple anymore, it has lost this property during the removal

of other cells. Skip the following and recommence with step 4.
(c) Otherwise, remove e and the adjacent (m+1)-cell t ∈ R from the bound-

ary reconstruction.
(d) Check whether the other cells adjacent to t have now become simple and

put them in the queue if this is the case.
5. For m going from n − 2 to 0 do:

(a) Remove all m-cells of the complex, which do not have an adjacent (m+1)-
cell in the complex.

Theorem 4. Let P be an r-stable partition of the space R
n, and S be a (p, q)-

sampling of P’s boundary B. Then the thinned (α, β)-shape reconstruction algo-
rithm results in a cell complex D with |D| having the same homotopy type as B,
and the components of Bc are topologically equivalent to the components of |D|c,
if (1) p < α ≤ r − q, (2) β = α + p + q and (3) every region ri contains an open
γ-disc with γ ≥ β + q > 2(p + q).

Proof. The resulting reconstruction obviously separates the components of |D|c

from each other, which can be mapped one-to one onto the components of Bc.
Since the α-ball reconstruction covers B, the α-shape reconstruction contains
a polygonal surface which is of the same homotopy type as B. Thus also the
(α, β)-shape reconstruction contains such a polygonal surface. Applying only
the thinning algorithm results in a an object B′ being a deformation retract of
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the (α, β)-shape reconstruction. Thus it also contains a polygonal surface B′′,
which is of the same homotopy type as B. This surface B′′ is everywhere thin,
i.e. any of its m-cells with m ≤ n − 2 has at least two neighboring m + 1-
cells in B′′. Thus B′′ remains unchanged during the cell complex simplification.
Any other cell of B′ will be removed. Thus B′′ = |D|. Since the boundaries of
any component of Bc and the corresponding component of |D|c are not only of
the same homotopy type but also homeomorphic (because both are composed
of components of the same homotopy type, which are all (n − 1)-dimensional
manifolds without boundary), the components are also homeomorphic to each
other. ⊓⊔

The complexity of the algorithm is dominated by the Delaunay tetrahedriza-
tion which is known to be O(n2) in the number of sampling points. As far as
region topology is concerned, the ordering of the m-cells in the priority queue
is arbitrary. But we think, that orderings should be favored, which lead to visu-
ally appealing results, e.g. by emphasizing flat surfaces. This can be done in the
following way:

Definition 6. The minimal (α, β)-shape reconstruction is the result of the thin-
ned (α, β)-shape reconstruction algorithm, when using radii of the simple m-cells
as priority, i.e. m-cells with big radius are the first to be removed.

When only using the thinning algorithm after (α, β)-shape reconstruction, the
resulting regions are correctly separated from each other. Moreover by using the
cell radii as ordering criterion, the resulting hypersurface is as smooth as possible,
since the size of the (n − 1)-cells is minimized. Thus, since a minimal boundary
reconstruction is a shortest possible one with correct topology, the surviving
edges connect sampling points closest to each other. Neighboring sampling points
therefore align in an optimal way on the thinned boundary.

3 Application to Sampling Schemes

In Theorem 3, p and q are assumed given. We now make their meaning and
consequences more intuitive, by computing them for two of the most common
sampling schemes. Given a sampling grid S (e.g. a cubic grid), we want to de-
fine a subset of sampling points which approxiates the boundaries of a partition
of the space. Obviously simple subset sampling of the boundary is not a good
choice, since in general hardly no sampling point will lie exactly on this surface.
Alternatively one can choose the set of sampling points whose voxels (Voronoi
regions) intersect the boundary of the partition. Such a method is called super-
cover sampling, since it is related to supercover digitization [7].

Definition 7. Let S ⊂ R
n be an r′-grid (i.e. the maximal distance from any

point to the nearest sampling point is at most r′). The supercover sampling of a
set A ⊂ R

n based on S is the set S′ of all sampling points s ∈ S whose hypervoxel
intersects A, see Figure 2(b).
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m = 3 m = 2 m = 1 m = 0

Fig. 3. Given s sampling point (s) in a cubic grid, the shaded region shows the inter-
section of VS(s) with the union of all adjacent m′-cells of the Delaunay complex for
m′

≤ m.

Lemma 2. The supercover sampling S′ of a set A based on an r′-grid, is an
(r′, r′)-sampling of A.

Proof. The distance of any sampling point in S′ to the nearest point in A can be
at most r′, since S′ is based on an r′-grid. Since the hypervoxels of the supercover
sampling cover A, the distance of any point of A to the nearest sampling point
in S is also at most r′. ⊓⊔

If the object to be digitized is a curve in R
n, the supercover sampling is

(n − 1)-connected (i.e. connected via cells of dimension of at least n − 1), since
for any point on the curve there exists a neighborhood, which is covered by the
hypervoxels. However, one often wants a curve to be represented by a sampling,
which is “as thin as possible”, i.e. only 0-connected. This is fulfilled for the square
grid in two dimensions by the grid intersection sampling [7], see Figure 2(c). It
is well-known, that the grid intersection digitization is a subset of the super-
cover digitization on a square grid. The grid intersection sampling can easily be
generalized to arbitrary grids in any dimension:

Definition 8. Let S ⊂ R
n be a sampling grid. Further, for any sampling point

s ∈ S let Gm(s) be the intersection of the hypervoxel VS(s) with the the union
of all m′-cells, m′ ≤ m, of the Delaunay complex of S being adjacent to s. Then
the m-cell intersection sampling of a set A ⊂ R

n is defined as the union S′ of
all sampling points s ∈ S, where Gm(s)∩A is not empty, see Figure 2(c) for en
example of the 1-cell intersection sampling in 2D.

Thus the 1-cell intersection sampling based on a square grid is equal to the grid
intersection sampling. Moreover the 0-cell intersection sampling is the same as
the subset sampling and the n-cell intersection sampling equals the supercover
sampling in R

n. This directly implies that an m1-cell intersection sampling is
always subset of an m2-cell intersection sampling of a given object, if they are
based on the same sampling grid and if m1 < m2. Figure 3 shows Gm(s) for
different m in case of a cubic grid. While the m-cell intersection sampling of a
connected set does not need to be connected in case of m < n − 1, it is (n − 1)-
connected if m = n, since then it is equal to the supercover sampling. Moreover
for m = n − 1 it is 0-connected, if the grid is not degenerated:
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Lemma 3. Let S be the (n − 1)-cell intersection sampling of a connected set
based on a not degenerated grid. Then S is 0-connected.

Proof. If A is empty or if A consists of only one point, the proof is obvious.
Otherwise let x, y be two arbitrary points in A and let P be a path in A from
x to y. If x, y and p lie in the same n-cell of the Delaunay complex, there is
nothing to show. Thus let p go through at least two n-cells of the Delaunay
complex. Since the union of the (n−1)-cells of the complex is equal to the union
of all Gn−1(s), and since any two sampling points with a common n-cell in the
Delaunay complex are always at least 0-connected, the (n − 1)-cell intersection
sampling of p is 0-connected. Thus S must also be 0-connected. ⊓⊔

Now we will show that the (n − 1)-cell intersection sampling is of higher
sampling accuracy (i.e. lower q) than the supercover sampling, while the sampling
density (i.e. the smallest possible value of p) is not as high.

Lemma 4. Let S′ be a not degenerated r′-grid. When each component of a set A

is intersected by at least one (n−1)-cell of the Delaunay complex of S′, the (n−1)-
cell intersection digitization S of A based on the grid S′, is a (2r′, q)-sampling of

A′ with q < r′. If S′ is a Cartesian r′-grid, S is even a (2r′,
√

n−1√
n

r′)-sampling.

Proof. The set of (n − 1)-cells the Delaunay complex of a not degenerated grid
partitions the space, such that any n-cell has a diameter of at most 2r′. Thus,
since each component of A intersects at least one (n − 1)-cell, the distance of
any point of A to the nearest sampling point of S is at most 2r′.

For any sampling point s ∈ S there exists an adjacent (n − 1)-cell which
intersects A inside the hypervoxel of S. Any such intersection point has distance
of smaller than r′ to s. In case of a Cartesian grid, the sidelength of the (n −
1)-cells is 2√

n
r′ and the largest distance of a point in the intersection of the

hypervoxel and an (n − 1)-cell of s is
√

n−1√
n

r′. ⊓⊔

We can now simply deal with sampling errors due to noise or blurring. We
just have to add the expected positional error caused by these influences to the
above computed positional error caused by the sampling.

4 Conclusions

This paper describes how to reconstruct a surface topologically correct from a
sufficiently dense set of surface sampling points in the presence of measurement
errors due to sampling but also due to noise and other influences. The theo-
rem applies to a much wider class of shapes (r-stable partitions) than previous
approaches. The situation in real images is thus modeled much more faithfully
because shapes may now have corners and junctions, and standard segmentation
algorithms can be used. Moreover an analysis on the amount of the measurement
errors is given for the case of some of the mostly used digitization methods.
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Fig. 4. Artificial boundary samples derived from a CT scan of the
Stanford bunny (on courtesy of the Stanford Volume Data Archive
graphics.stanford.edu/data/voldata/). Left: Sparse subset of boundary voxels due
to 2-cell intersection sampling. Right: Result of thinned (α, β)-shape reconstruction.

References

1. Amenta, N., Bern, M. and Kamvysselis, M.: A new Voronoi-based Surface Re-

construction Algorithm, Proceedings of the 25th annual Conference on Computer
Graphics and Interactive Techniques, 415–421 (1998).

2. Amenta, N., Choi, S., Dey, T.K., and Leekha, N.: A Simple Algorithm for Home-

omorphic Surface Reconstruction, Proceedings of the 16th annual Symposium on
Computational Geometry, 213–222 (2000).

3. Attali, D.: r-Regular Shape Reconstruction from Unorganized Points, Computa-
tional Geometry: Theory and Applications, Vol. 10, No. 4, 239–247 (1998).

4. Bernardini, F. and Bajaj, C.L.: Sampling and Reconstructing Manifolds Using

Alpha-Shapes, Proc. 9th Canadian Conf. Computational Geometry (1997).
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