' Drawing contours from arbitrary data points

D. H. Mclain

Computing Laboratory, The University, Sheffield, S10 2TN

This paper describes a computer method for drawing, on an incremental plotter, a set of contours
when the height is available only for some arbitrary collection of points. The method is based on a
distance-weighted, least-squares approximation technigue, with the weights varying with the distance
of the data points. It is suitable not only for mathematically derived data, but also for data of
geographical and other non-mathematical origins, for which numerical approximations are not
usually appropriate. The paper includes a comparison with other approximation techniques.

(Received December 1971)

1. Introduction

Suppose that we are given the height of a surface at a number of
points in some geographical region. We describe in this paper a
method by which a computer can draw the contour lines on an
incremental graph plotter or similar device. Typically we may
have between a hundred and a thousand such points. The
points are assumed to be completely arbitrary, and not arranged
on a rectangular or other mesh, for which such methods as
those of Coons (1967) can be applied.

There appears to be no completely accepted method for this
problem and in particular for interpolating between random
points on a surface. One method, Bengtsson and Nordbeck
(1964), is to dissect the region into triangles using the data
points as vertices; linear interpolation within each triangle
gives an approximation to the contour by straight lines.
Schmidt’s approach (1966) is to use quadrilaterals instead of
triangles; then if the approximating function within the quadri-
lateral is taken to be a polynomial a + bx + ¢y + dxy, with
coefficients chosen to fit the data at the vertices, the contours
become hyperbolic arcs and Pitteway’s (1967) algorithm can be
used. Probably more widely used are variants of Shepard’s
interpolation (1968), developed for later versions of the
SYMAP program. Shepard calculates the height as a weighted
average of the data points, with the weights depending on their
distances and relative directions, but ‘corrections’ must also be
imposed near the data points to alter the zero gradients which
would otherwise be an undesirable feature of the method. The
proprietary Calcomp program GPCP (General Purpose
Contouring Program) uses a similar weighted averaging tech-
nique, but only taking neighbouring data points into account.

The interpolation method described in this paper, like
Shepard’s, uses a weighting technique with weights depending
on the distances of the data points; however in our case the
weights do not determine the height directly, but are used with
a least squares fit to find the coefficients of a quadratic poly-
nomial to act as an approximation to the surface. The method is
described in Section 2.

The second component of the method described here is the
use of the interpolation method to draw the contour lines.
The programming difficulties of recording which parts of which
lines have already been drawn, discussed in Cottafava and
Le Moli (1969), may be avoided by splitting the region into
small rectangles or windows within which the contours can be
assumed to be uncomplicated. The algorithm is described in
Section 3 and may, of course, be applied to any interpolation
formula.

In practice, however, if applied directly these techniques are
expensive in central processor utilisation. This is because the
contribution from every data point is assessed individually for
every step of the plotter. The method actually recommended
is to use the weighted least-squares interpolation method to

estimate the height at the corners of a rectangular mesh, and
then to combine the much faster bicubic spline interpolation,
e.g. Boor (1962), within each mesh window with the contour
method of Section 3. Simpler interpolation methods within the
windows can reduce the central processor usage still further, if
kinks in the contour lines can be tolerated along the mesh lines,
or if great accuracy is not required: these are described in
Section 4.

Figs. 1, 2, and 3 illustrate the use of the program on whatis a
particularly difficult problem; reconstructing the contours of
an area of the Peak District between Sheffield and Manchester
from various numbers of points. The area extends from the
Snake Pass in the North over Kinder Scout and the beautiful
Vale of Edale to the Mam Tor ridge on the South. The region
is part of the Pennine Ridge, and is basically a plateau, cut by
winding glaciated valleys. Fig. 1 shows the reconstruction from
504 data points on a regular 24 x 21 grid using cubic splines
alone, and presents a fairly accurate contour map of the region.
Figs. 2 and 3 show the reconstruction from a random selection
of 400 and 200 of these points respectively.

2. Distance-weighted least-squares approximation

When a large number of data points, (x;, y;, z;}i=1, ..., nare
involved it is not normally advisable to use the ‘classical’
method of fitting a polynomial z = f(x, y) of high enough
degree to provide an exact fit at all » points. Apart from the
difficulty of specifying such a polynomial (which terms in x"y*
should be included?), almost always the resulting surface will
be extremely folded and mountainous.

The distance-weighted, least-squares approximation is found
as follows: Suppose we wish to estimate the surface height
fa, b) at a point (g, b). Our aim will be to find a polynomial
P{x, y), which we illustrate by the general polynomial of degree
two:

P(x,1) = oo + C1oX + Co1¥ + C20%> + €11XY + Co2)7

which will be as accurate a fit as possible, in the usual least-
squares sense, to the data points (x;, ;). The difference between
this and the usual least-squares approximation, as described in
most text books in numerical techniques, for example Rivlin
(1969), is that here we require those data points (x;, y;) close to
(a, b) to carry more weight than the more distant points. More
precisely we choose the coeflicients ¢,, to minimise the quadratic
form

0 = £ (PG, 3) = 20 w(Cxi = @ + (s = &)

where w is a weight function, such as w(d?) = ¥/d?*, which is
large when (a, b) is close to (x;, ¥;) and small when it is remote.
The minimisation is achieved in the usual way by solving the
(in our example, six) linear equations

s
[, -

Snake Pass
1680

THE
PEAK

Kinder Scout
= 2088

Fig. 1 The Peak District reconstructed from 504 data points

90 _
de,q =0

to find the (six) unknown coefficients c,.. Having found the
coefficients we can evaluate the height of the surface at the
point (a, b) as P(a, b).

The method of performing this on the computer is straight-
forward. We build up a symmetric (in the example, six by six)
matrix E and a (six long) vector ¥ as follows. To the element of
Ein the row corresponding to ¢,; and the column corresponding
to ¢, we add x}*! yf** times the weight of (x;, y,), and to the
element of ¥ corresponding to c,, we add x}y3z; times the
weight. When this is done for all # points, the vector of co-
efficients C may be found by solving the linear equations
EC=V.

The method may be easily refined to allow some of the points
(x:,) to be more important than others. For example, if a
collection of points lie close together each of these should
carry less weight than an isolated point. To allow for this we
would merely multiply each weight w((x; — a)* + (y; — b)?)
by a precalculated further term s;, the significance of the ith
point. Clearly s; would be larger for isolated points than those
in a cluster.

The above description has been illustrated by a second degree
polynomial P(x, y). Clearly any polynomial could be used,
provided that the total number of coefficients c,, was not
larger than the number # of data points. Indeed one can con-
struct similar problems, for example when interpolating on a
sphere, where one might prefer a trigonometric expansion:

P, ¢)= ... + c,sinrf.sins¢ + d sinrf.cossp +

Nor are we restricted to linear expressions. The referee has
suggested the possibility of applying a least-squares fit to
determine the coefficients ¢;;, of a surface expressed in the
form of an equation

S, 9, 2) = oo + €100% F ... + Cogpz? =0

This has the merit of producing an exact fit when the original
surface is a sphere or similar quadric. However, as the referee
has pointed out, the evaluation of these coefficients to give a
general least-squares fit involves a minimisation problem
which does not lead to linear equations, and he has suggested
that the idea is more applicable to the case where the data is on
a regular mesh, so that the 9 independent coefficients are

Fig. 3 The Peak District reconstructed from 200 data points

determined from the 9 nearest data points. This method has the
disadvantage of not always producing a single-valued function,
and in general (see Appendix 4) does not appear to lead to as
good a fit as some of the other methods.

The tables in Appendix 4 show that, of the weighted least-
squares approximation methods, the second degree polynomial
gives satisfactory results over a variety of applications, and
offers a good compromise between accuracy and run time. To
illustrate the deficiencies of lower degree polynomial approxi-
mation, consider the one dimensional analogue of the method
applied to the four data points:

x=0,1,23
z=1,0,0,1

Both the linear and first degree polynomials in this case give rise
to a hill in the middle of the valley between x = 1 and 2. Thus,
assuming a distance weighting function of 1/d, where d is the
distance between the points, these polynomials both lead to a
value of 4+ when x = 1}, instead of the more reasonable value

~of —} given by the use of a second degree polynomial. The
use of third and higher degree polynomials for P sometimes
leads to more accurate approximations, particularly if the data
is of mathematical origin. But sometimes these can be much
less accurate than the second degree case: not surprisingly this
occurs for those types of data for which the high degree
polynomial method is particularly inaccurate, e.g. for those
surfaces without a convergent Taylor series.

There is considerable flexibility over the choice of the function
w(d?) giving the weight of the data point as a function of the
square of its distance d2. The use of the simple 1/d?, or to
avoid arithmetic overflow, 1/(d* + ¢) for small ¢, does not
prove particularly satisfactory, see Appendix 4. This is prob-
ably because the data points remote from (¢, b) have too much
influence. The more rapidly decreasing functions, such as
w(d?) = 1/(d* + ¢)*, have been found to give much more
accurate results. So do the exponentially decreasing functions
w(d?) = exp (—ad?) for some constant « of the order of the
inverse of the square of the average distances between neigh-
bouring data points. If the data points are subject to experi-
mental error the use of such an exponential function, with
perhaps a smaller value of «, leads to smoothing of the surface.
However, if the data are exact, then when (a, b) is very close
to some (x;, ¥;) we should expect that to dominate absolutely;
hence a function such as

w(d?) = exp (—ad?)/(d* + &)

is usually marginally better, and, provided the central processor
evaluation time can be tolerated, this is recommended.

Note that the case for negative exponential weighting receives
some slight theoretical support from the fact that, in approxi-
mations using cubic splines, the effect of remote data points
decreases approximately exponentially with distance (though
not with the square of the distance). This is described in
Ahlberg (1970), who shows that the effect of one data point ona
regular mesh decreases approximately with a factor of
3 — 2 = —0-2679 from one interval to the next. The use of
an exponential function has the practical advantage that, if n
is large, say over 500, then we can divide the region into sub-
regions, and at a slight cost in programming effort, ignore
(i.e. assign zero weight to) the data points in remote sub-
regions. If one ensures that the points ignored would otherwise
have sufficiently small weights then the resulting loss of con-
tinuity and smoothness of the contours is usually not
noticeable. ‘

3. A method for drawing contours

We now describe a method for drawing the contour line
f(x, ¥) = c, where we have a method of calculating the surface
height f(x, »). The present approach is a more direct one than
is usually adopted, e.g. Cottafava and LeMoli (1969) which
involves finding the points of intersection between the curve
and various mesh lines, applying heuristics to determine which
of these are linked, and in which order, and fitting curves
through these. We also assume that there are no degeneracies
in the function f(x,), such as the cliffs or caves discussed in
Morse (1969).

Consider the situation where the plotter has started the line
and reached the point (g, b). We present the following simple
algorithm to decide in which direction (horizontal, vertical or
diagonal) the plotter is to make its next step. Assume that there
are no extremely sharp corners on the (true) contour. Then the
next step should not be very different from the previous one.
Our algorithm chooses between three possible such steps: one
in the same direction as the previous, and the two steps at an
angle of 45° to either side. For example if the first step was
North we would choose the second from North, North-West
and North-East, and if the first was North-West the second

would be chosen from North-West, North and West. The
choice is made by evaluating f for each of the three possible
directions, and selecting that one with value closest to c.
This is, of course, different from the ‘correct’ method of finding
the distance of the three points from the contour and selecting
the step which minimises this. However, unless the second
derivative of f is important, i.e. unless the slope is changing
rapidly, the effect is normally the same.

There remains the problem of deciding where to start and
finish each contour, and recording which contours have been
drawn. This can be simply achieved by dividing the region into
small rectangles or windows. These are to be so small that we
expect no closed contours to lie completely within a window
as an isolated peak or hole. In practise this is not a severe
limitation—the windows do not seem to have to be very small
for this to be satisfied. We can then handle the windows in
sequence, and as we now start and finish each contour at an
edge we can identify them by their intersections with the edges.
These intersections can be found by solving an equation in one
variable—thus along the edge y = y, we need only find the
roots of the equation f(x, y,) = cinthe appropriate range of x.
Having found such a root it is sensible to test whether it
represents the exit point for a contour we have previously
drawn, to avoid drawing it twice. If not, then the program can
enter the drawing loop, described above, having pretended that
its previous step was in the direction at right angles to the edge
into the window.

The algorithm continues by choosing between three steps as
described above, and after making each step testing whether the
pen has moved outside the rectangle. It seems prudent to
include a further complication. If the ‘“true’ contour turns back
to within a plotter step length or so of crossing itself, a situ-
ation can arise where the routine would enter a loop. Therefore
the inclusion of a test is recommended to ensure that the number
of steps made in any rectangle does not exceed some limit.

An ALGOL procedure for this algorithm is given as Appendix
2.

4. The regular mesh case

If the data are given not at arbitrary points in the region but on
a rectangular mesh, more conventional interpolation methods
are practicable. Indeed, if the mesh is very fine, then linear
interpolation using the four values at the corners of a window
may be satisfactory. Because this is equivalent to choosing the
four coefficients in the fitting polynomial

J, ¥) = coo + C10% + Co1Y + €1 XY

to fit the four corners, the contours within a window are
hyperbolic arcs. These may, of course, be drawn more rapidly
than by using the general technique of Section 3, see for
example Pitteway (1967), or Partridge (1968). Although this
hyperbolic interpolation ensures the continuity of contours
across the window edges, the continuity of the derivative is not
ensured. Kinks in the curves are the result; if the mesh is fine
enough these can sometimes be accepted, but the method is not
generally recommended. There are, of course, ways of smooth-
ing such a collection of connected arcs before drawing. How-
ever, the use of bicubic spline approximations leads to much
more accurate results.

Bicubic spline approximations (Boor, 1962), are the two
dimensional analogue of the better known cubic spline approxi-
mations of functions of one variable. Their use leads to the
continuity of the contours and their first and second derivatives
across window edges, 1.e. to smooth curves. Much of the theory
of splines of one variable-—the uniqueness and bedt-fit theorems,
described for example in Rivlin (1969) or Greville (1967)—can
be rederived for splines of two (or more) variables. However,
it is simpler to regard a bicubic spline approximation f(x, y)

from a rectangular mesh z(x;, y,) as the result of first using
cubic splines to interpolate in x to obtain f(x, y;) for each
row y;, and then using these to interpolate the y variable to
obtain f(x, y). In contouring, rather than evaluating the func-
tion in this way, for each window we would evaluate the
sixteen coefficients of

Jx,) =

r,s=

3
XY .
(1]

Again, the coefficients may be calculated by treating the vari-
ables x and y sequentially. A procedure for this is given in
Appendix 3. The one-dimensioned cubic spline procedure
which is called for each variable x, y, is an adaptation of the
very efficient algorithm Splinefit, Spith (1969), the adaptation
being desirable to make it return the polynomial coefficients
rather than their values.

5, Recommended method for arbitrary data
Because the methods described in Sections 2 and 3, require the
evaluation, for every graph plotter step, of the contribution
from every data point to every element of the matrix, the com-
puting time can be large. To avoid this, the recommended
method is to reduce the problem to the regular mesh case by
imposing a mesh on the region and using the weighted least-
squares interpolation to estimate the surface height of the
mesh points. Bicubic splines can be used to estimate the surface
height within each mesh window, and the method of Section 3
used to draw the lines. In this case the points of intersection of
the curves and the mesh edges are determined by the roots of a
cubic polynomial, which fact should be used in finding them.
In practice the use of bicubic splines in this way leads to
reasonably accurate contours, although two successive approxi-
mation techniques are involved. For most surfaces we have
found that the variance of the errors in the two parts of the
process are of the same order of magnitude, with the errors
from the weighted least-squares interpolation usually slightly
the larger. This does not, however, apply to the alternative, still
faster method of reducing the problem to a (probably some-
what finer) mesh and applying hyperbolic interpolation.

6. Extensions to the systems
Provided the weight function w(d?) is well-behaved the weighted

least-squares approximation fits a smooth surface to the data
rts

points. In mathematical terms all the differentials 6Lx' 5
exist. If the actual surface has singularities, such as discontin-
uities (cliffs) or discontinuous first derivatives (escarpments),
the algorithm will smooth these out, and they will appear as
regions where the contours are close together, sharply bent, or
otherwise untypical. If we know in advance where such dis-
continuities occur, the algorithm could be adapted by ignoring
the contribution from the data point (x;, y;) to the value at the
point (g, b) if the line joining these intersects the discontinuity.
Thus the weight would be a function not only of the distance
between two points, but the direction and location of the line
joining them. As is clear from the SYMAP program,
(Robertson, 1967), the computer time in such techniques can
be large. A more efficient approach would be to separate the
area into subregions with the discontinuities as boundaries.
The method can be easily extended in another direction to
include additional information from the data points (x;, ;).
The most useful example of this is probably the case where we
have not only the height z; but the slope at this point—the
0z . . .
——“ - This could be important if the com-
i

values of -a-{i and
i oy

ox

puting or experimental (e.g. if drilling was involved) costs in
examining the surface close to a point (x;, y;, z;) were smaller

than the costs of investigating new points. To include, for
oz
O0x;
add into the matrix element of E in the row associated with ¢,
and the column associated with ¢, the term

rt xri'+t~2 y§+u W(diZ)

and add into the element of ¥ corresponding to ¢, the term

FxTTys g—i‘l w(d?) .

example, the information on we merely, for each r, 5, f, u,

There is scope for considerable flexibility in devising different
weight functions for this derivative information from the
weight function for the original height information. However
experiments indicate that the accuracy of the result is not very
sensitive to changes in the relative weights. They also indicate
that using the height and first derivatives at » points gives, on
average, about the same accuracy as using the height inform-
ation alone at 2in points spread more densely over the same
region. In other words it is only marginally better to have
information at each of 3» points than to have 3 times the
information at each of only » points.

Appendix1 Distance-weighted least-squares
gquadratic approximation

real procedure weighted least squares approximation {(a, b, x, y,
z, npts); }
value npts; integer npts; real a, b; array x, y, z;
comment [f we are given the value of z[i] at each of the arbitrary
data points (x[i], y[i]), i=1,... npts, this procedure
estimates the value of z at the point (a, b), using the method of
Section 2;
begin integer i, j;
real xi, yi, x2, y2, term, xterm, yterm, xxterm, yyterm,
xyterm, zterm,
array e[1:6, 1:6], coef, v[1:6];
for i := 1 step 1 until 6 do
begin v[i] := 0-0;
for j := i step 1 until 6 do e[i,j] := 0-0;
end;
for i := 1 step 1 until npts do
begin xi := x[i]; yi 1= y[i]; x2 := xi12; y2 := yi12;
term = w({xi — a){2 + (yi — b)12);
comment w is the weighting function as described in
Section 6;
Xxterm 1= Xxi X term; yterm .= yi X term;

xxterm 1= x2 X term; yyterm .= Y2 X term;
xyterm 1= Xi X yterm;

e[1, 1] := e[l, 1] + term;

e[1,2] := ¢[1, 2] + xterm;

e[1, 3] := e[1, 3] + yterm;

e[l1, 4] := €[1, 4] + xyterm;

e[1, 5] := ¢[1, 5] + xxterm;

e[1, 6] := e[1, 6] + yyterm;
e[2,4] := ¢[2,4] + x2 x yterm;
e[2,5] := ¢[2, 5] + x2 x xterm;
e[2, 6] := e[2, 6] + y2 x xterm;
e[3, 6] := ¢[3, 6] + y2 x yterm;
e[4,4] := e[4, 4] + x2 x yyterm;
e[4, 51 := e[4, 5] + x2 x xyterm;
e[4, 6] := e[4, 6] + y2 x xyterm;
e[5, 5] := €[5, 5] + x2 x xxterm;
e[6, 6] := ¢[6, 6] + y2 x yyterm;
zterm = z{i] X term;

v[1] = o[1] + zterm; P
v[2] 1= o[2] + xi X zterm;

v[3] 1= o[3] + yi x zterm;

vf4] :

v[4] + xi x yi x zterm;

s

v[5] 1= o[5] + x2 x zterm;
v[6] 1= v[6] + y2 x zierm;
end of contributions from data points;
e[2,2] := €[, 5]; e[2, 3] := e[1,4]; e[3, 3] :
e[3,4] := ¢[2, 6]; ¢[3, 5] := e[2,4]; e[S, 6] :
for i ;= 1 step 1 until 5 do
for j:= i+ 1 step 1 vntil 6 do e[f,i] := e[i,j];
Gauss (6, e, v, coef);
comment This call to Gauss is assumed to solve the 6 linear

e[l, 61;
e[4, 4]:

It
I

6

equations Y. e[i,j] coef[j] := v[i] for the 6 unknown
=1

coefj1;

weighted least squares approximation :=
coef[17 + a x (coef[2] + b x coef[4] + a x coef[5])
+ b x (coef[3] + b x coefl6]);

end of procedure;
Acknowledgement. Much of the detail of the above was
developed by K. L. Williams of University College, Cardiff.

Appendix 2 A contouring procedure using the
method of Section 3

In this procedure to draw a contour using the (global) height
function f(x, y), the existence of two procedures movepento
(a, b) and graphstep (xstep, ystep) to control the plotter is
assumed. The first moves the pen in the up position to (g, b),
and the second moves the pen in the down position a distance
of xstep in the x direction and ystep in the y direction.

A procedure findroots (function, X, xmin, xmax, roots, nroots)
to find the nroots real roots of the polynomial function (x)
between xmin and xmax. In practice it would seem sensible to
replace this general root finding procedure by one specifically
for the degree of the polynomial involved. If the bicubic spline
method is being followed the CACM algorithm 326, Nonweiler
(1968) is suitable. In that case the calls of findroots should
evaluate the coefficients of the polynomial which would then
be called by value. The other method is followed here for
generality.

procedure drawcontour (contour, xmin, xmax, ymin, ymax., step);
value contour, xmin, xmax, ymin, ymax, step;
real contour, xmin, xmax, ymin, ymax, step;
comment draws the contour line for height contour in the rectangle
xmin < x < xmax, ymin < y < ymax, using a plotter step of
size step;
begin
integer i, n, nstep, nexits, nroots, maxnsteps,
real x, y, epsilon, Ibx, ubx, Iby, uby, xstep, ystep, temp, min;
array xexit, yexit[1:50], root[1:10], xinc, yinc{2:3];
procedure drawcurvesintersecting side (u, v, w, wmin, wmax,
xstepl, ystepl, xinitial, yinitial);
value wmin, wmax, xstepl, ystepl;
real u, v, w, wmin, wmax, xstepl, ystepl, xinitial, yinitial,
comment draw curves Intersecting side wmin < w < wmax,
where w is either x or y, and whichever of x or y is not w being
constant. If translating into FORTRAN, note the use of the
ALGOL call by name facility to control whether x or y is being
varied. A corresponding FORTRAN program might include a
LOGICAL parameter to indicate the direction of the side, with
IF statements at the appropriate points in the subroutine, where
the variables are here referenced by name;
begin :
real x, v;
Sfindroots(f(u,v)-contour,w,wmin,wmax,root,nroots);
for n := 1 step 1 until nroots do
begin
x := xinitial; y :== yinitial,
for i := 1 step 1 until nexits do
if abs(x — xexit[i]) + abs(y — yexit[i]) < 5 x step
then go to ENDLINE;

PV

comment contour is to be drawn;
movepento(x, y); xstep .= xstepl; ystep 1= ystepl,
for nstep = 1 step 1 umtil maxnsteps do
begin
if xstep = O A ystep # O then
begin xinc[2] := xstep; yinc[3] 1= ystep;
yine[2] = xinc[3] := 0

end else
begin xinc[2] := yinc[3] 1= xstep + ystep;
xinc[3] 1= xstep — ystep; yinc[3] := —xinc[3]
end;
min 1= abs(f(x + xstep, y + ystep) — contour);
fori:= 2,3do
begin temp 1= abs(f(x + xinc[il, y + yinc[i]) —
contour);

if temp < min then
begin min 1= temp;
xstep 1= xinc[i]; ystep 1= yinc[i]
end
end of finding which of 3 directions to take;
X 1= X -+ xstep;y :=y + ystep;
graphstep(xstep, ystep);
if x < lbxvx > ubxvy < Ilbyvy > uby then
begin nexits := nexits + 1;
xexit[nexits] 1= x — xstep; yexit[nexits] :=
y — ystep;
go to ENDLINE
end
end nstep;
ENDLINE: end n
end of drawcurvesintersecting side;
nexits := 0; maxnsteps 1= 2 x
(xmax + ymax — xmin — ymin)/step;
epsilon := step/10; comment to allow round-off error;
Ibx = xmin — epsilon; ubx := xmax + epsilon;
by 1= ymin — epsilon; uby := ymax + epsilon;
drawcurvesintersectingside(x, ymin, x, xmin, xmax, 0-0, step,
root{n], ymin);
drawcurvesintersectingside(x, ymax, x, xmin, xmax, 0-0, —step,
root[n], ymax);
drawcurvesintersectingside(xmin, y, y, ymin, ymax, step, 0-0,
xmin, root[n});
drawcurvesintersectingside(xmax, y, y, ymin, vmax, — step, 0-0,
xmax, root[n])
end;

Appendix 3 Bicubic spline coefficients

This procedure calculates the coefficients of the bicubic spline

approximation to a function given on a rectangular mesh. The

procedure applies the conventional one-dimensional spline

approximations first in the x direction, then in the y direction.

The one dimensional procedure splinecoeffs used and given

below is an immediate adaption of Splinefit, Spith’s Algorithm

40 (1969), the adaptation being necessary to return the cubic

spline coefficients rather than the values.

procedure bicubic splinecoefficients (x, nx, y, ny, z, ¢);

value nx, ny; integer nx, ny;

array x, y, z, C;

comment When given the values z[1,]] of a function at the point
x[i1, y[jTon a rectangular mesh with1 < i < nx,1 < j < ny,
this procedure calculates in c[i, j, r, s] the coefficients of x"y*
in the bicubic spline approximation to z, valid for the rectangle
xil< x< x[i + 10, Y1 <y < y[j+ 11. The array de-
claration for ¢ should be (at least) c[1:nx — 1, 1:ny, 0:3, 0:3]
although the answer is only given for the second subscript in the
range 1:ny — 1. If converting to FORTRAN # is suggested
that, because of the absence of call by name, before the two
calls to splinecoeffs the input vectors x[i,j] for i varying and
cli, j, r, O, varying j respectively should be copied info arrays.

’ Tha Pamnufar lanenal

Similarly the output arrays c[i,j, r,0) varying i, r, and
cli, j, r, s varying j, s, respectively, should be copied from
arrays after the call;
begin integer /, j, 7, 5;
procedure splinecoeffs (y, m, x, n, coeff, r);
value 7; integer m, n, r;
real y, coeff; array x;
comment y is really an input array—it is a function of m, and
coeff is really an output array the element selected depending
onmand r;
begin
integer i, j, k, nl, n2; real oldy, sk, sum, sumx, px, z;
array /2, h, dy[1:n], s[1:n — 17, e[1:n — 2];
nl:=n—1;n2:=n-2;
m:=1;o0ldy := y;
for m 1= 2 step | until n do
begin h{m — 1] 1= x[m] — x[m — 17];
dylm — 1] 1= y — oldy; oldy :=y
end;
f2[1] = f2[n] := 0;
for i := 1 step 1 until nl do
F2L] = dyl[i] — dyli = 17;
z:=0-5/(h[1] + A[2]); s[1] := —A[2] x z;
e[1] := f2[2] x z; k 1= 1;
for i := 2 step 1 until 12 do

begin
Pr= 44+ 1;z 1= 1-0/(2:0 x (ALi] + A[j]) + AT x
s[kD);
sli] := —h[j] x z; e[i] := (f2[j] — A[i] x e[k]) x
zZ;
k=i
end;

f2[n1] = e[n2];
for i := n2 step — 1 until 2 do

begin
k=1—1; f2[i] := s[k] x f2[i + 17 + e[k]
end;
for m := 1 step 1 until n1 do
begin

ii=m+ 1; sk 1= (f2[i]1 — f2[m/h[m];
r= 3; coeff := sk;
sum 1= f2[i] + 2:0 x f2[m] — x[m] x sk;
sumx 1= x[m] + x[i]; px 1= x[m] x x[i];
roo= 2; coeff 1= sum — sumx x sk;
ri=1; coeff 1= dy[m] — sumx x sum + px x sk;
ri=0; coeff :=y — x[m] x dy[m] + px x sum
end

end of splinecoeffs

start of main procedure;

for j ;= 1 step 1 until ny do

splinecoeffs (z[i,]1, i, x, nx, c[i, j, r, 01, r);

for i := 1 step 1 until nx — 1 do

for r := 0 step 1 until 3 do

splinecoeffs (c[i, j, r, O, j, v, ny, cli, 1, r, 51, 5)

end of bicubic spline coefficients;

A

Appendix 4 Experimental results

The table below summarises a numerical assessment performed
on an ICL 1907 computer of a variety of interpolation methods
applied to five different mathematically defined surfaces.

For each of these surfaces 100 points were generated on a

regular 10 x

10 grid (x, y = 1, ..., 10), and a variety of inter-

polation methods used to estimate the surface heights at 50

intermediate

points. The average deviations from the true

heights are tabulated for each of the following methods, the
first six of these only being applicable because the data were on
a regular grid:

M1: The ‘classical’ polynomial interpolation

M2: Degree 3 spline

M3: Hyperbolic interpolation, the weighted average of
the four nearest points

M4 Quadratic interpolation, fitting a quadratic in x
and y exactly through the four nearest points, and
approximately to the next eight.

MS5: Quadric interpolation as suggested by the referee,
described in Section 2.

Mé6: Weighted quadric interpolation, using a weighted
average of four results applying M5 to the four
nearest points, to ensure continuity of the contours

M7-M15: Distance weighted least squares polynomial fit
using polynomials and weighting functions w(d?)
as described.

polynomial weighting function
M7 a (Shepard’s method)
M8 g + bx + cy (all linear terms)]

M9 a+ bx + ¢y + dxy
MIO @+ bx + ¢y + dxy + ex? + fy? }e““/dz
M11 quadratic terms +gx2y + hxy?

MI12 all 10 terms up to degree 3
M13 all 15 terms up to degree 4
M1i14 all quadratic terms 1/d?
M15 all quadratic terms 1/d*

Surface
Interpolation Sl S2 S3 S4 S5
method
M1 0-00000 0-02887 0-00077 0-09546 0-01292
M2 0-00111 0-00136 0-00064 ©-00395 0-00416
M3 0-01541 0-01309 0-01069 0-03258 0-02400
M4 0-00029 0-00955 0-00364 0-02483 0-00942
M5 0-00000 0-01305 0-01051 0-02242 0-02142
M6 0-00000 0-00768 0-01293 0-01771 0-01789
M7 0-02030 0-01678 0-01920 0-03185 0-02813
M8 0-01712 0-01212 0-00944 0-02933 0-02603
M9 0-01718 0-01196 0-00950 0-02956 0-02575
M10 0-00034 0-00832 0-00539 0-01800 0-00811
Mil 0-00029 0-00767 0-00500 0-01568 0-00757
Mi2 0-00026 0-00734 0-00277 0-01877 0-00835
M13 0-00002 0-00563 0-00158 0-01064 0-00448
Ml14 0-00305 0-02979 0-03033 0-04980 0-06840
M5 0-00057 0-01256 0-01687 0-02750 0-01977

Average deviation found between
original and interpolated surface

Surface Equation Comment

S1 (x =552+ (y—552+z2=64 A part of a sphere)
S2 zZ = exp — ((x -5+ (y — 5)2) A steep hill rising from a plain '
S3 z=exp — H(x — 5>+ (y — 5 A less steep hill

S4 z=exp — ((x +y — 11)* + (x — »?/10) A long narrow hill

S5 z=tanh(x +y — 11)

A plateau and plain separated by a steep cliff

- SHEPARD, D. (1965).

-We may conclude that in general, for these surfaces, the bicubic
- spline interpolation method M2 is the most accurate if it can be

applied, i.e. if the data are regularly spaced. Of the distance-
- weighted least-squares methods M7-M15, the method M10

_ References

recommended in the paper, using a quadratic polynomial with
weighting function e ~%*/d? appears satisfactory; although some
others (e.g. M13) are slightly more accurate, this gain is not
felt to justify the extra computing involved.

‘ AHLBERG, J. H. (1970). Spline approximation and computer-aided design, Alt, F. L. and Rubinoff, M. Advances in computers, Vol. 10,

“.0 - Academic Press, p. 275.

BengTsson, B. E., and NorDBECK, S. (1964). Construction of isarithms and isarithmic maps by computers, BIT, Vol. 4, p. 87.

Boor, C. DE. (1962).
Coons, S. A.(1969).
‘CotTAFAVA, G., and LE Moui, G. (1969).
GreviLLE, T.N. E. (1967).

digital computers, Vol. 2, Wiley, p. 156.

Bicubic spline interpolation, J. Math. and Phys., Vol. 41, p. 212.

Surfaces for computer aided design of space forms, MAC-TR-41, Massachusetts Institute of Technology.

Automatic contour map, CACM, Vol. 12, p. 386.

Spline functions, interpolation and numerical quadrature, Ralston, A. and Wilf, H. S. Mathematical methods for

MORSE, S+P. (1969). Concepts of use in contour map processing, CACM, Vol. 12, p. 147.

-NONWEILER, T. R. F. (1968).
PARTRIDGE;, M. F. (1968).
Prrteway, M. L. V. (1967).
"RAg; A TM. (1966).
Raveny, T..J.(1969).
RogerTs0N; J. C. (1967).
ScaminT, A. 1. (1966).

Algorithm 326. Roots of low-order polynomial equations, CACM, Vol. 11, p. 269.

Algorithm for drawing eilipses or hyperbolae with a digital plotter, The Computer Journal, Vol. 11, p. 119.
Algorithm for drawing ellipses or hyperbolae with a digital plotter, The Computer Journal, Vol. 10, p. 282.
A program to contour Fourier maps by use of an incremental CRT display, Acia Crystallography, Vol. 21, p. 618.

An introduction to the approximation of functions, Blaisdell, Waltham Mass.
The Symap program for computer mapping, Cartographic J., Vol. 4(2), p. 108.
Symap: A user’s manual, Tri-County Regional Planning Commission, Lansing, Michigan.
A two-dimensional interpolation function for irregularly spaced data. Proc. 23rd Nat. Conf. ACM, p. 517.

. Seata, H. (1969). Spline interpolation of degree three, The Computer Journal, Vol. 12, p. 198,

 Book review

«.The Art of Computer Programming, Volume 3, Sorting and Searching,
by Donald Knuth, 1973; 722 pages. (Addison-Wesley, £9-30.)

Thls thick volume is the third of a projected series of seven. Like the

two earlier volumes the exposition is heavily weighted towards

mathematics, but there are perhaps fewer examples of results being

‘introduced into the text solely for their mathematical interest. A
‘better title to the series might have been ‘A Mathematical Approach
toComputer Programming’; certainly the title must not be taken as
-implying that the author considers that, in the common phrase,

‘programming is more an art than a science’.

. The first half of the book deals with sorting. This was the subject

-of much research in the period around 1960-65. With the results of
. thisresearch scattered in the literature and requiring cross evaluation
. before they could be used, a compendium was much needed. Now
. “anyone with a sorting problem to solve would be foolish not to look
*“in this book first. As Dr. Knuth tells us: ‘unfortunately there is no
- ‘known “‘best” way to sort; there are many methods, depending on
what is to be sorted on what machine for what purpose’.

Methods of internal sorting are dealt with first; by this is meant the
sorting of information wholly contained within the high speed
memory. Twenty-five different algorithms are described and
evaluated. In each case an English language description of the
algorithm is given, followed by a flow diagram and a program
written in MIX, the author’s synthetic assembly language. Finally
thereis an example of numbers sorted according to the algorithm.

No.use is made of high level languages for describing algorithms.
.Methods discussed under the heading of internal sorting are, by
* themselves, virtually useless when the amount of information to be

sorted is greater than can be held in the high speed memory. It is then
that merging comes into its own and most of the section in the book
on external sorting is concerned with variations on the theme of
internal sorting followed by merging. People who are accustomed to
~use such methods in business data processing may, perhaps, be

surprised to find how much theoretical discussion is necessary to
evaluate the various alternatives.

The second half of the book is concerned with searching. The
author remarks that this section might have been given the more
pretentious title ‘Storage and Retrieval of Information’ or the less
pretentious title ‘Table Look-up’. The sub-headings are: sequential
searching; searching by comparison of keys; digital searching;
hashing; retrieval on secondary keys. The problem discussed is
simply stated; it is how to find data that has been stored with a given
identification. ‘Searching is the most time consuming part of many
programs and the substitution of a good search method for a bad
one often leads to a substantial increase in speed’. The author was
right in choosing a non-pretentious title for this part of the book,
since he was concerned with the design of algorithms and not with
database technology in any general sense. There is much more to the
design of management information systems, for example, than is
discussed here; in particular, the reader will find no reference to the
work of the CODASYL Data Base Task Group or to relational data
bases. A similar remark can be made about systems for information
retrieval, as that subject is understood in the world of library and
information science,

The book is liberally provided with exercises classified according to
the amount of mathematical knowledge needed and according to
difficulty. They are intended for self study as well as for classroom
study and the author has devoted 130 pages at the end of the book
to giving solutions. The book is to be strongly recommended to
systems programmers and implementers of application packages. It
will be indispensible to those who have to plan courses in computer
science that cover the topics of which it treats. As a source of
inspiration for lecturers and their abler students it could hardly be
bettered.

M. V. WiLKES {Cambridge)

