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Inference of Integrated Surface,
Curve, and Junction Descriptions

From Sparse 3D Data
Chi-Keung Tang, Student Member, IEEE, and Gérard Medioni, Senior Member, IEEE

Abstract—We are interested in descriptions of 3D data sets, as obtained from stereo or a 3D digitizer. We therefore consider as
input a sparse set of points, possibly associated with certain orientation information. In this paper, we address the problem of
inferring integrated high-level descriptions such as surfaces, 3D curves, and junctions from a sparse point set. While the method
proposed by Guy and Medioni provides excellent results for smooth structures, it only detects surface orientation discontinuities but
does not localize them. For precise localization, we propose a noniterative cooperative algorithm in which surfaces, curves, and
junctions work together: Initial estimates are computed based on the work by Guy and Medioni, where each point in the given
sparse and possibly noisy point set is convolved with a predefined vector mask to produce dense saliency maps. These maps serve
as input to our novel extremal surface and curve algorithms for initial surface and curve extraction. These initial features are refined
and integrated by using excitatory and inhibitory fields. Consequently, intersecting surfaces (resp. curves) are fused precisely at
their intersection curves (resp. junctions). Results on several synthetic as well as real data sets are presented.

Index Terms—Segmentation and feature extraction, integrated shape description, surface orientation discontinuity, surface and
curve extremality.
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1 INTRODUCTION

UR human visual system can perform an amazingly
good job of perceiving surfaces from a set of 3D

points. We not only can infer surfaces, but also segment the
scene, and detect surface orientation discontinuities. For
example, Fig. 1 shows a sparse set of points (with normals)
sampled from a planar surface intersecting with a sphere.
The circle represents the intersection contour that is not ex-
plicit in the data. When the data is presented to us as a se-
quence of projections, we ourselves have no problem in
inferring such surface orientation discontinuities (i.e., the
circular intersection curve) and segment the scene into two
components, a spherical and a planar surface. Earlier work
by Guy and Medioni [6] proposed to detect the presence of
junctions and intersection curves from such data. While it
did a good job of detection, it did not try to integrate them
into a unified representation, but instead produced three
independent representations: one for surfaces, one for
curves, and one for junctions. It can be readily observed
from their results that the surfaces inferred are only correct
away from curves and junctions, and that curves and junc-
tions are not properly localized.

Our approach is based on this work [6], where a nonlin-
ear voting process (implemented as a convolution of input
features with a predefined mask) is used to enforce percep-
tual constraints in order to achieve efficient segmentation

and discontinuity detection. Our main contribution is to
show that this voting process, when combined with our
novel surface and curve extraction processes, can be readily
extended to unify these three independent representations
to produce an integrated description of surfaces, curves, and
junctions.

We start by briefly reviewing some of the existing work
including [6] on this problem, then motivate and describe
our approach, and finally show results on complex syn-
thetic and real data. A compact version with an incomplete
account of Sections 5.2 and 5.3 (due to space limit) of this
paper has appeared in [19]. We have improved our imple-
mentation and also its time and space complexities reported
in [19]. The present coverage presents our work in complete
detail, while readers can regard our delicate surface and
curve extraction processes as plug-in components.

2 PREVIOUS WORK

Much work has been done in surface fitting to clouds of
points. The majority of work uses the deformable model ap-
proach (first proposed by Kass et al. in [11] and [22]) which
attempts to deform an initial shape using energy minimi-
zation so that the deformed shape fits a set of points. Boult
and Kender [3] addressed the sparse data problem specifi-
cally and demonstrated a method using minimization over
Hilbert spaces. Poggio and Girosi [16] formulated the sin-
gle-surface approximation problem as a network learning
problem. Blake and Zisserman [4] addressed similar prob-
lems dealing explicitly with discontinuities. Fua and Sander
[5] proposed an algorithm to describe surfaces from a set of
points using local properties. Szeliski et al. [18] formulated
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the problem as a physically-based dynamic process that
makes use of local properties from each data point. A single
object of unrestricted topology can be handled using their
method. In [7], [13], an initial surface is made to fit the data
by minimizing energy function, which is derived from the
smoothness and proximity constraints. Physics-based ap-
proaches proposed by Terzopoulos et al. (in [20], [21], and
[24]) model the problem as a multi-particle system gov-
erned by (physics) laws and equations. The initial surface
(or model), originally in equilibrium, is now subject to ex-
ternal forces exerted at each data point. Such forces make
the system converge to another equilibrium. Hoppe et al.
[9], [10] and Boissonnat [1] use computational geometry to
address the problem by treating the data as vertices of a
graph and constructing edges based on local properties.
However, in [9], creases were not located and blurred out.
By optimizing the mesh [10] in a sequel of their work, they
were able to detect sharp features in the underlying surface
and segment the optimized mesh into smooth components.
Our work uses a voxel representation by quantizing the
(sparse and noisy) input and produces surface meshes. This
voxel approach is also used by Hilton et al. [8], Wheeler et
al. [25], and Roth and Wibowo [17]. Their methods deal
with dense and accurate 3D data.

3 METHOD PROPOSED BY GUY AND MEDIONI

Most of the above methods are computationally expensive
since many iterations may be required. Moreover, they have
one or more of the following limitations:

•� multiple objects cannot be handled;
•� only relatively simple topologies can be described;
•� surface boundaries and orientation discontinuities are

usually smoothed out;
•� do not work in the presence of noise.

Guy and Medioni [6] have recently proposed a method to
attack these problems. Since our work is a direct extension,
we shall summarize it in more detail to serve as back-
ground as well as a source of terminology that will be used
throughout this paper.

Fig. 2 shows the major steps of the algorithm. Each input
site in the sparse data set is quantized in a 3D array. A sur-
face normal or tangent must be associated with each point.

A preprocessing step to estimate surface normals is re-
quired when they are unavailable. The preprocessing as
well as the vote accumulation is implemented as convolu-
tion with various vector fields (Fig. 3).

3.1 Fields
There are three types of 3D vector fields proposed in [6]:
the 3D point field (P-field), curve segment field (C-field), and
Diabolo field1 (D-field). The first two are used in preproc-
essing for normal estimation and the third one is used for
surface inference. In all cases, the length of each vector is
inversely proportional to the distance from O (for the D-
field also the curvature of the underlying circular arc con-
necting O and P). A Gaussian decay function is used for
that purpose.

P-field. Without any a priori assumption, given a point P
and an origin O, the most likely surface passing through O
and P is a family of planes containing these two points, rep-
resented by a single vector OP  (Fig. 3a).

C-field. Without any a priori assumption, given a point
P in space with the associated tangent vector lying at the
origin, the most likely surface is the family of planes

1. This vector field is named as the “Diabolo field” because of its resem-
blance to a juggler’s Diabolo [6].

    
                                   (a)                                                                           (b)                                                                          (c)

Fig. 1. Inferring integrated high-level description. (a) Input sparse data points with normals. (b) Surface orientation discontinuity is localized as an
intersection curve. (c) Output surface with the discontinuity preserved.

Fig. 2. Flowchart of the method proposed by Guy and Medioni.



1208 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  11,  NOVEMBER  1998

containing that tangent vector (Fig. 3c). The normal vectors
to the family of planes are collected as the C-field (Fig. 3d).

D-field. Given a normal vector N at origin O and a point
P (Fig. 3e), without any a priori information, there is no
reason to postulate a more complex surface than a circular
continuation. Therefore, we claim that the “most likely”
surface through P will be the circular continuation between
O and P, because it keeps the curvature constant. The
“most likely” normal is normal to that arc at P. The col-
lection of such most likely normal vectors comprises the
D-field (Fig. 3f).

3.2 Vector Voting and Saliency Maps
We firstly describe the basic case when surface normals are
available as input. The output (and input to our cooperative
algorithm described next) is three independent dense sali-
ency maps (defined shortly). Computing saliency maps is
done by voting, which is realized by convolving each input
normal vector with the D-field. The resulting map is a col-
lection of fields, each oriented along the input normal vec-
tor. Each site accumulates the “votes” for its own preferred
orientation and strength from every other input in the vol-
ume. The contributions to a voxel are treated as vector
weights, and we compute the central moments of the re-
sulting system. This is equivalent to computing a 3D ellip-
soid having the same moments and principal axes. Such a
physical model acts as an approximation to a majority vote
which gives both the preferred direction and a measure of
the agreement. For each voxel (x, y, z) in the entire 3D array,
we define the accumulated vote, Oxyz, as a 3 ¥ 3 variance-

covariance matrix. We decompose this matrix of central
moments into the corresponding eigensystem,
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as expressed in (1), where lmin £ lmid £ lmax represent the
three sorted eigenvalues, and the Vs denote the corre-
sponding eigenvectors of the system. Such decomposition
will always yield real, nonnegative eigenvalues since the
matrix is real, symmetric, positive, and semidefinite.

The three eigenvectors correspond to the three principal
directions of an ellipsoid in 3D, while the eigenvalues de-
scribe the strength and agreement measures of the 3D
votes. On a smooth surface, the votes produce high agree-
ment around one direction, so lmax @ lmid, lmin (Fig. 4a).
Along the curve bounding two surfaces, two of the eigen-
values are high, and one small, leading to lmid @ lmin (Fig.
4b). Finally, at a junction of two or more curves, all three
values are similar (Fig. 4c). Thus three voxel maps defining
the surface, curve, and junction saliencies, respectively are
proposed. Each voxel of these maps has a two-tuple s v,0 5 ,
where s is a scalar measuring feature saliency and v  is a unit
vector indicating direction:

•� surface map (SMap): s = lmax - lmid, and v  = Vmax indi-
cating the normal direction.

•� curve map (CMap): s = lmid - lmin, and v  = Vmin indi-
cating the tangent direction.

•� junction map (JMap): s = lmin, with v  arbitrary.

         
                       (a)                                                         (c)                                                                                                     (e)

                
                               (b)                                                                   (d)                                                                              (f)

Fig. 3. (a) Given a point P, all normals (thin arrows) at point P are equally likely. We choose to represent all of them with one vector (thick arrow).
(b) Cross section of P-field at y = 0. (c) Given a curve segment, all planes containing this segment are equally likely. (d) Cross section of C-field at
y = 0. (e) Given a patch and point P, the circular continuation is most likely. (f) Cross section of D-field at y = 0.
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3.3 Preprocessing for the Nonoriented Cases
When we have points or oriented curve elements as input,
we preprocess them to infer a normal. This is achieved
again by convolving each input site with the appropriate
vector kernel (P-field or C-field), and interpreting the re-
sulting votes, but only at the original input sites. As a result
of this step, each input site now holds a normal, obtained as
the eigenvector Vmax corresponding to lmax.

4 MOTIVATION AND OVERALL STRATEGY

An integrated high level description requires that surface
orientation discontinuities be explicitly preserved. How-
ever, as readily seen from [6], generating surfaces (resp.
curves and junctions) using the SMap (resp. CMap and
JMap) independently does not guarantee such precise dis-
continuities. Discontinuities, though detected, may be:

•� Smoothed out. For example, although a salient curve
may be detected in CMap, it is still possible that the
surface saliency gradient across the corresponding
voxels in SMap varies smoothly and thus a smooth
surface will be traced if the SMap is alone considered,
and surfaces, curves, and junctions are not coherently
integrated (Fig. 5).

•� Left “undecided.” Voxels around surface orientation
discontinuities have a low surface saliency and thus
no surface will be produced, creating a gap (Fig. 6a).

•� Incorrect. Because of data sparsity, using the CMap
alone to trace a curve may produce incorrect result. A
sphere intersecting with a plane should give a circle.
However, if we use the CMap alone in this case to in-
fer the intersection contour, it will not be circular (as
shown in Fig. 6 where one of the hemispherical sur-
faces is also shown).

                                            (a)                                                            (b)                                                             (c)

Fig. 4. The three important voting ellipsoids.

                                                            (a)                                                   (b)                                                     (c)

Fig. 5. (a) Input data obtained from a digitized surface sweep on a triangular wedge. (b) and (c) Two views of the reconstructed surfaces, 3D
curves and junctions. Surface (resp. curve) orientation discontinuities, though detected, are not well localized because SMap (resp. CMap) is
used alone for surface (resp. curve) tracing.

                                                   (a)                                                         (b)                                                        (c)

Fig. 6. Incorrect curve may be obtained by considering the CMap alone. (a) Gaps are produced around region of low surface saliency. (b) and (c)
Two views of the incorrect curve owing to data sparsity.
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We have illustrated through examples the limitations of
noncooperative feature inference. In this paper, we show
(constructively by proposing an algorithm) that while the
original work by Guy and Medioni [6] does not handle an
integrated description, their voting approach can be ex-
tended cleanly into a cooperative framework such that sur-
faces, curves, and junctions can be inferred cooperatively.
The underlying idea is two-fold:

•� Extending the use of the D-, C-, and P-fields in hybrid
voting (using different fields in a single voting pass)
to infer surface/curve orientation discontinuities.

•� Making use of our novel extremal surface/curve ex-
traction processes to be described for initial estimate
generation and subsequent refinement.

Our overall strategy is as follows: For preserving precise
surface orientation discontinuity, we treat the curve as a
surface inhibitor: The curve will not be smoothed out while a
surface is being traced using the SMap. Once an explicit
initial surface estimate is obtained, we treat the very same

curve as exciter for computing precise discontinuity. A
similar rationale applies to curve orientation discontinuity.
We show in Fig. 7 the major steps of the cooperative algo-
rithm, and illustrate them in Fig. 8 using one face of our
triangular wedge (Fig. 5) as a running example:

1)�Curve trimming by inhibitory junctions. Initial junctions
are convolved with a curve inhibitory field so that the
detected discontinuity (indicated by JMap) will not be
smoothed out when a developing curve is evolving
(Fig. 8a).

2)�Curve extension toward excitatory curves. Initial junctions
and curve are convolved with curve excitatory fields so
that the curve obtained in (1) are brought to intersect
with the junctions (Fig. 8b).

3)�Surface trimming by inhibitory curves. Extended curves
obtained in (2) are convolved with a surface inhibitory
field so that the detected discontinuity (indicated by
CMap) will not be smoothed out when a developing
surface is evolving (Fig. 8c).

4)�Surface extension toward excitatory curves. The extended
curve and the trimmed surface are convolved with
surface excitatory fields such that latter can be naturally
extended to hit the curve (Fig. 8d).

5)�Final curves and junctions from surfaces. The set of sur-
face boundaries obtained by extended surface inter-
section produces a set of refined curves and junctions
which are coherently integrated and localized (Fig. 8e).

We want to emphasize here that our cooperative approach
is not iterative (though each step makes use of results pro-
duced in previous step(s)). Also, the geometric locations of
all junctions, 3D curves, and surfaces may change consid-
erably after the cooperation process.

5 HIGH LEVEL FEATURE EXTRACTION

Initial junction, curve, and surface estimates are generated
by extracting local saliency extrema in the JMap, CMap,
and SMap. However, except for junctions, raw extrema ex-
traction in CMap or SMap only produces a thick set of
points, not a curve or a surface. In order for the subsequent
cooperation process to take place, we need a curve be rep-
resented by a set of connected poly-line segments, and a
surface represented by a hole-free triangulation. To this
end, we develop extremal curve and surface algorithms to ob-
tain such explicit representations.

Recall that every voxel of these saliency map holds a
two-tuple s v,0 5  where s is the saliency and v  indicating
tangent or normal directions.

Fig. 7. Overview of cooperative algorithm.

                              (a)                                      (b)                                    (c)                                   (d)                                     (e)

Fig. 8. Illustration of overall strategy.
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5.1 Maximal Junctions
The 3D junctions are isolated points, by definition, so it is
straightforward to extract them as local maxima of the lmin
values.

5.2 Extremal Curves
Each voxel in the CMap holds a two-tuple s t,2 7 , where the

s = lmid - lmin is curve saliency and t V= min  indicates direc-
tion. Suppose the CMap is continuous, in which s t,2 7  is

defined for every point p in 3D space. A point p with s t,2 7  is
on an extremal curve if any displacement from p on the plane
normal to t  will result in a lower s value, i.e.,

ds
du

ds
dv= = 0,                                    (2)

where u and v define the plane normal to t  at p (Fig. 9).
This definition therefore involves the detection of zero-

crossing in the u-v plane normal to t . To do this, we intro-
duce the gradient vector g  as

g
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Define q t g= ¥R2 7, where R defines a rotation that aligns
with the u-v plane. By construction, q  is the projection of g
onto the plane normal to t . Therefore, an extremal curve is
the locus of points for which q = 0 .

In implementation, we can define the corresponding dis-
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q t gi j k i j k i j k, , , , , ,= ¥R4 9 .                            (5)

Therefore, the set of all qi j k, ,J L  constitutes a vector array,

which can be processed by the Marching Cubes algorithm
with our novel adaptation (6LQJOH6XE9R[HO&0DUFK) to
be described in the Appendix.

So the overall extremal curve algorithm picks the seed
voxel with s t,2 7  whose s value is largest so far, computes
the point (if any) where an extremal curve passes through
by using 6LQJOH6XE9R[HO&0DUFK which uses the dis-
crete version of q , and aggregates the curve in direction t
until the current s value falls below a low threshold. Denote
this curve thus obtained by C1. Then the algorithm returns to
the seed and repeats the whole process above with direc-
tion -t. Denote the curve thus obtained by C2. It outputs Re-

verse(C2) < C1 as a connected and oriented extremal curve. If
there are multiple curves, then it picks the next available
seed and performs the same curve aggregation process un-
til the s value of the next seed falls below a high threshold.

The choices of high and low thresholds in this curve ex-
traction process are not critical. These thresholds are used
only for ordering the extraction of extremal curves by their
seed’s saliency, and to reject features due to noise. In other
words, only the running time is affected by choosing
thresholds too low, but not the result. These thresholds are
chosen empirically.

5.3 Extremal Surface
Each voxel in the SMap holds a two-tuple s n,0 5  where s =
lmax - lmid indicating surface saliency and v V= max  denoting
the normal direction. As before, suppose the SMap is con-
tinuous in which s n,0 5  is defined for every point p in 3D
space. A point is on an extremal surface if its saliency s is lo-
cally extremal along the direction of the normal, i.e.,

ds
dn = 0.                                        (6)

This definition involves the detection of zero crossing on
the line aligned with n  (Fig. 10). We compute this by pro-
jecting g  onto n , i.e.,

Fig. 9. Curve saliency is projected onto a plane perpendicular to the
tangent. When a change in signs occurs in the derivatives in both u
and v, a curve passes through the point.

                                          (a)                                                                (b)                                                                            (c)

Fig. 10. (a) A normal vector (with an imaginary surface patch drawn). (b) Surface saliency along the normal. (c) The derivative of saliency.
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q n g= ◊ .                                       (7)

Therefore, an extremal surface is the locus of points for
which q = 0.

As before, we can define the corresponding discrete ver-
sion for q, i.e.,

q n gi j k i j k i j k, , , , , ,= ◊ .                                 (8)

Therefore, the set of all {qi,j,k} constitutes a scalar field which
can be processed directly by the Marching Cubes algorithm
[14].

The overall algorithm picks the seed voxel whose s
value is largest so far, computes a surface (if it exists) by
using 6LQJOH6XE9R[HO0DUFK (to be described in the
Appendix) which makes use of {qi,j,k}, and aggregates the
surface in its neighborhood until the current s value falls
below a low threshold. If there are multiple surfaces, it
then picks the next available seed and performs the same
patch aggregation process until the s value of the next
seed falls below a high threshold. A polygonal mesh is
thus produced. Again, the choice of these thresholds are
not critical.

6 COOPERATIVE COMPUTATIONS AND HYBRID
VOTING

We extend vector voting in [6] to cooperatively integrate
initial junction, curve, and surface estimates generated by
extremal feature extraction algorithms to obtain an inte-
grated description. Slight modifications are needed for both
feature extraction algorithms, which will be described in
the following sections.

6.1 Feature Inhibitory and Excitatory Fields
In essence, the process of feature integration is to define
feature inhibitory and excitatory fields and to use them for
feature localization. We have curve and surface inhibitory
fields. Curve (resp. surface) inhibitory field is an inhibition
mask for inhibiting curve (resp. surface) growing as in-
tended by its respective extremal algorithms. No curve
segment (resp. surface patch) is possible in a voxel masked
by a inhibitory field.

We also have excitatory fields for inferring feature exten-
sion. These fields are essentially defined by P-, C-, and D-
fields for feature extension toward the detected orientation
discontinuity. In particular,

•� Curve excitatory fields are defined by P-field and 3D
extension field (to be defined below),

•� Surface excitatory fields are defined by C-field and
D-field.

6.2 Curve Trimming by Inhibitory Junctions
The extremal curve extraction algorithm (Section 5.2) is
modified to take not only the CMap but also the detected
junction estimates (from JMap) as input:

1)�The voxels in CMap corresponding to initial junc-
tions are inhibited by a curve inhibitory field to protect
detected curve orientation discontinuity detected in
JMap. It is done simply by putting the corresponding

inhibition mask over the detection junction loca-
tions (voxels). Typical size of this inhibition mask is
5 ¥ 5 ¥ 5.

2)�Curves are traced exactly as described in Section 5.2.

Since curve growing is inhibited around a junction but not
by the low threshold in the original extremal curve extrac-
tion, its orientation discontinuity will not be smoothed out,
and no spurious curve features are created around a junc-
tion. This step results in a set of trimmed curves.

6.3 Curve Extension Toward Excitatory Junction
The detected junctions and trimmed curves obtained in the
previous phase are used to produce an “extended” curve
for which curve orientation discontinuities are preserved.
We group these features by using an incidence graph
(Fig. 11b), and process curve extension one by one (like
divide-and-conquer strategy).

First, an incidence graph G = (V, E) is constructed with E
corresponding to curves and V to incident junctions (Fig. 11).
This graph is created by checking the distance between
every endpoint of the trimmed curves and the detected
junctions to determine to which junctions the curve end-
points should be connected. By such grouping, we can
avoid unnecessary and unwanted interaction among exci-
tatory fields (defined shortly).

Then, for each curve (edge in E) and its incident junc-
tions (vertices in V), we quantize them as input (recall that
this intermediate curve is of subvoxel precision). Two exci-
tatory fields are used to extend the curve toward detected
junctions such that it will intersect the junction precisely in
a single pass of voting:

1)� (Excitatory 3D extension field) Each curve segment (in
E) is convolved with the 3D extension field (Fig. 12b). A
2D extension field comprises (Fig. 12a) the set of all
(nonequally) likely tangents that will best connect two
separate 2D line segments. (So its design is analogous
to its 3D counterpart D-field which encodes most likely
normals.) A 3D extension field is obtained by rotating its
2D version about its “long” axis. See Fig. 12b.

2)� (Excitatory P-field) The junctions (in V) are convolved
with the P-field, where each vote in P-field is in-
creased (i.e., excitatory) in order to “attract” the curve
toward the junction. Its size is related by a constant

     
                               (a)                                                    (b)

Fig. 11. (a) Initial curves and junctions. (b) An incidence graph is
constructed.
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factor (its choice is not critical; typical factor is two) to
the curve inhibitory fields in Section 6.2. Fig. 12c.

Note that we use two types of voting fields (namely, the
3D extension field and P-field) in a single voting pass. Since
both of them are vector fields, the voting (i.e., vector con-
volution and aggregation) proceeds in exactly the same way
as described in Section 3.

For vote interpretation, we assign a two-tuple s t,2 7  in
each voxel by the following. Since the voting ellipsoid will
be very elongated if there is a high agreement in one direc-

tion (Fig. 12c), s = lmax - lmid is chosen as the saliency, and
t V= max  gives the direction of the curve segment tangent.
With this map, a slight modification of the extremal curve
extraction algorithm described suffices to extract the de-
sired extended curve. The low threshold is eliminated and
curve tracing continues until the junction is exactly hit. This
extended curve preserves curve orientation discontinuity.

6.4 Surface Trimming by Inhibitory Curves
In this phase, the extremal surface algorithm is modified to
take not only the SMap but also the extended curve ob-
tained in the previous phase to produce a triangular mesh.
This is done by:

1)�First, the voxels in the SMap corresponding to the lo-
cation of the extended curve are convolved with a
surface inhibitory field to protect surface orientation dis-
continuity detected in the CMap.

2)�Then the surface is traced as described in Section 5.3.
A set of trimmed surfaces is produced.

6.5 Surface Extension Toward Excitatory Curve
The extended curves and the trimmed surface computed in
previous phases are used together to produce an extended
surface with preserved surface orientation discontinuity.

First, an incidence curve list is constructed for each
trimmed surface. This list corresponds to the set of ex-
tended curves with which a trimmed surface will intersect
(Fig. 13). Similar to the use of incidence graph, an incidence
curve list is used to group relevant surface and curve fea-
tures so that we can process surface extension in a divide-
and-conquer manner and avoid unnecessary interaction
among excitatory fields. To create this list for each trimmed
surface, we examine each curve, and a curve closest to the
mesh boundary of the trimmed surface will be assigned to
the list.

Then, for each trimmed surface with its (enclosing)
curves, we treat them as input to our voting procedure (i.e.,
we quantize both the curve (tangents) and the surface
(normals). This quantization is needed because both the
extended curves and the trimmed surfaces are of subvoxel
precision. Two excitatory fields are used in a single voting
pass (Fig. 13a).

1)�(Excitatory C-field) The tangents are convolved with
the C-field, in which vector weight in each vote is
increased in order to “attract” the trimmed surface

          
                                       (a)                                                                      (b)                                                                   (c)

Fig. 12. (a) The 2D extension field. (b) Rotating about its “long axis” produces the 3D version. (c) Convolving a curve with the 3D extension field,
and junctions with strong P-field, for inferring the most probable extension.

     

Fig. 13. For surface extension, the corresponding normals from this trimmed surface mesh are convolved with D-field. Curve segments are con-
volved with C-field. An incidence curve list for the surface.
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toward the curve. Again, its size is related by the size
of the surface inhibitory field used in Section 6.4.

2)�(Excitatory D-field) The normals are convolved with
the D-field for inferring the most natural extension for
filling the gap.

Note that the voting process is exactly the same as de-
scribed in Section 3, even though we use hybrid vector
fields to vote. For vote interpretation, we assign to each

voxel a two-tuple s n,0 5 , where s = lmax - lmid is the saliency
and n V= max  gives the direction of normals.

The resultant map, which is a volume of surface normals
with their saliencies, is fed into the extremal surface extrac-
tion algorithm with the following modification (Fig. 14):

Since the extended curve may be inaccurate (recall that
no surface information is used at the time when the curve
was computed), the evolving surface may extend beyond,
or “leak” through, the extended curves if the saliency of the
currently visiting voxel in the SMap exceeds the low
threshold of the extremal surface algorithm. (Note that, it
does not suffice to simply increase the low threshold, nor to
inhibit the neighboring voxels around the possibly incorrect
curve.)

To prevent such leakage, we infer a leakproof surface by
using our voting procedure, as in the following:

1)�For all tangents t  of an extended curve, we compute
the cross product with its closest surface normal n
obtained above (Fig. 14).

2)�These estimated normals constitute another set of
sparse data, and the D-field convolution and extremal
surface extraction will explicitly produce the leakproof
surface. This triangular mesh approximates the sur-
face on which the extended curves are lying, and is
used to inhibit the extremal surface algorithm from
extraneous extension or “leakage.”

At this point, readers may ask why there is no need for
leakproof curve or surface in the case of curve extension
toward excitatory junction (Section 6.3). First, we do not
have enough information for inferring such leakproof curve
or surface in that phase. Also, for curve extension, we set a

distance threshold to prevent the curve from missing the
junction during extension. However, this heuristics may not
give the best intermediate result; but the final result will
improve when surface information is taken into account,
as in the last phase of the integration to be described in
the following.

6.6 Final Curves and Junctions From Surfaces
The extended surfaces obtained in the previous phase are
most reliable because they are inferred from cooperating
intermediate junction, curve, and surface estimates to-
gether. These surfaces are used in turn to generate better
intersection curves and junctions which are lying, or local-
ized, on the surfaces. (Recall that intermediate junctions
and curves are obtained without taking surfaces into con-
sideration, since the surfaces as detected around those
junctions and curves are unreliable.)

By construction, these intermediate curves and their
junctions lie on the leakproof surface. Therefore, it suffices
to compute the surface/surface intersection, or the precise
surface boundaries, between the extended surface (the
most reliable cue) and the leakproof surface (on which
curves and junctions are lying). A set of line segments
results which, after cleaning up, is the set of coherent
curves and junctions where our final surfaces should inter-
sect precisely.

Note that since a curve is usually shared by more than
one salient surface, the most salient of all extended surfaces
is used to compute the surface/surface intersections with
the leakproof surface. And the resulting final curve will be
marked so that it will not be computed more than once.

7 SPACE AND TIME COMPLEXITY ANALYSIS

Let

n = number of input points
k = maximum dimension of voting field
s = number of voxels occupied by output surfaces
c = number of voxels occupied by output curves
j = number of junctions.

Fig. 14. A curve lies on a leakproof surface, which is obtained by D-field convolution after normal estimation. Leakproof surface is also used later
to infer a more accurate curve by surface/surface intersection.
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In our implementation, the input is quantized but not
stored in a 3D voxel array. Such a voxel array is very expen-
sive and wasteful if the data set is large and the inferred
surface is usually thin. Instead, a heap is used for storing
the quantized input. The size of the input heap is O(n).

Since a 3D voxel array is not available, an efficient data
structure is needed to maintain the vote collection (i.e.,
SMap, CMap, and JMap), the output surface patches and
curve segments. A red-black tree [2] is used for storing
votes. The size is dominated by the SMap, which is O(s)
since only voxel occupied by features will be considered by
our implementation (vote gathering will be described
shortly). We also use Fibonacci heaps for storing the seeds
for extremal surface and curve extraction. Although their
size is also O(s), since they only store the discrete voxel lo-
cations and their corresponding surface or curve saliencies,
their storage requirement is not as substantial as that of the
red-black tree.

Therefore, for space complexity, the heaps and the vote
collection together takes O(s + n) space. For sparse data,
n ! s. Also, the vote collection stores surface patches of
subvoxel precision. Therefore, the storage requirement for
the initial heap is not as substantial when compared with
that of the red-black tree vote collection. Therefore, the total
space requirement is O(s) in practice.

Next, we analyze the time complexity of our method.
For input quantization, heap insertion and search, which
are all we need, take O(log n) in time [2]. For the red-black
tree operations, insertion, search, and deletion can be done
in O(log (s + c + j)) time (or O(log s) because s @ c + j). Note
that deletion is also needed for the maintenance of the vote
store, because indiscriminate growth of the tree will lead to
severe memory swapping that degrades the computing
system. In the current implementation, we limit the maxi-
mum size of the vote collection to be 20 MB. When this
threshold is exceeded, the whole tree will be purged for
freeing the memory. For operations on Fibonacci heaps,
insertion and extraction of seed requires O(1) and O(log s),
respectively.

In our implementation, each site gathers all the votes
cast by its effective neighborhood (size of voting field)
only, performs smoothing, computes the eigensystem and
surface patch (if any) for that site, all on-the-fly. The result
produced by vote casting (as described in Section 3) is
equivalent to that produced by vote gathering. Note that
when dense data is available (during surface extension
toward excitatory curves) for which small voting fields
can be used, the effective neighborhood for each site is also
small.

The total time complexity is analyzed as follows:

1)�Computing SMap, CMap, and JMap. It takes O(sk3) time
for vote convolution, vote aggregation and interpreta-
tion, because only voxels occupied by surfaces (and
their finite neighborhood that contains curves and
junctions) are considered.

2)�Initial junctions from JMap. O(s) time for local maxima
extraction.

3)�Curve trimming by inhibitory junctions. We preprocess
the CMap in O(s) to build a Fibonacci heap (F-heap)
for O(log s)-time per seed extraction afterward. For

extremal curve algorithm, computing zero crossings
using 6LQJOH6XE9R[HO&0DUFK only involves a con-
stant number of choices, so it takes O(1) time to pro-
duce a point on an extremal curve (if any). Therefore,
the extremal curve algorithm runs in linear time, i.e.,
at most O(s + c), or O(s) because s @ c in practice.

4)�Curve extension toward excitatory curves. It takes O(c + j)2

time to compute the incidence graph. Total vote con-
volution, aggregation and interpretation takes at most
O((c + j)k3) time.

5)�Surface trimming by inhibitory curves. Like (3), seed ex-
traction takes O(log s) time. Also, 6LQJOH6XE9R[HO�
0DUFK takes O(1) time to compute a zero-crossing
patch (if any) in a voxel. Therefore, the extremal sur-
face algorithm runs in linear time, i.e., at most O(s).

6)�Surface extension toward excitatory curves. Incidence
curve list can be constructed in O(s + c)2 time. Total
vote convolution, aggregation, and interpretation
takes at most O((s + c)k3) time. The extremal surface
extraction algorithm runs in time linear with the out-
put size, i.e., at most O(s) time.

7)�Final curves and junctions from surfaces. The sur-
face/surface intersection routine can be embedded in
(6), where each intersection between two voxel sur-
faces takes O(1) time.

In all, the most time consuming part is step 6, because
voting is performed on dense normals given by SMap, a
thick set of points with normal information. Because we
have dense information, the voting field used (i.e., k) in
step 6 is small (typical size is about 5 ¥ 5 ¥ 5). Our program
runs in about 15 minutes on a Sun Sparc Ultra 1 for 1,000
input points.

In summary, we tabulate the space and time complexi-
ties in Table 1.

8 RESULTS

We produce synthetic and real sparse input data and pres-
ent different views of the extracted surface. (The real data
are sampled using a 3D digitizer in sweep mode.) Each ex-
ample emphasizes one or more aspects as described in the
following.

TABLE 1
SPACE AND TIME COMPLEXITIES OF OUR METHOD

Heap (for input quantization) O(n)

Fibonacci heap (for seed store) O(s)

Red-black tree (for vote collection) O(s)

Total space complexity O(n + s) < O(s)

Computing SMap, CMap, and JMap O(sk
3
)

Initial junctions O(s)

Curve trimming O(s + c)

Curve extension O((c + j)k
3
)

Surface trimming O(s)

Surface extension O((s + c)k
3
)

Final curves and junctions O(s)

Total time complexity < O(sk
3
)
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8.1 Plane and Sphere
A total of 342 data points with normals are sampled from a
sphere intersecting with a plane. Fig. 15 shows two views of
the input data, the extracted intersection curve, and inte-
grated result obtained using our cooperative approach.

8.2 Three Planes
A total of 225 data points with normals are sampled from
three orthogonal and intersecting planes. Initial estimates

are cooperatively refined using our approach. The result is
shown in Fig. 16.

8.3 Triangular Wedge
A digitizer is made to sweep over a real triangular wedge
and a set of 1,266 data points is produced. Successive dig-
itized points form an edgel, so we use C-field for normal
recovery. Then, the cooperative computation is run as de-
scribed. Result is shown in Fig. 17.

          

          

Fig.15. Plane and sphere. An intersection curve is precisely inferred. The integrated surface description consists of an upper and lower hemi-
spherical surfaces, a square planar surface with a circular hole, and a circular planar surface inside the sphere (not visible).

          

          

Fig. 16. Three orthogonal planes. There are six extremal curves and one six-junction which are coherently integrated with twelve extremal planar
surfaces. The junction curves are properly localized.
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8.4 Wooden Block
We again use a digitizer to sample a set of 1473 data points
from a wooden block. Successive digitized points form an
edgel, so we use C-field for normal recovery. Then, the co-
operative computation is run as described. Result is shown
in Fig. 18.

8.5 Crown
A set of 24 views of a Crown (a dental restoration) is reg-
istered using a rotational registration system shown in
Fig. 19 (courtesy of the GC Corporation, Japan). This data
set contains a total of 60,095 points. We registered all these
views using a single coordinate system. P-field is used for
normal recovery from the noisy dental imprints, which is
followed by D-field convolution and cooperative process
as described. The result is shown in Fig. 20. With such rich

(but noisy) data, we can detect the upper and lower sides,
the creases and the crown, which are in turn used to pro-
duce a coherently integrated surface and curve descrip-
tion. This data set is difficult because it consists of two
very close-by upper and lower surfaces bounded by the
“crown,” with many creases which are only implicit in the
data. All these are faithfully and explicitly inferred in our
3D description.

Note that we can only integrate the two intersection
curves (namely, the preparation line and the fixture that
holds the crown) with the crown surfaces. For the
crease curves on the upper surface of the crown, since
they only converge in a saddle region, but not a salient
point junction, they are only detected, but not integrated
as described.

         

          

Fig. 17. The surface of a triangular wedge is sampled using a digitizer. The set of points obtained is used as input to our program to generate the
integrated descriptions of junctions, curves, and surfaces. Six three-junctions and nine extremal curves, and six extremal surfaces are integrated.
The real object is also shown.
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8.6 Book Stack
We test our approach to infer segmented and integrated
surface, curve, and junction description from stereo. Details
can be found in a recent paper by Lee and Medioni [12].
Fig. 21 depicts the input intensity stereo images and the
resultant integrated description. First, we start with an es-
timate of the 3D disparity array in the traditional manner.
Potential edgel correspondences are generated by identify-
ing edge segment pairs that share rasters across the images
(Fig. 21a). Initial point and line disparity estimations are
then made. To infer salient structure from the disparity ar-
ray, we perform D-field voting for each matched point,
from which the SMap is computed. The most salient match
are kept along each line of sight (Fig. 21b), using the unique

          

          

          

Fig. 18. The surface of a wooden block is sampled using a digitizer. The set of points obtained is used as input to our program to generate the
integrated descriptions of junctions, curves, and surfaces. Four three-junctions and six extremal curves are inferred and integrated with four ex-
tremal surfaces, some of them have nonconstant curvature. The real object is also shown.

Fig. 19. A rotational registration system (courtesy of the GC Corpora-
tion, Japan).
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disparity assignment. This filtered, though still noisy, point
set is then used as input to our program and the integrated
description and the texture mapped surfaces are shown.

9 CONCLUSION AND FUTURE WORK

In this paper, we describe a general method for inferring
coherent surface, curve, and junction from a sparse 3D

data set in which surface and curve orientation disconti-
nuities are explicitly preserved. The cooperative approach
refines initial estimates by using excitatory and inhibitory
fields (which are derived from an earlier work [6]) and
novel surface and curve tracing processes that produce
extremal surfaces and curves given dense saliency maps.
Although the integration process we described above is
complex, it shall produce an integrated surface, curve, and

          

          

          

Fig. 20. A crown tooth is sampled using a rotational registration system. The noisy data set is used as input to our program to generate an inte-
grated description consisting of extremal curves and surfaces. A middle slice of the extremal surfaces is also shown at the top.
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junction description if such features are salient enough
(not necessarily explicit) in the input. We qualitatively
evaluate our method by a variety of convincing examples.
Therefore, more work has to be done on the quantitative
analysis (e.g., the effect of scale of analysis and amount of
additive noise on the reconstruction result) to quantify the
stability, existence, and performance bounds of our
method.

As indicated in the time complexity analysis, we can
reduce the order of the most time-consuming part by

voting only at curve endpoints or surface boundary for
inferring the natural extension if curvature information
can be reliably estimated. Currently, without such infor-
mation, all normals (resp. tangents) of initial surface (resp.
curve) have to vote together in order to infer the most per-
ceptually natural extension. Together with the scale of
analysis, which is related to the size of mask, and the ex-
tension of the methodology to other problems, are the
topics of our current research effort.

(a)

(b)

(c)

Fig. 21. Inference of integrated surface, curve, and junction description from stereo. (a) Input stereo images. (b) Noisy point set after assigning
unique disparity. (c) Resultant surfaces, curves, and junctions.
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APPENDIX

A.1 SingleSubVoxelCMarch

Consider the eight voxels Vr with s tr,3 8 , 1 £ r £ 8, that make

up a cuboid. Define the cuboid tangent, denoted by t , to be
the interpolated tangent at the center of the cuboid, using
the eight tr s. We compute the 3D subvoxel coordinates of
the point that an extremal curve with tangent t  will pass
through by the following:
Step 1:

1)�Translate the unit cuboid to the world origin. Let T be
the translation matrix.

2)�Compute g  for the eight Vrs, using (5).
3)�Compute the cuboid tangent t  by interpolating the

aligned tr , 1 £ r £ 8. (Note: Two tangents are aligned if
their dot product is nonnegative.) Therefore,

t tr
r

=
=
Â 8

1

8

                                    (9)

(See Fig. 22a). Thus, t  defines a u-v plane through which
an extremal curve with tangent t  passes. We assume this
plane passes through the cuboid center (Fig. 22b).

Step 2:
1)�For each cuboid edge P Pk k

0 1,4 9 , 1 £ k £ 12, we compute

the intersection point (if it exists) with the u-v plane.
Solving the corresponding ray-plane equation, an in-

tersection point Qk on a cuboid edge is given by the

parameter uk (Fig. 22b):

u
t P

t P P
k

k

k k
= -

◊

◊ -
0

1 04 9
                            (10)

Q P P P uk
k k k

k= + -0 1 04 9 .                        (11)

If t P Pk k◊ - =1 0 04 9  or uk < 0 or uk > 1, there is no inter-

section.
2)�Order all intersection points {Qk} so that they form a

cycle. Since {Qk} lie on the u-v plane, this problem is
equivalent to computing a 2D convex hull for {Qk}.
Several known algorithms are available in any stan-
dard algorithms text such as [2]. Let the ordered set be
{Q1, L}.

3)�Define a frame which aligns with u-v plane by a rota-
tion matrix R:

R =
�

!
   

"

$
###

$
$

$

x
y
z

T

T

T
                                    (12)

with

$z t t=                                       (13)

$x Q Q= 1 1                                    (14)

$ $ $y z x= ¥ .                                     (15)

We then transform the ordered {Qk} to frame R. So for
all intersections Qk, we assign

Qk ¨ RQk .

See Fig. 22b. Note that after applying R to Qk as above,
(Qk)z will become zero.

Step 3: For each (ordered) intersection point Qk which lies

on a cuboid edge P Pk k
0 1,4 9  connecting two voxels, we

compute the qk  w.r.t. the frame R (Fig. 22c) as follows:

1)�Compute the interpolated gradient vector for Qk, de-

noted by gk . Let the gradient vector at Pk
0  and Pk

1  be

gk
0  and gk

1 , respectively. If Q P P P uk
k k k

k= + -0 1 04 9  is

given by (11), then by linear approximation, we have

g g g g uk
k k k

k= + -�� ��0 1 0 .                       (16)

2)�Compute qk  for each Qk:

q t gk k= ¥R3 8.                               (17)

Step 4: (Marching cycle) Now, qk x
3 8  corresponds to the u

component, and qk y
3 8  corresponds to v component of

(5), with qk z3 8 = 0. We march along the sides of the cy-

cle in order given by the ordered set {Qk}, and compute
zero crossings (Fig. 23). Because we approximate a zero
crossing by linear interpolation, if there exists an extre-

mal point, the positive and negative qj x4 9  (resp. qj y
4 9 )

                                               (a)                                                      (b)                                                           (c)

Fig. 22. Illustration of 6LQJOH6XE9R[HO&0DUFK.
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should be linearly separable and thus four zero cross-
ings, and subsequently two 2D straight lines, will be
produced. Their intersection corresponds to the ex-
tremal point in frame R. Denote this intersection point

in frame R by PR.

Step 5: Transform PR back to the world frame W, i.e.,

PW = T-1 R-1 PR.                               (18)

Both T-1 and R-1 are easy to compute since they are pure
translation and rotation matrices, respectively. PW is the
extremal point with subvoxel precision through which an
extremal curve will pass.

A.2 SingleSubVoxelMarch
Consider the four voxels which constitute a face of a cu-
boid. Each voxel is labeled “+” if qi,j,k ≥ 0 and “–“ otherwise.
Hence there are 24 = 16 possible configurations which can
be reduced to seven by rotational symmetry. Ambiguities
are resolved using the method proposed in [15], [23]. We
refer readers to these papers for more details. After resolv-
ing the ambiguities, the zero crossings will be grouped into
cycles and then triangulated.
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