Balloon Fitting

Max Stegen

Introduction

Movement

Subdivision

Algorithm

Holes & Noise

Introduction

Movement

Subdivision

Algorithm

Holes & Noise

Introduction

reconstruction with adapting mesh start: Icosahedron points connected with springs points moved with forces move points until they reach the objects surface

Introduction - Example

Introduction

Movement

Subdivision

Algorithm

Holes & Noise

Motion Equation

$$m_i \ddot{x}_i + r_i \dot{x}_i + g_i = f_i$$
, $i = 1...N$

x;:position of element i

 \dot{x}_i : 1. derivative of x with respect to time

 \ddot{x}_i : 2. derivative of x with respect to time

m;:mass of element i

 r_i : damping coefficient

 g_i : sum of forces from neighboured elements

 f_i : external force

Simplification

$$m_i=0$$
 $r_i=1$
 $\dot{x}_i=f_i-g_i$, $i=1...N$

Springforce

$$s_{ij} = \frac{c_{ij}e_{ij}}{\|r_{ij}\|}r_{ij}$$

 c_{ii} : stiffness of the spring

 $e_{ij} = ||r_{ij}|| - I_{ij}$: deformation

$$r_{ij} = x_j - x_i$$

 I_{ij} : natural length of the spring

$$g_i = \sum_{j=1}^N s_{ij}$$

Inflation Force

$$h_i = k \hat{n}_i$$

 h_i :inflation force

k:amplitude of the force

 \hat{n}_i : direction normal to the local model surface

$$\hat{n}_{i} = \frac{n_{i}}{\|n_{i}\|}, \quad n_{i} = \sum \frac{(n_{ij} + n'_{ij})}{(\|n_{ij} + n'_{ij}\|)}$$

Introduction

Movement

Subdivision

Algorithm

Holes & Noise

Subdivision

triangles are growing

tension increases

stops the growing process

solition: subdivide triangles

more triangles

more accurate

tension decreases

Subdivision (2)

just divide triangles on the front no degenerate triangles find triangles to subdivide divide triangles on longest edge divide neighboured triangles

Subdivision - Algorithm

```
tf0 : set of triangles in a given front
t0 : set of triangles to subdivide
1. for each T in to
      bisect T on the longest edge
2. find R1 (set of non-conforming Triangles from Step 1)
   k <- 1
3. for each T in Rk
      P <- non-comforming Point in T
      bisect T on the longest edge
      if P not on longest edge
         join P with longest edge
4. find Rk+1 (set of non-conforming Triangles from Step 3)
5. if Rk+1 = \{0\} then
      stop
   else
      k < -k + 1
      go to step 3
```

Problems

only triangles in the front are divided degenerate triangles are produced

Introduction

Movement

Subdivision

Algorithm

Holes & Noise

Algorithm

chose a good point to start
place the icosahedron
put all triangles in front F0
push front F0 into queue Q
until Q is empty do following algorithm

Algorithm (2)

- 1. F <= top of the queue Q, pop Q
- 2. subdivide triangles if appropriate
- 3. for each vertex V_i in F
 - a. compute forces g_i and $f_i = h_i$
 - b. compute new location $v_i^{t+\Delta t}$
 - c. $w_i < -$ prospective cossespondence point of v_i d. if $|v_i^{t+\Delta t} v_i^t| > ||w_i v_i^t||$
 - d. if $|v_i^{t+\Delta t} v_i^t| > ||w_i v_i^t||$ $v_i^{t+\Delta t} \leftarrow w_i$ mark v_i as anchored
- 4. for each vertex v_i in F $v_i^t \leftarrow v_i^{t+\Delta t}$
- 5. discard anchored triangles from F
- 6. if $F = \{0\}$ go to 1
- 7. recompute conntected triangle regions in F and push them into Q go to 1

Introduction

Movement

Subdivision

Algorithm

Holes & Noise

Holes & Noise

holes: no correspondence point for whole front

set inflation force = 0 (k = 0)

front reaches equilibrium state

interpolation over the hole

noise: errors in the object

often dealt with by line-surface intersection algorithm

good possibilities to filter things out

Introduction

Movement

Subdivision

Algorithm

Holes & Noise

Conclusion

object reconstructed by inflating balloon model growing simulated by physical forces triangles subdivided to keep mesh growing good handling of holes and noise

Test Results

Sun Sparc-10, Lucid Common Lisp v. 4.0

1694 vertices 3384 triangles 16m, 17s

2850 vertices 5696 triangles 32m, 26s

Reference

Yang Chen, Gerard Medioni: 2 Description of Complex Objects from Multiple Range Images Using an Inflating Balloon Model

