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0.1 Introduction

A number of recent papers in the Computer Vision and Pattern Recognition
literature have demonstrated that invariants, or equivalently structure mod-
ulo a 3D linear transformation, are sufficient for object recognition [1, 19, 20].
The final stage in the recognition process is verification, where an outline is
transferred from an acquisition image of the object to the target image.

For the most part recognition based on invariants has concentrated on planar
objects [19], though recently 3D invariants have been measured from single
and multiple images for polyhedra [18], point sets [9, 13, 18], surfaces of
revolution [12] and algebraic surfaces [11]. The work so far on surfaces of
revolution has only exploited isolated points on the outline (such as bitan-
gents), and has not addressed transfer or verification.

The aim of this project is to extend the transfer and extraction of invariants
to surfaces of revolution using the entire outline.

0.2 Specification

A surface of revolution is simply a rotated generating curve. There are two
related goals for the project:

1. Transfer: Given a single (or multiple) views of the surface, obtain
the projection in any other given view. For example, after specifying a
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minimal number of points in the target image, render the object from
that viewpoint.

2. Invariants: Extract from the outline in a single view a signature or
set of invariants which are viewpoint independent. These should also
be derived directly from the generating curve.

The project will be developed in a number of stages. In the first place the
affine approximation to projection will be employed (so that the object is
imaged under parallel projection). This has the virtue that the essential ge-
ometry of the contour generator depends only on one parameter - the direc-
tion of projection. The second stage will investigate perspective projection,
where (two) parameters specifying the optical center must be considered.

The analysis will be partly theoretical - employing the symbolic algebra pack-
age Mathematica, and partly experimental. The goal is to develop methods
that work reliably and robustly on images of real objects.

0.3 Relevant Literature

Papers listed below on the application of invariants to model based recogni-
tion. Also background texts on projective geometry [16, 22, 24] and differ-
ential geometry [8, 15, 21].
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Chapter 1

Introduction

“Begin at the beginning,” the King said, gravely, “and go on till
you come to the end: then stop.”

Lewis Carroll, Alice in Wonderland

7
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Figure 1.1: The generating curve f(z).

1.1 The Object Class of Interest

A surface of revolution results from rotating a function f(z) — the so called
generating curve — around the z-axis (see figure 1.1) where the z-axis is the
axis of symmetry.

In practice, a surface of revolution is the surface of a solid, or object, of
revolution. Objects of revolution have been known to man for thousands
of years, since the invention of the potter’s wheel,1 and later the lathe, al-
lowed man to produce highly symmetric objects with ease, and today we are
surrounded by rotationally symmetric objects such as bottles, pens, vases,
glasses, lamp-shades and light-bulbs. Some of the objects of revolution found
in every household are shown in figure 1.2.

1.2 The Task

The only image feature used throughout this thesis is a surface’s outline (also
called apparent contour [6], occluding contour, profile, silhouette or limb),
which is the projection of the locus of points on the surface separating the
surface’s visible image from the occluded parts [6].

The outline is obtained from a grey scale raster image (see figure 1.3a) by

1The potter’s wheel was invented before 3000 bc in either Sumer or Iran, from where
it reached Greece at around 1800 bc, Italy at 750 bc, the upper Rhine basin at 400 bc,
Southern England at 50 bc and finally Scotland at 400 ad [23].
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Figure 1.2: Some of the objects of revolution we encounter each day (as found
in the office).

a)

b)

c)

Figure 1.3: The outline and bitangents are generated from a grey scale raster
image.
a) The grey scale raster image.
b) The surface’s outline as found from the raster image.
c) Bitangents to the surface and conics as found from the raster image

(in black, the surface’s outline is displayed in grey for easy reference).
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Figure 1.4: Transfer from image a) onto a second image b), and into a canon-
ical frame c) where invariants can be measured.
Figures a) and b) each show both an original grey scale image and the outline
calculated from it. Figure b) shows also the transferred outline (black).
The outlines are nearly identical (the transformation used is described in
section 3.2).

applying the simplified Canny [5] edge detector with full hysteresis, providing
both step intensity information and edge orientation [17].

Most of this thesis is concerned with:

1. The transfer from a surface’s outline in one image (figure 1.4a) onto the
same surface’s outline in any other given view (figure 1.4b) after specify-
ing a minimal number of points in the target image. The transfer is not
a simple plane-to-plane transformation, but is rather more complicated
(cusps can be created — compare figure 1.4.a to 1.4.b). It should also
not be mistaken for the rendering of a known object as viewed under
a known viewing direction, as is common in computer graphics appli-
cation; in general, both the viewing directions in figures 1.4.a) and b),
and the surface’s generating function, will be unknown. Nonetheless,
only very few outline points or features in the target image, such as the
top and bottom conics, are used for calculating the transfer. The fea-
tures used by the various methods are listed in table 1.1 (see also 1.5).
The transfer can be used for verification.
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Table 1.1: The features needed by the various methods for calculating the
transfer

type bitangent pairs conics
section 3.2 weak persp. ≥ 2
section 3.3 weak persp. ≥ 2
section 3.5 affine ≥ 3
section 4 affine ≥ 1 1
section 5 projective ≥ 1 2

conics

bitangent-pair

Figure 1.5: The maximum number of features used for the transfer. 2 bitan-
gent pairs and two conics, both shown in black, are the maximum number
of features needed for any of the methods of transfer described in this the-
sis except section 3.5 (affine extension of scaled orthographic transfer). The
outline itself is shown in grey/dotted.

2. The transfer of a surface’s outline in one image (figure 1.4a) into a
so-called canonical frame (figure 1.4c). This allows the retrieval of all
or part of the generating function up to a linear transformation from
which it is then easy to calculate invariants.

1.3 The Chosen Imaging Geometry

Three different geometries are described in this thesis. Chapter 3 deals with
images taken with what is known as the weak perspective camera, the ap-
proximation of a calibrated camera at infinity by a calibrated camera where
the camera–surface distance is much greater2 than the depth of the surface
of revolution.

2“Much greater” means approx. 25 times for most of the examples shown throughout
this thesis.
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Figure 1.6: A weak perspective (left) and a projective image of a vase.
Note the perspective reduction of the vase’s base in the right image.

Chapter 4, deals with the affine camera, an uncalibrated3 camera at infinity4

whose image can than be subject to any affine transformation.5 Using the
model of an affine camera — although without any counterpart in the real
world — has the advantages resulting from using a group operation (the
plane affine transformations). However, images have still to be taken from
“infinity”.

The last of these chapters, chapter 5, uses the projective camera, allowing
for full perspectivity as well as an uncalibrated camera. This is equivalent to
taking an image of the surface with an arbitrarily placed camera (in general
not at infinity) and than taking a second image of that image with a camera
which is again in an arbitrary position. This is obviously the most general
case and accounts for most practical situations.

Examples of both a weak perspective (left) and a projective (fully perspective,
right) image of the same surface of revolution are shown in figure 1.6.

1.4 Contributions of this Thesis

Previous work on surfaces of revolution has only exploited isolated points
on the outline (such as bitangent points), and has not addressed transfer or
verification [12]; or has attempted transfer for calibrated cameras only, using

3Uncalibrated only includes linear (affine) distortions, and not such nonlinear distor-
tions as spherical aberration where lines do not project to lines.

4Infinity, again, means approx. 25 times the surface of revolution’s depth — that is 5
meters!

5This corresponds to taking an image of the image with another (uncalibrated) camera
at infinity.
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a surface’s CAD-model [7].

This thesis describes a number of novel methods for transferring the entire
outline of a surface of revolution, thereby allowing easy verification as well
as the extraction of further invariants from a canonical frame without neces-
sarily requiring a calibrated camera.

The fact that only some isolated points on the outline are needed to calculate
the transfer means the methods are suitable for partly occluded surfaces.

1.5 Outline of this Thesis

The following text is divided into six major parts. All the work described in
this thesis is based on outlines and makes intensive use of so-called distin-

guished points (as e.g. bitangent points). Chapter 2 gives a brief introduction
to the underlying geometry. Most of it is based on [12] (see also [17]). How-
ever, some familiarity with homogeneous coordinates as well as projective
geometry is assumed. Although an introduction to these subjects can be
found in most undergraduate textbooks about computer vision (e.g. [2]6),
or standard literature about projective geometry [22, 24] the best choice is
probably the very good appendix of [16].

The next three chapters each describe different methods of transfer for one
particular imaging geometry: weak perspective camera (or scaled ortho-
graphic projection) in chapter 3, an affine camera in chapter 4 and a projec-
tive camera in chapter 5. Each of these parts starts with a section explaining
the theoretical background, followed by a short summary, an explanation of
the actual implementation and a short section showing some of the results.

Finally chapter 6, discusses how a recognition system could be build using the
methods introduced in the previous chapters and giving possible directions
for future work.

6Be aware that they apply transformations from the right hand rather than the left
hand side.



Chapter 2

Distinguished features

Always to be best and distinguished above others.

Homer, Iliad, 6

14
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top conic

bottom conic

outline
crease

bitangent

inflection

ending

Figure 2.1: An outline with ending
conics.

Figure 2.2: Some distinguished
points and the tangents through
these points.

The work described in this paper uses only an outline’s distinguished features,
that is features of the outline that are viewpoint independent. These come in
two different categories. The first one are conics, and here mostly an object’s
top and bottom conic1 (see figure 2.1). The conics’ advantage is that they
are comparatively easy identified. The conics’ midpoint will be a viewpoint
independent point on the axis of symmetry for both the weak perspective
and the affine case, however, the concept of a midpoint is meaningless in the
projective case.

The second feature are so called (distinguished points) on the outline, whose
special relationship to a circle on the surface allows their identification both
in the image (where they are the projection of points on the circle) and on
the surface. Characteristic for all these distinguished points is that they are
distinguished by the way their tangent behaves (see figure 2.2). It is therefore
necessary to study the tangents first.

1Top and bottom conics are not a generic feature for a surface of revolution. However,
most man made objects will end abruptly on at least the bottom side, generating a conic
when viewed from any other direction than fronto-parallel.
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2.1 Tangents

One of the key-properties used throughout this paper is the fact that a tan-
gent to the surface as well as the outline will always intersect the axis of
symmetry in exactly the same point, no matter from where the surface is
viewed.2 This is explained below and closely modelled after [12].

2.1.1 The Tangent Cone

For rotationally symmetric surfaces is it possible to formulate one-parameter
systems of planes tangent to a circle along the surface. The envelope of these
tangent-planes is a right circular cone3 (see figure 2.3).

The most important result this construction yields is that the apex of every
tangent cone lies on the axis of symmetry and that the intersection of a
plane tangent to a point on this circle with the axis of symmetry is therefore
viewpoint independent. This can be thought of as a map where each circle on
the surface is mapped to exactly one point on the axis of symmetry. However,
there is no unambiguous map from the axis to the surface, each point on the
axis might map onto no, one or many surface points.

The question is what happens to the surface and the tangent cone when
projected into an image?

2.1.2 The Outline

The outline of a surface in a general perspective projection is a curve in
the image given by the set of rays through the camera focal point that are
tangent to the surface. The points of tangency on the surface form a space
curve — the contour generator; see figure 2.4.

An alternative definition of the contour generator is that the plane tangent
to the surface at this point passes through the focal point. A result is the
following lemma [12]:

Lemma: Except where the image outline cusps,4 a plane tangent
2As long as the viewpoint is outside the surface and the point on the outline is not

self-occluded.
3The other possibility, a cylinder with circular cross section, is a cone with its apex

at infinity; projective geometry doesn’t differentiate between points at infinity and more
accessible points.

4Cusps are ignored in what follows.
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Figure 2.3: The envelope of all the planes tangent to the points along a circle
on the surface is a cone.

contour
generator

image plane

outline

object

focal point

Figure 2.4: A general projection.
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to the surface at a point on the contour generator (by definition,
such a plane passes through the focal point) projects to a line
tangent to the surface outline, and conversely, a line tangent to
the outline is the image of a plane tangent to the surface at the
corresponding point on the contour generator.

This means that the same properties derived for the surface (viewpoint-
invariance of intersections between tangent-planes and the axis of symmetry,
map from the surface to the axis) do also exist for the outline, in particular
the map from one outline point to one point on the axis of symmetry.

However, it is not easy to see which circle on the surface corresponds to
which point on the outline. Only for some distinguished points is it possible
to establish such a correspondence from the outline alone. Such a relationship
exists for example between (see also figure 2.2):

surface image confer
bitangent circle bitangent points [12, 17]
parabolic circle inflections [12, 15]
creases creases [12]
endpoints endpoints [12]

Of these distinguished points/circles, only (external) bitangent points are
used here. This is due to the fact that inflections are hard to find and tend
to be subjected to self occlusion rather early, and creases and endpoints, al-
though easy to find, will normally occlude their immediate neighbourhood
even under very small viewing angles (thereby making it impossible to find
the tangent orientation). Bitangent points as distinguished features are dis-
cussed below in more detail.

For bitangents goes [12]:

Corollary 1: A line tangent to the outline at two distinct points
is the image of a plane which passes through the focal point,
and is tangent to the surface at two distinct points lying on the
contour generator.

and

Corollary 2: The intersection of two lines, bitangent to the
outline, is a point which is the image of the intersection of the
two bitangent planes represented by the lines.
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focal
point

bitangent
planes

image plane

axis of symmetry

image of bitangent cone apex

image of axis

image plane

Figure 2.5: A rotationally symmetric surface, and the planes bitangent to
the surface and passing through the focal point.
It is clear from the figure that the intersection of these planes is a line, also
passing through the focal point. Each plane appears as a line in the image.
Note that the outline in the image has no symmetry; This is the generic
case [12].

Figure 2.5 shows this for bitangents tangent to a rotationally symmetric
surface.

2.2 The Affine Basis

It has been shown that the position of bitangent-intersections on the axis of
symmetry — and for the weak perspective or affine case also conic midpoints
— are viewpoint independent. Given 2 (3) of these points it is possible to
define every point on the axis of symmetry by its position relative to the 2
(affine) or 3 (projective) of these points. Another formulation is that four of
points (on a line) form a projective invariant [12] (3 form an affine invariant).
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axis

intersection

bitangent-pair

crosspoint

Figure 2.6: Intersection and crosspoint.



Chapter 3

The Weak Perspective Camera

Er hat vor Dir gezittert, Tell — Wehe Dir!
Daß Du ihn schwach gesehen, vergibt er nie.

You saw his weakness, and he will never forgive you.

J.C.F. von Schiller, Wilhelm Tell, act III sc i

21
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The two methods described in this section allow the transfer from any scaled
orthographic projection (this is equivalent to a weak perspective camera) of
a surface of revolution onto any other scaled orthographic projection of the
same surface, using only 2 bitangent pairs — or any other set of distinguished
features that gives one tangent1 angle with, and two points on, the axis of
symmetry.

Both methods are described by first introducing the underlying geometry,
especially the dependence of the contour-generator on viewing direction. This
is followed by a short discussion of the implementational details and some
typical results for each method.

Both methods are then compared to each other and a possible extension to
affine projection (angles are not invariant to affine projection) is discussed.

3.1 The underlying Geometry

3.1.1 The Surface of Revolution

Assume a surface’s generating function F (Z) is known, where the Z-axis is
the surface’s axis of symmetry in the object coordinate system.2 The equa-
tion of the surface of revolution SF (Z,Φ) that is generated by rotating the
generating function around the Z-axis (in homogeneous coordinates) is then

SF (Z,Φ) =











F (Z) cos(Φ)
F (Z) sin(Φ)

Z
1











(3.1)

with 0 ≤ Φ < 2π. The family of planes tangent to the surface is

NF (Z,Φ) =











cos(Φ)
sin(Φ)
−F ′(Z)

F ′(Z)Z − F (Z)











(3.2)

(the first 3 coordinates are the surface normal in non-homogeneous coordi-
nates). Figure 3.1 shows both the generating function as well as the generated
surface of revolution in the object coordinate system.

1Tangent to the surface of revolution as well as its outline.
2Object coordinates are denoted by capital letters X, Y , and Z.
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X

Z

Y

X

Z

Figure 3.1: The generating curve F (Z) (left) and the generated surface of
revolution SF (Z,Φ) (right) in the object coordinate system.

3.1.2 The Weak Perspective Camera

The weak perspective camera, or scaled orthographic projection, models the
process of viewing this surface from a point at infinity.

The viewpoint can be expressed as

V =











cos(Θ) sin(Φ)
cos(Θ) cos(Φ)

sin(Θ)
0











(3.3)

with the azimuth Φ, the elevation Θ and 0 in the last component denoting
that the point is at infinity. However, Φ can be chosen arbitrarily since the
surface is rotationally symmetric, and Φ = π results in the viewpoint

V =











0
− cos(Θ)
sin(Θ)

0











(3.4)

One parameter, the elevation Θ, is therefore sufficient to describe the view-
point. Another interpretation is that the elevation Θ is the viewing direction.
It is 0 ≤ Θ < π/2 since the outline as viewed from Θ1 is exactly the same as
viewed from Θ2 = −Θ1

3 and the outline viewed at Θ = π/2 is only a circle.
3This is true for both scaled orthographic and affine, though not perspective, projection.
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The surface’s contour generator ΓF,Θ(Z) is formed by the points of tangency
between the surface and lines in the viewing direction (the plane NF (Z,Φ)
tangent to the surface has to pass through the viewpoint V ). These are all
the points with

V TNF (Z,Φ) = 0

− sin(Φ) cos(Θ)− F ′(Z) sin(Θ) = 0

sin(Φ) = −F ′(Z) tan(Θ) (3.5)

=⇒ cos(Φ) = ±
√

1− F ′(Z)2 tan2(Θ) (3.6)

where the use of the “±” sign indicates the fact that the contour generator
when viewed from a viewing direction with X = 0 is symmetric with respect
to the Y Z-plane.

Substituting equations 3.5 and 3.6 into equation 3.1 gives the equation for
the contour generator

ΓF,Θ(Z) =













±F (Z)
√

1− F ′(Z)2 tan2(Θ)

−F (Z)F ′(Z) tan(Θ)
Z
1













(3.7)

The contour generator is a space curve which, for generic generating func-
tions, will be smooth for all except a few points but not continuous (since it
isn’t even defined for 1− F ′(Z)2 tan2(Θ) < 0).

Once the contour generator is given it is then possible to calculate the outline
γF,Θ(y) — the projection of the contour generator onto a plane perpendicular
to the viewing direction. Choosing the plane through the origin such that
the x-axis of the image coordinate system4 coincides with the X-axis in the
object coordinate system, and the y-axis is the Z-axis’ image (see figure 3.2)
is equivalent to a multiplication with the matrix of projection

P =







1 0 0 0
0 sin(Θ) cos(Θ) 0
0 0 0 1





 (3.8)

This results in the outline being

γF,Θ(Z) =









±F (Z)
√

1− tan2(Θ)F ′(Z)2

cos(Θ) (Z − F (Z)F ′(Z) tan2(Θ))
1









(3.9)

which, of course, is also a non-continuous, non smooth function. It is indeed
characteristic for this function to form cusps as can be seen, for example, in
figure 3.2.

4Image coordinates are denoted by small letters x and y.
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Figure 3.2: Orthographic projection.
The projection onto a plane perpendicular to the viewing direction Θ (indi-
cated by rays).
The figure also shows the connection between the object coordinate system
(X,Y, Z) and the image coordinate system (x, y).
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It is clear that for Θ = 0, i.e. a viewing direction perpendicular to the axis
of symmetry (fronto-parallel), the outline is

γF,0(Z) =







±F (Z)
Z
1





 =







±f(u)
u
1





 = γf,0(u) (3.10)

so this here is a way to retrieve the generating function, where u is some
parameterisation.

Equation 3.8 is of course only one special orthographic projection. In general
both the object and image coordinate systems will not share the same origin
(that is: they are translated against each other) and will also be rotated
against each other. Also the studied effect is scaled orthographic projection,
so an additional scale-factor is needed. All these effects are equivalent to
applying a similarity transform after projection; it is a transformation of the
form

Tsim =







s cos(β) s sin(β) tx
−s sin(β) s cos(β) ty

0 0 1





 (3.11)

where β is a rotational angle, s a scale factor, and (tx, ty) a translation.

The final equation for the outline as observed in an image will therefore be

γ̃F,Θ(Z) = Tsim γF,Θ(Z) (3.12)

3.1.3 Recovering the Generating Function

It has been shown in section 3.1.2 that given the generating function F (Z),
the viewing direction Θ, and the similarity transformation Tsim, it is possi-
ble to generate any scaled orthographic view of the surface γ̃f,Θ(u) (equa-
tion 3.12).

It is therefore not very surprising that it is possible to reverse this process and
retrieve the generating function F (Z) (the part which is not self-occluded)
when given γ̃f,Θ(u), Tsim, and Θ. But even if the transformation Tsim is not
given is it still possible to calculate at least a scaled version f(u) of the
generating function F (Z) with

f(u) = s1 F (Z) (3.13)

where s1 is an unknown scaling factor (not necessarily the same as in Tsim),
since it is always possible to undo both the rotation and translation if the
locations of two points on the axis of symmetry are known. This is done
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by calculating the similarity transform that maps these two points onto two
arbitrarily chosen points on the axis of symmetry (this will be called the
normalised frame). It will later be shown how the scaling can be taken care
of by mapping a two views onto each other.

After normalising, the outline’s equation is then

γf,Θ(u) =









±f(u)
√

1− tan2(Θ) f ′(u)2

cos(Θ) (u− f(u) f ′(u) tan2(Θ))
1









=







xo(u)
yo(u)
1





 . (3.14)

where the subscript ‘o’ stands for outline.

The outline’s tangent orientation f ′
o(u) =

∂xo(u)
∂yo(u)

is related to the generating

function’s tangent orientation f ′(u) by the formula5

f ′
o(u) =

f ′(u)
√

cos2(Θ)− sin2(Θ)f ′(u)2
(3.15)

Given the outline (xo(u), yo(u), 1), and the viewing direction Θ, and provided
the outline’s tangent orientation can be calculated in every point, it is possible
to retrieve the generating function (except for self occlusion, especially where
the outline cusps) by first solving equation 3.15 for f ′(u):

f ′(u) =
f ′

o(u) cos(Θ)
√

1 + sin2(Θ) f ′
o(u)

2
(3.16)

with 0 ≤ Θ < π/2, and afterwards solving the equation for xo(u) (equa-
tion 3.14) for the generating function f(u):

f(u) =
xo(u)

√

1− tan2(Θ) f ′(u)2
(3.17)

The parameterisation u can finally be recovered from the equation for yo(u)
in equation 3.14; it is

u =
yo(u)

cos(Θ)
+ f(u) f ′(u) tan2(Θ) (3.18)

It is clear that f(u) has to be a scaled and along the axis of symmetry
translated version of F (Z) = 1

s1
f(u) and u = Z = s1 · y + ty since the only

transformation applied to the outline was a similarity transformation and
since both the rotation and translation in x-direction had been undone.

5No term f ′′ is involved (as can easily be proved). That they indeed have to cancel
each other out can be seen from the fact that it is possible to derive the equation from
transferring each tangent cone individually — and a tangent cone’s generating function’s
second order derivative is zero.
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3.1.4 How to calculate the viewing direction

So far the viewing direction was assumed to be known. However, the viewing
direction will be unknown in almost all practical situations and therefore has
to be recovered first. Using only two points on, and one angle with, the
axis of symmetry, this is not possible from a single view. However, given a
fronto-parallel reference view of the surface, it is possible to find the same 2
distinguished points on, and the tangent angle α with, the axis of symmetry
in both views (see figure 3.3). The equation analogue to equation 3.15 is
then

tan(αo) =
tan(α)

√

cos2(Θ)− sin2(Θ) tan2(α)
(3.19)

where α is the angle in the reference view, and αo the corresponding angle
in the view that is to be transferred. This can be solved for the viewing
direction 0 ≤ Θ < π/2 with

Θ = arccos





√

√

√

√

tan2(α) + tan2(α) tan2(αo)

tan2(αo) + tan2(αo) tan
2(α)



 (3.20)

for αo ≥ α (which will always be the case).

3.1.5 Transfer using two arbitrary views

However, needing a fronto-parallel view of the surface is a severe restriction.
It would be much more convenient if it were possible to effect the transfer
between any two views without knowing what the viewing directions are.

This is in fact possible by using a virtual viewing direction, or virtual angle
θ:

θ = arccos
(

√

cos2(Θ1) cos2(Θ2)
)

(3.21)

where Θ1 and Θ2 are the two viewing directions. The basic idea behind this
is:

Given two outlines (xo1(u), yo1(u), 1)
T and (xo2(u), yo2(u), 1)

T belonging to
two different viewing directions Θ1 and Θ2, equations 3.14 and 3.15 can
basically be written as

xoi(u) = ±f(u)
√

1− tan2(Θi) f ′(u)2 (3.22)

yoi(u) = cos(Θi)
(

u− f(u) f ′(u) tan2(Θi)
)

(3.23)

f ′
oi(u) =

f ′(u)
√

cos2(Θi)− sin2(Θi)f ′(u)2
(3.24)
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(x  ,y  )1 1

(x  ,y  )2 2

2α 2α o

reference image target image

Figure 3.3: Two points on the axis of symmetry (x1, y1) and (x2, y2) as well
as one tangent angle (α or αo) are needed to calculate the viewing direction.
The figure on the left (reference view) is a fronto-parallel view.
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For Θ1 < Θ2
6 it is now possible to pretend that the first view is a fronto-

parallel view, that is

f̃(ũ) = xo1(u) (3.25)

ũ = yo1(u) (3.26)

f̃ ′(ũ) = f ′
o1(u) (3.27)

Substituting f̃(ũ) for f(u) and ũ for u in equations 3.22–3.24 leads finally to

xo2(u) = ±xo1(u)
√

1− tan2(Θ2) f ′
o1(u)

= ±f(u)

√

√

√

√1−
1− cos2(Θ1) cos2(Θ2)

cos2(Θ1) cos2(Θ2)
f ′(u) (3.28)

yo2(u) = cos(Θ2)
(

u− xo1(u) f
′
o1(u) tan

2(Θ2)
)

= cos(Θ1) cos(Θ2)

(

u− f(u) f ′(u)
1− cos2(Θ1) cos

2(Θ2)

cos2(Θ1) cos2(Θ2)

)

(3.29)

f ′
o2(u) =

f ′
o1(u)

√

cos2(Θ2)− sin2(Θ2) f ′
o1(u)

=
f ′(u)

√

cos2(Θ1) cos2(Θ2)− (1− cos2(Θ1) cos2(Θ2)) f ′(u)2
(3.30)

3.2 Method 1. Using the Generating Curve

3.2.1 Summary

It has been shown that, given a scaled orthographic image of a surface of
revolution and the viewing direction, it is possible to calculate the surface’s
generating function. Given two images, the reference and the target view,
neither necessarily fronto-parallel, it is possible to calculate a virtual viewing
direction between the two images. This allows the transfer from the reference
view onto the target view and vice versa. However, the use of two views is
necessary, the generating function can not be retrieved.7

All that is needed in each view to transform one onto the other are two points
on the axis of symmetry (e.g. bitangent-intersection), one tangent angle with

6This is equivalent to assuring f ′
o1(u0) < f ′

o2(u0). Only in this case is it possible to
solve for a virtual angle θ.

7This means especially that it is not possible to transfer into a canonical frame and
calculate invariants from this representation, as can be done with the methods discussed
in section 4 and 5.
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the axis of symmetry, and of course, for each point on the outline, the x- and
y-coordinates plus the angle between a tangent to the outline at this point
and the positive y-axis (axis of symmetry). It is then easy to transfer the
outline in one view onto the reference view by

1. Applying equations 3.16–3.18 pointwise.

2. Transforming the transferred outline in such a way that it has the same
translation, rotation and scaling as the target image.

The transformation in 2 between the target and the reference view can be
found in different ways. Two possibilities used are either to map the trans-
ferred view’s two reference points on the axis of symmetry (see figure 3.3)
onto the equivalent points in the target image, or to map points on the trans-
ferred outline directly onto the equivalent points on the target outline, e.g.
bitangent-points (assuming that their position in both views is known, it
is easy to calculate the new position on the transferred outline). The sec-
ond method results in a much better fit, which is also robust against small
perspective distortions (see section 3.4).

3.2.2 The Implementation

The actual implementation is divided into 4 steps, each implemented in a
program on its own. The first 2 steps (and to some extent the third) are
concerned with acquisition and are used for both this method and the one
described in 3.3.

The first step finds the matrix of transformation that will rotate and translate
the outline so that its axis of symmetry will coincide with the y-axis. Next
the transformation is carried out.

The third stage finds the virtual angle, or viewing-direction, needed for cal-
culating the transformation; and the last stage carries out the actual transfer.

3.2.2.1 Computing the Axis of Symmetry

To transfer an outline point using equations 3.16–3.18, it is necessary that
the outline’s axis of symmetry coincide with the y axis in the used coordinate
system. Also, each point’s xo- and yo-coordinates are needed, together with
the tangent orientation f ′

o = tan(αo), where αo is the angle between the
tangent at the point (xo, yo) and the axis of symmetry.
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Figure 3.4: Covariance for intersections and cross-points. The ellipses around
the intersections and cross-points denote the maximal error for these inter-
sections, allowing for an error of up to 10 pixels in each tangent-point.

The continuous edge curves extracted from the Canny edge-detector’s output
are saved as arrays of n points, each point of the form (x, y, α) where α is the
angle between the negative x-axis and the tangent at (x, y). In general, the
y-axis will not be the axis of symmetry. It is therefore necessary to rotate
and translate the outline that is to be transferred in such a way that the axis
of symmetry is identical to the y-axis, and such that the angle α is the angle
between the positive y-axis and the tangent.

The axis of symmetry is the regression line through the following points8:

• The intersections of bitangent-pairs (at least two bitangent-pairs need
to be given; it is possible to use more).

• The cross-points, that is the intersection of two lines drawn through
the bitangent-points in such a way that the intersection is inside the
surface (see also figure 3.4).

Each intersection or cross-point is calculated from the bitangent-points, and
is accompanied by a covariance matrix which is calculated assuming that
the bitangent-points have the identity-matrix as covariance matrix. This
is shown in figure 3.4, where each of the ellipses around intersections and
cross-points represents a covariance matrix.

An iterative algorithm is used to calculate the matrix of the transformation

T =







cos(ϕ) sin(ϕ) tx
− sin(ϕ) cos(ϕ) 0

0 0 1





 (3.31)

8 It is actually possible to use a wealth of additional information such as “inter-pair”
cross-points or even the whole outline, but it is questionable if the benefits will outweigh
the difficulties, especially when dealing with partly occluded outlines.
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which minimises the weighted sum of the orthogonal distances of all the
intersections and bitangent-points from the y-axis.

Applying the transformation T to a point yields

T







x
y
1





 =







cos(ϕ)x+ sin(ϕ) y + tx
− sin(ϕ)x+ cos(ϕ) y

1





 (3.32)

where cos(ϕ)x + sin(ϕ) y + tx is the distance from the y-axis. Applying
the same transformation to the point’s covariance-matrix leads to a new
covariance-matrix
(

σ̃2xx σ̃2xy

σ̃2xy σ̃2yy

)

=

(

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

) (

σ2xx σ2xy

σ2xy σ2yy

) (

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)

(3.33)
and the upper left element of that matrix,
σ̃2xx = σ2xxi cos

2(ϕ)+2σ2xyi cos(ϕ) sin(ϕ)+σ2yyi sin
2(ϕ) is the point’s covariance

in the x-direction which is used as a weight.

The function to minimise is therefore

min
ϕ,tx

n−1
∑

i=0

(xi cos(ϕ) + yi sin(ϕ) + tx)
2

σ2xxi cos
2(ϕ) + 2σ2xyi cos(ϕ) sin(ϕ) + σ2yyi sin

2(ϕ)
(3.34)

Several other methods for finding the axis of symmetry and consequently a
transformation that maps this axis onto the y-axis are conceivable, such as
finding the similarity/affine/projective transformation that maps points on
one side of the outline onto points on the other side.

However, even very simple methods using no weights at all proved adequate,
indicating that this is not a critical step.

Once the matrix of transformation is found it is than straightforward to
implement the actual transformation







x̃
ỹ
α̃





 =







cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1













x
y
α





+







tx
ty
ϕ







where α̃ is calculated in degrees (denoted by ◦). Figure 3.5 shows the result
for two different surfaces.

3.2.2.2 The Direction of View

The virtual angle θ between the two views is found by solving equation 3.19.
The implementation makes use of the four or more angles, provided by the



CHAPTER 3. THE WEAK PERSPECTIVE CAMERA 34

-100

-50

50

100

-100 -50 50 100

-30

-20

-10

10

20

30

40

50

60

-50 -40 -30 -20 -10 10 20 30 40 50

Figure 3.5: Two reference contours in normalised position

two or more bitangent-pairs, by solving multiple equations

(1 + tan2(αi1)) cos
2(θ) =

tan2(αi1)

tan2(αi2)
+ tan2(αi1) (3.35)

using the pseudo inverse.9 A solution for θ can only be found for
tan2(α1) < tan2(α2).

The same program also calculates a transformation that relates the trans-
ferred outline to the reference outline. It first transfers all bitangent-points
using equations 3.16–3.18. It then calculates the affine transformation which
maps all the transferred bitangent-points onto the bitangent points in the
reference view in a least square sense, using a pseudo inverse (see figure 3.6).

An affine transformation is used for two reasons. It is not only easier to
compute than a similarity transformation, but allows a much closer map
between the two views if they show (small) affine or projective distortions and
thereby makes the algorithm very robust against these distortions (compare
sections 3.2.3 and 3.3.3).

3.2.2.3 Transfer

Once the outline is in the required form (xo, yo, αo) (the first two steps) and
the virtual viewing direction is known (the third step), it is immediately
possible to calculate the transferred outline by applying equations 3.16–3.18

9 In this case this is equivalent to calculating the mean value of cos2(θ) over the four
angles.
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Figure 3.6: An affine transformation is calculated which maps the transferred
bitangent-points onto the reference view’s bitangent-points.

Once the outline is transferred it is transformed using the affine transforma-
tion calculated in the third step and can be compared to the reference view.
Examples for the transfer from a reference onto the target view are shown in
figure 3.7.

3.2.3 Results

Figure 3.7 shows four typical transfers using the method just described. The
transferred outline is shown in dotted/grey, while the reference outline is
shown in black. The transfer is surprisingly good, given that the angles used
(output from the canny edge finder) are not very accurate, and that the
images used show considerable perspective distortion (cf section 3.3.3, where
this poses a major problem). The method used here did indeed prove to be
fairly robust when dealing with faulty data and projective distortions.

Also shown in figure 3.7 are events such as cusps, which denote the start
of self-occlusion, and swallowtails (though these are only actually visible on
semi-transparent objects).
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cusp swallowtaila) b)

c) d)

Figure 3.7: Example of outlines transferred using the generating curve.
The images show the transfer of a surface’s outline on outlines of the same
surface viewed under a larger viewing angle. The transferred outline is dis-
played in grey/dotted, while the contour it is transferred onto is shown in
black. The following table gives the approximate angles:

from to
a) 0◦ 10◦

b) 0◦ 30◦

c) 0◦ −45◦

d) 10◦ 30◦

.

The development of swallowtails and events such as cusps is typical for the
transfer in the direction of increasing angle of view (compare [15]) and denotes
self-occlusion.
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Figure 3.8: A dual representation for an outline (left) is to save all its tangents
(right). The outline is the tangents’ envelope.

3.3 Method 2. Using the Outline’s Envelope

It has been shown in section 2 that each line tangent to the outline is the
image of a plane tangent to the surface, and especially the contour generator,
and that its intersection with the axis of symmetry is viewpoint independent.
This fact will be exploited when transferring an outline as described below.

3.3.1 The underlying Geometry

The outline can be seen as the envelope of all its tangents (see figure 3.8). A
dual representation for an outline is therefore to save all its tangents rather
than the actual points on the outline. A conceivable representation for each
tangent would be its point of intersection with, as well as the angle between,
the tangent and the axis of symmetry.

3.3.1.1 How to Represent the Intersection

Lengths on a line are not invariant under a scaled orthographic projection.
However, it has been shown10 in a number of standard texts (e.g. [14]) that
the ratio of length on parallel lines is invariant to scaled orthographic projec-
tion.11 Given two points (x1, y1, 1) and (x2, y2, 1) on the axis of symmetry, it
is therefore possible to save a point on the axis by giving only one coordinate

10And is indeed very easy to prove.
11It is indeed invariant even under affine projection.
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λ, where the point is
(

x
y

)

=

(

x1
y1

)

+ λ

(

x2 − x1
y2 − y1

)

(3.36)

(the so-called affine basis, indicating that this representation can not only
be used for weak perspective but also for affine projection). Determining the
transfer of this point is trivial once the position of the two reference points
is known in both views. No other relationship between the two views (such
as the virtual viewing direction) needs to be known.

3.3.1.2 The Angle

Unlike the ratio of length on the axis of symmetry, the angle between the
tangent line and the axis of symmetry is viewpoint dependent. The transfer
of the angle can be accomplished in exactly the same way as described in
section 3.1.3ff.

3.3.1.3 The Envelope

Finding the outline — the transferred tangents’ envelope — although not
a problem in theory, might pose considerable difficulty in practice. Whilst
in theory an infinite number of tangents can be used, so that the envelope
is simply the curve formed by all the intersections between neighbouring
tangents, in practice only a limited number of tangents12 is given. And whilst
they are generically equi-spaced and close to each other (distance of less than
one pixel) in the outline to be transferred, this will not necessarily be the
case for the transferred outline, where intersections between neighbouring
tangents are easily 100 times the original distance.13

Although several different methods for calculating the tangents’ envelope are
conceivable14 it proved to be sufficient for most situations to approximate the
outline by the intersections of neighbouring tangents connected with straight
lines.

3.3.1.4 Summary

Section 3.2 described how to transfer a surface’s outline in one view onto the
same surface’s outline in another view, the so-called reference view, using the

12Between 500 and 1000 in most experiments described here.
13This is the case for tangents that were close to cusps in the outline.
14Using splines is a method that springs to mind.
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outline’s algebraic description. A second way is described here, using a dual
representation of a (smooth) outline, namely by giving its tangents.15

Each tangent line can be described by giving one point (on the axis of sym-
metry) and the line’s orientation (relative to the axis of symmetry). Knowing
how 2 points on the line of symmetry transfer is sufficient to determine where
every other point on the line is transferred to by using the invariance of the
ratio of collinear (parallel) length; the tangent angle can be transferred using
the techniques discussed in section 3.1.

The transferred outline is the transferred tangents’ envelope. Using the inter-
section between neighbouring tangents is a sufficiently good approximation
for most practical cases.

3.3.2 The Implementation

As in the first method, the implementation is divided into 4 steps, the first 2
of which are identical to those described in section 3.2. The only difference
is that now these steps are only part of the acquisition-process, which is
completed in the last step.

The third step is similar to section 3.2.2.2 insofar as here too a virtual viewing
direction and a matrix of transformation are calculated which relate the
transferred view to the reference-view.

The last step is partly concerned with acquisition (changing the outline’s
representation from points on the outline to tangents to this point) and
partly with the transfer.

Below, only the last two steps are detailed.

3.3.2.1 The Direction of View

As in section 3.2.2.2 the viewing direction is found by solving multiple equa-
tions 3.35 using the pseudo-inverse.

This is followed by calculating the similarity transform that maps the in-
tersections of bitangents in the transferred view’s frame onto their opposite
numbers in the reference view’s frame in a least square sense (if more than
two bitangent pairs are used). This is shown in figure 3.9.

15Strictly speaking there is no duality between giving some outline points and some

tangents using the discrete data that is available in practice.



CHAPTER 3. THE WEAK PERSPECTIVE CAMERA 40

Figure 3.9: A similarity transformation maps the bitangent-intersections in
one image onto their opposite numbers in the second image. Note how an
error in the intersections’ position (due to perspective distortions) leads to
a characteristic offset between the two outlines (the transferred outline is
shown dotted).

This is different from the approach taken in section 3.2.2.2 in more than one
respect.

• A similarity rather than an affine transformation is calculated since
this method of transfer cannot calculate the position of the bitangent-
points after the transfer. Using a similarity transform is in accordance
with the assumption that the outlines stem from a scaled orthographic
projection. However, it does not take into account the distortions that
can be found in real images.

• The intersections of bitangents with the axis of symmetry are in gen-
eral less accurate than the actual bitangent-points, especially if the
tangent’s angle with the axis is close to 0 or π (see section 4.4.1).

The two points work together in making the algorithm very sensitive even to
extremely small perspective distortions (cf section 3.3.3).

3.3.2.2 Acquisition and Transfer

The acquisition — calculating the intersection between the tangent and the
axis of symmetry — is straightforward, and the transfer is done in three
steps:

1. A new angle with the axis of symmetry is calculated for each tangent.
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2. The intersections between neighbouring tangents are calculated.16

3. The intersections are transformed according to the matrix calculated
in section 3.3.2.1

3.3.3 Results

Figure 3.10 shows some example transfers, using data similar to those in
figure 3.7. The noticeable displacement along the axis of symmetry between
transferred and reference contour is not a failure of the algorithm, but is
due to the fact that the images used to generate the outlines show some
projective distortions for which the algorithm was never developed in the
first place. The same is true for figure 3.7 (first method), but here the effect
is largely mitigated since points on the contour are used to calculate an affine

transform (as opposed to bitangent intersections far away from the surface
determining a similarity transform).

3.3.3.1 The Influence of Perspective Distortions

That the displacement between transferred and target outline in figure 3.10
is indeed due to perspective distortions can be seen when comparing these
results to ones achieved with data taken from a distance roughly 25 times
the object size (instead of about 7 times) which therefore better approximate
the weak perspective camera modelled by the algorithm; figure 3.11 shows
this effect.

How a perspective distortion causes the displacement is easily explained by
looking at figure 3.12. Tilting the surface by a positive angle causes the top
to come slightly closer to the camera while the bottom moves further away.
Perspective distortion makes the parts that are coming closer to the camera
look slightly bigger, while the parts that moved further away will appear
smaller. This is also true for the triangles formed by the two bitangent-pairs:
the top one will look bigger, thus the intersection with the axis of symmetry
will appear to move away from the surface, while the bottom one will look
smaller and the intersection will therefore appear to be closer to the surface.
Unfortunately only the intersections get mapped onto each other, and this
creates the effect of a displacement along the axis of symmetry.

16It is a good idea to disregard intersections between lines with nearly the same orien-
tation as to unreliable, since the accuracy of an intersection between two lines depends on
the angle between these lines, and decreases sharply with decreasing angle.
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Figure 3.10: Example of outlines transferred using the envelope
The images show the transfer of a surface’s outline on outlines of the same
surface viewed under a larger viewing angle. The transferred outline is dis-
played in grey/dotted, while the contour it is transferred onto is shown in
black. The following table gives the approximate angles:

from to
a) 0◦ 20◦

b) 10◦ 40◦

c) 0◦ −30◦

d) 10◦ −45◦

Note the spikes in figure a). These are due to errors in the tangent orienta-
tions.
Note also the displacement along the axis of symmetry between transferred
and reference outline, and how the direction of the displacement depends on
the viewing angle’s sign. This is due to perspective distortions in the image.
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Image taken from a distance
approx. 7 times the surface’s
size

Image taken from a distance
approx. 25 times the surface’s
size

Figure 3.11: The influence of projective distortions onto the outlines dis-
placement.
The right outline is belonging to an image taken from 3–4 times the distance
the left is taken and therefore better approximating a weak perspective cam-
era. Note the difference in the displacement

3.3.3.2 The Influence of Errors in the Angles

The spikes in figure 3.10 are caused by errors in the tangent angles which,
especially if the angles are about equal, can cause the position of the inter-
section of two neighbouring tangents to be very inaccurate. Two different
approaches are possible to eliminate (or at least to reduce) the occurrence of
these errors.

The first possibility is to use better data. The tangent angles used are the
ones that are output by a canny edge detector. It is possible to increase the
accuracy by interpolating part of the outline around the tangent-point with
a quadratic and use the tangent to the quadratic instead. This is indeed
exactly how the bitangent-points are found in the first place and is also used
in section 4.

The second approach is actually to use an interpolated envelope, rather than
the tangent-segments, for example by employing splines. This has the effect
of a low pass filter in that it smoothes the edges and greatly reduce spikes.
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Perspective distortion makes
the part of a surface that
is closer to the focal point
(top part) look bigger and
the opposite (bottom) side
look smaller (black bitangents)
while the transferred outline
(grey bitangents) does not
show any of these distortions.
Aligning the intersections be-
tween the bitangents and the
axis of symmetry leads to a
displacement of the contour.

Figure 3.12: Displacement caused by projective distortions.
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Transfer using the generating
function.

Transfer using the envelope.

Figure 3.13: Comparing the two methods using the same image data. The
images used are taken from a distance roughly 7 times the object size. An
approx. 10◦-view is transferred onto an approx. 40◦-view.

3.4 Comparing the two Methods

At first glance — judging from figures 3.7 and 3.10 — it might appear as if
the first method (using the generating curve) is clearly superior. It provides
not only

1. a tighter fit between transferred and reference outlines (with virtually
no displacement) if small perspective distortions are present,

2. but also an apparently greater robustness against errors in the tangent-
angles.

To 1 must be added that the first method will nearly always lead to a better
fit, even if the images had no perspective distortion at all. This is due to
the fact that the intersection between two bitangents is nearly always less
accurate than the bitangent-points themselves (see also section 4.4.1). It is, of
course, always possible to find bitangents tangent to the transferred outline,17

though the first method’s big advantage is that it provides the position of the
transferred bitangent points without requiring additional steps. Figure 3.13
shows the transfer from about 10◦ to about 40◦, both images taken from a
distance roughly. 7 times the object size. It is clear that the first method is
working much better and more reliable then the second one.

17By exactly the same process that found the bitangents tangent to the reference outline.
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Figure 3.14: An aspect ratio other than 1 leads to a skewed outline whenever
the axis of symmetry is not parallel to the image’s x- or y-axis.

However, the method for the transfer of affinely projected outlines described
in section 4 can be seen as a modification of the second method, while the
first method can not easily be used for the affine or projective case.

3.5 Affine Extensions

This can be divided into two separate cases. The first one models the imaging
process and deals with only some special affine transformations, while the
second allows for full affine distortions.

3.5.1 Unknown Aspect Ratio

The only distortion likely to happen to an orthographic projection in an
actual camera is that the aspect ratio is unknown (the pixel size not perfectly
square). This will lead to a skew in the object whenever the object’s axis of
symmetry is not parallel to either the x- or the y-axis (see figure 3.14).

It is clear that after removing the skew by applying a matrix of transformation

TS =







s 0 0
0 1 0
0 0 1





 (3.37)

the aspect ratio will again be 1 and we are in the case discussed above. It is
also clear that this method does not work if the axis of symmetry is parallel
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to one of the image axes, since then no skew will be introduced through
anisotropic scaling.

3.5.2 Full Affine Distortions

Using an affine instead of a weak perspective camera can be modelled18 by
substituting the matrix T in equation 3.31 with the matrix of an affine trans-
formation

TA =







t11 t12 tx
t21 t22 ty
0 0 1





 (3.38)

with det(T) 6= 0. This is equivalent to introducing skew and anisotropic
scaling in addition to a similarity transform’s uniform scaling, rotation and
translation.

However, the axis of symmetry is still determined as the line through the
bitangent-intersections (intersections are invariant under all transformations
discussed here), and it is therefore possible to remove the rotation, translation
and uniform scaling by mapping two known points on the axis of symmetry
onto two reference points on the y-axis.

This fixes 4 degrees of freedom (2 for the translation and one each for rotation
and scaling, out of 6 for an affine transformation — corresponding to the 6
unknowns in equation 3.38) leaving 2: skew and scaling in x-direction.

Skew can easily be removed by finding the transformation

Tskew =







1 0 0
A 1 0
0 0 1





 (3.39)

this makes the angle between the axis of symmetry and a line through the
two bitangent-points on opposite sides of the outline a right angle.

This leaves only the scaling in the x-direction to be solved for. There are
two different cases to distinguish:

1. Only the target, but not the reference image, is affinely transformed.

2. Both the target and reference images were affinely transformed.

18See chapter 4 for an description of the affine camera.



CHAPTER 3. THE WEAK PERSPECTIVE CAMERA 48

0

250

500

0 250 500 750 1000

-100

-50

50

100

-50 50

-100

-50

50

100

-50 50

b)a) c)

-100

-50

50

100

-50 50

Figure 3.15: The three steps of removing an affine transformation:

a) Removing translation and rotation.

b) Removing skew.

c) Removing anisotropic scaling.

An unknown scaling in the x-direction corresponds to a multiplicative factor
when taking the tangent of an angle. Equation 3.35 therefore changes to

1

b
tan(αo) =

tan(α)
√

cos2(θ)− sin2(θ) tan2(α)
(3.40)

for case 1, where α is the angle between a bitangent and the axis of symmetry
in the reference view, αo is the corresponding angle in the view that is to be
transferred and b is the scale-factor in the x-direction. Given two angles per
view it is obviously possible simultaneously to solve two equations 3.40 for
both the scaling factor b and the virtual viewing direction θ.

The equivalent equation for case 2 is

1

b
tan(αo) =

1/c tan(α)
√

cos2(θ)− sin2(θ) 1/c2 tan2(α)
(3.41)

it takes three angles per view to solve for the three unknowns b, c and θ.
However, even then, only a numerical solution is possible, and this amounts
to solving a constrained nonlinear minimisation19 problem, which might well
be hard to solve. Figure 3.15 shows the three main steps.

Although this shows that it is possible to extend these algorithms for use
with an affine camera, this is not the method described in chapter 4. This
is due not only to the numerical difficulties described earlier, but also to the
fact that the number of surfaces producing three usable bitangents over a
wide range of viewing directions is very small.

19Minimisation instead of root finding, because when using real data, there might very
well not be a real solution.
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The Affine Camera

Describe a circle, stroke its back and it turns vicious.
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While the last chapter showed the transfer between two views of the same
surface taken with a weak perspective camera, this chapter generalises to
an affine projection. Any view (other than a top-view) can be used as a
reference view when transferring between two views.1 Furthermore, a system
is introduced that allows the transfer of any view into a so-called canonical

frame, which allows for the reconstruction of the generating function (where
the surface wasn’t self occluded) up to anisotropic scaling.

The transfer is accomplished using one conic and one additional point on the
axis of symmetry (the implementation uses the intersection of a bitangent
pair). The conic used in the examples is the surface’s ending contour, but it
is of course equally possible to use any other distinguished conic, such as a
sharp edge or even a stripe of paint, thus broadening the class of surfaces to
which this algorithm can be applied.

The method is introduced by first describing the underlying geometry. This is
followed by a discussion of implementational details and some typical results.

4.1 Theoretical Background

4.1.1 The Affine Camera

The affine camera is defined by analogy to the definition of the weak perspec-
tive camera in section 3.1.2, with the difference that the matrix of projection
P in equation 3.8 can now be any affine projection







x1
x2
x3





 =







p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 p34

















X1

X2

X3

X4











(4.1)

in homogeneous coordinates (compare e.g. [16]) whereX = (X1, X2, X3, X4)
T

is the real world point [(X,Y, Z)T = 1
X4

(X1, X2, X3)
T ] and x = (x1, x2, x3)

T

is the image point (x, y)T = 1
x3
(x1, x2)

T .

However, for practical purposes this is equivalent to an orthographic projec-

1The implementation does not allow for fronto-parallel views. This is due to the fact
that the conic in a fronto-parallel view can not be written in the matrix-form required by
the program (4 of the 6 parameters A–F would in general have to be infinity).



CHAPTER 4. THE AFFINE CAMERA 51

Figure 4.1: a surface of revolution can be imagined as a stack of circles.

tion followed by a 2-dimensional affine transformation

Taff =







t11 t12 t13
t21 t22 t23
0 0 1





 (4.2)

4.1.2 The Surface’s 3D Geometry and its Image

The method of transfer described in this chapter makes use of the fact that a
surface of revolution is equivalent to a stack of an infinite number of circles.
The midpoints form the axis of symmetry, and all circles are located in
parallel planes; Figures 4.1 and 4.2 show examples.

An affine projection will always transfer an ellipse to another ellipse (unlike
a perspective projection which can transfer any conic to any other conic).
What is more, the midpoints of an ellipse are invariant to any affine trans-
formation, see [3], as are midpoints in general. This means that the image
of the stack of circles forming the surface will be ellipses whose midpoints
are all on the axis of symmetry (invariance of midpoints). And since the
ratio of length on parallel lines is an invariant under affine transformation
(see [3, 14]) it is enough to know how 2 points on the axis of symmetry are
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Figure 4.2: Three of the circles a surface of revolution consists of, all in
parallel planes

transformed to know where any other midpoint is going to.

Circles in parallel planes are projected to ellipses with the same aspect ratio,
direction and scaling, i.e. the ratio of two circles diameters before the trans-
formation is the same as the ratio of the two ellipses major or minor axes
after transformation. The size of a conic relative to one in a parallel plane is
invariant to perspective projection.

The basic idea is that all these are certainly true for an orthographic projec-
tion, and an affine projection — an orthographic projection followed by an
affine transformation — can only change orientations or scaling globally.

It is therefore possible to determine where each conic’s midpoint is projected
to if it is known how 2 points on the axis of symmetry2 are transferred, and it
is possible to determine how every single circle is transferred if this is known
for one circle. The remaining task is now to find all the conics from the
outline.

4.1.3 Acquisition — Calculating the Conics

If the surface of revolution can be thought of as being a stack of circles, each of
which can be projected separately onto a plane, then the projected surface’s

2These could be bitangent-intersections — see section 3 — or the midpoint of a reference
conic.
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outline will be the envelope of all these (now) ellipses (see figure 4.1). This
means that for every outline point there is exactly one ellipse3 tangent to
this point (see [4]). Or, put another way, every tangent to the contour is also
tangent to the ellipse containing the contact point.

A conic has 5 degrees of freedom (the midpoint’s x and y coordinates, the
scale, the aspect ratio and the orientation), 3 of which are fixed once a
reference conic is known (all conics have to have the same aspect ratio and
orientation, and only one of the midpoint’s two coordinates can be freely
chosen, since the midpoint has to be on the axis of symmetry).

Requiring the conic to go through a specified outline point will fix one more
degrees of freedom, and the condition that the conic has to be tangent to the
outline in this point fixes the remaining one. It is therefore always possible
to calculate all the conics that have the outline as their envelope (or rather
the translation and scaling necessary to transform the reference conic into
any of the other conics).

4.1.4 Transfer

Once the conic’s midpoint position on the axis of symmetry relative to 2
reference points is known, as well as the conic’s scaling relative to a reference
conic, it is easy to calculate what this conic would look like viewed from any
other direction (see figure 4.3), if it is known how the two reference points
on the axis of symmetry and the reference conic transform, since the new
midpoint’s position relative to the two reference points and the scaling of
the new conic relative to the reference conic are both invariant under affine
transformation. The envelope of all these conics will then be the transferred
outline.

However, it is not even necessary to calculate the envelope of all these conics
in order to get the outline. That it is possible directly to calculate the
transferred outline point from the conic is shown in the following section.

4.1.4.1 The Tangent Cone

It was shown in section 2 that the intersection between the tangent at the
outline point belonging to a known circle and the axis of symmetry is view-
point independent. This was done using the concept of a tangent-cone, that

3 With the exception only of cusps, for which there a two or possibly even more ellipses
tangent to one point.
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a)

b) d)

c)
e) e’)

c’)

b’)

a’)

d’)

Figure 4.3: Once it is known how 2 points on the axis of symmetry (a) and
(b) are transferred, it is possible to calculate how any other point (c) on the
axis of symmetry is transferred. If it is also known how one reference conic
(d) is transferred, it is possible to determine the transfer for any other conic
(e), a scaled version of (d) (that is, with the same orientation and aspect
ratio).
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Figure 4.4: Once it is known how 2 points on the axis of symmetry (a)
and (b) are transferred, it is possible to calculate how any other point (c)
or (d) on the axis of symmetry is transferred. If it is also known how one
reference conic (e) is transferred, it is possible to determine the transfer for
any other conic (f), a scaled version of (e). The transferred outline point
(g), finally, is the point of tangency between a line through the transferred
tangent intersection (d) and the transferred conic (f).

is, the envelope of all planes tangent to a point both on the surface and on
this particular circle.

Transferring the entire tangent-cone belonging to a circle (the cone’s base),
instead of just the conic, means that it is instantly possible to determine the
transferred outline point’s position — the point where the base becomes self
occluded (see figure 4.4). Another formulation is that this is the point of
tangency between a line through the cone’s apex and the cone’s base.

Still another way to see this is the following: the outline point is the point
of tangency between the conic and the outline, and the transferred outline
point is therefore the point of tangency between the transferred conic and the
transferred outline. The tangent to this contact point will intersect the axis
of symmetry in a point that is viewpoint independent. Given the transfer for
2 points on the axis of symmetry, it is possible to transfer this intersection.
The point of tangency between a line through the transferred intersection
and the transferred conic must then be the transferred outline point.
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4.1.5 Summary

4.1.5.1 Prerequisites

The following properties of a surface of revolution are needed for the transfer
as described here:

• Two distinguished points on the axis of symmetry, e.g. a conic’s mid-
point and the intersection of a left and right bitangent (a bitangent-
pair).

• One distinguished conic (for example the top conic). This will deter-
mine the aspect-ratio and orientation of every other conic.

• The outline to be transferred. It is necessary to know not only the x
and y coordinates of every single point, but also the tangent angle (or
it must be possible to calculate the outlines tangent-directions).

4.1.5.2 Acquisition

Rather than representing the outline by its x and y coordinates and the
tangent angle, it is represented by the conic tangent to the outline at that
point and the intersection between the axis of symmetry and a line tangent
to that outline point (the cone’s apex). The conic can be found as the conic
which is tangent to the outline, has its midpoint on the axis of symmetry,
and has the same aspect ratio and orientation as the reference conic.

This means it is not necessary to store all the conic’s 5 parameters plus the
intersection’s x and y coordinates, making 7 parameters altogether. Given
one reference conic and 2 points on the axis of symmetry, it is possible to
store this information in three values per point.

Two possible formats are

(s,ms, ps) where s is the conic’s scaling relative to the reference conic, ms

is the midpoint’s position on the axis of symmetry relative to two dis-
tinguished points also on the axis, and ps is the apex’s position on the
axis relative to these two points (see figure 4.5). Using the scale factor
means that this representation can not be extended for the projective
camera, but will only work for the affine case.

(p1, p2, ps) (see figure 4.6) where p1 and p2 are the positions of intersections
between the axis of symmetry and lines that are tangent to both the
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Figure 4.5: Representing a conic by
its scale s relative to the reference
conic and its midpoint ms. ps is the
intersection of the tangent to the out-
line and the conic with the axis of
symmetry. r1 and r2 are the two ref-
erence points on the axis of symme-
try.

Figure 4.6: Representing a conic by
the two intersections p1 and p2 of bi-
tangents between the conic and the
reference conic with the axis of sym-
metry. ps is the intersection of the
tangent to the outline and the conic
with the axis of symmetry. r1 and r2
are the two reference points on the
axis of symmetry.

reference and the actually used conic. Both positions are again relative
to two reference points on the axis. ps is the same as above. This
representation has a projective extension, using 3 points on the axis of
symmetry and two conics.

4.1.5.3 Transfer

The outline is now described entirely in terms of conics relative to one refer-
ence conic and 2 reference points, either by a scale-factor and two points on
the axis of symmetry, or by three points on the axis of symmetry. This de-
scription is invariant to an affine transformation, which means that either by
choosing one reference conic and two points in a new (canonical) frame, or by
identifying the reference conic and points in a second view, it is immediately
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possible to determine how all the other conics will transfer.

Once the transferred conics are known, it is possible for each conic to calculate
the tangent to the conic through the apex belonging to that conic, thus
determining the transferred outline point. (This is really just the reversal of
the process used for acquisition.)

4.2 Implementation

Although the acquisition can be done from any view, it is convenient to
bring the outline into a common frame prior to acquisition, and transfer by
applying a similarity transform such that: the y-axis is the axis of symmetry,
the conic’s midpoint is at (δ, 100)T , and the intersection of the first bitangent-
pair at (δ,−100)T ; see figure 4.9.

4.2.1 The Common Frame

The transformation into the common frame is done in two steps. First, an
Euclidean transformation is calculated such that the sum of the squared and
weighted perpendicular distances of all the features — presumed to be on
the axis of symmetry — to this axis is minimised, thereby calculating the
axis of symmetry. This is followed by a translation and scaling as explained
above.

4.2.1.1 The Axis

The calculation of the axis of symmetry is done exactly as in section 3.2.2.1
with the only difference that now the conics midpoint is also used as one of
the features that have to lie on the axis of symmetry. The identity matrix is
used as the midpoint’s covariance matrix. This is shown in figure 4.7.

Figure 4.8 shows the transformed outline.

4.2.1.2 Calculating the Offset and Scale in the y-Direction

A scale in the y-direction and an offset are calculated so that 2 distinct points
on the axis of symmetry are moved closest to two fixed points on the y-axis.
The frame used is one in which the midpoint of a distinguished conic has
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Figure 4.7: Covariance for intersections and cross-points. The ellipses around
the intersections and cross-points denote the maximal error for these inter-
sections, allowing for an error of up to 10 pixels in each tangent-point (see
the circle around the conic’s midpoint).

the new coordinates (δ, 100)T , and in which the first intersection has the
coordinates (δ,−100)T . See figure 4.9.

4.2.2 The Acquisition

The acquisition is done by applying a number of single steps to each outline
point. First the orientation of the tangent at this outline point is calculated,
together with the tangent’s intersection with the axis of symmetry (apex
— see figure 4.10a). Next, a conic with the top conic’s aspect ratio and
orientation is calculated which is tangential to this outline point. Then in
the last step, one of the two sets of features mentioned in section 4.1.5.2 is
calculated from this conic and the reference conic. Both methods have been
implemented.

4.2.2.1 The tangent to the outline

A first approximation of the tangent angle is calculated by finding the re-
gression line through the outline point and its n neighbours. The outline
points are then rotated in such a way that the tangent found so far is the
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Figure 4.8: The outline after aligning
the axis of symmetry and the y-axis.

-100

100

Figure 4.9: The outline after being
transformed into the common frame.

line y = const, and a least squares quadratic, y = p0x
2+p1x+p2, is calculated

to find a better approximation for the tangent angle. The algorithm used for
calculating the quadratic is described in [17]. The outline’s approximation
by a quadratic is shown in figure 4.10.a and, in more detail, in figure 4.11.

A simple error measure is calculated (
∑

i(yi−y(xi))
2), and compared against

a threshold (the threshold allows one to influence the accuracy of the fit close
to cusps; the lower the threshold, the higher the accuracy used to model the
cusps). A new quadratic using n− 2 neighbouring points is calculated if the
threshold is exceeded. The initial value for n is 13 (empirically determined),
and there is always an exact solution for n = 2 (3 points).

4.2.2.2 The conic tangent to the outline point

How can the conic tangent to the outline point be found? The conic C̃,
tangent at p and with the tangent orientation (xt, yt)

T , has to be a scaled
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a) The tangent to a
point of the outline
and it’s intersection
with the axis of sym-
metry (apex), calcu-
lated by approximat-
ing part of the outline
around this point with
a quadratic.

b) The conic tangent
to the outline at this
point and with the
same aspect ratio and
orientation as the ref-
erence conic (which is
also shown).

c) The
transferred point is the
contact point between
a scaled and translated
version of a (new) ref-
erence conic — using
the scale and transla-
tion calculated in b) —
and a line through the
apex calculated in a).

Figure 4.10: The 3 steps of transferring an outline.

and translated version of the ending outline, that is, C̃ = T−TC T−1 with

T =







s 0 0
0 s ty
0 0 1





 (4.3)

The point p is an outline point if

f = p T−TC T−1p = 0. (4.4)

The tangent orientation is

∂f/∂x

∂f/∂y
= −

yt

xt

. (4.5)

Equation 4.4 is a quadratic whilst 4.5 is a linear equation in 2 unknowns;
both s and ty can be calculated from this. Although one of the equations is
a quadratic there is, in general, only one solution (or rather: both solutions
are identical). This directly gives the scaling factor s; the new midpoint ms

can easily be calculated from the reference conic’s midpoint by applying the
matrix T, thus making it easy to find the parameter (s,ms, ps) used in the
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2 :point used for fitting
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Figure 4.11: Approximating the outline with a quadratic.

first representation. The last parameter, ps, is the intersection between the
tangent and the axis of symmetry, it is easily calculated.

To find the bitangents between the conic and the reference conic needed for
the second representation, it is necessary to solve a fourth order polynomial.
Although these bitangents can be complex, the intersection of the bitangents
(on the axis of symmetry) is always real.

4.2.3 Transfer

The only features used to describe the outline are either

1. One scaling factor and two points on the axis of symmetry or

2. Three points on the axis of symmetry.

Once it is known how two points on the axis of symmetry transfer, it is
easy to calculate the transfer for any other point, since straight lines remain
straight (fixing one degree of freedom), and the ratio of length is invariant
under affine transformation (fixing the remaining degree of freedom for a
2D-point). The scaling factor stays constant.
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4.2.3.1 Transfer using the first representation

The first representation — using a scaling factor s, the conics midpoint
(0,ms)

T , and the apex (0, ps) — allows for a very easy transfer. The trans-
ferred conic’s midpoint and the transferred apex are immediately known, and
to calculate a scaled version (scaled by the factor s) of the reference conic
with this midpoint is trivial. All that remains is to find the point of tan-
gency between this conic and a line through the apex (see figure 1.4.c). This
is the intersection between the line Cp (the polar belonging to a pole p, in
homogeneous coordinates) and the conic C, i.e. the solution of the system is

(x, y, 1) C (0, ps, 1)
T = 0 (4.6)

(x, y, 1) C (x, y, 1)T = 0 (4.7)

This system has two solutions, belonging to the left and right halves of the
outline respectively, and related to each other by the surface’s symmetry.
However, both sides are transferred separately and the symmetry is not used.

4.2.3.2 Transfer using the second representation

Using the second representation — the apex (0, ps)
T and the two bitangent-

intersections (0, p1)
T and (0, p2)

T —makes the transfer a bit more difficult, al-
though more easily adaptable to projective transformation. The three points
are again easily transferred. It is then possible to use the mechanism dis-
cussed above to find the lines which are tangent to the reference conic, and
which go through the points (0, p1)

T and (0, p2)
T . From there it is possible

iteratively to calculate the conic which is tangent to both tangents, which has
the same aspect ratio as the reference conic, and whose midpoint is on the
axis of symmetry. It is then again possible to calculate the point of tangency
between the transferred conic and a line through the transferred apex; this
is the transferred outline point.

4.3 Results

The images in figure 4.12 show some of the results (the results for both
methods are identical). The transferred outline is shown in black, with the
originals displayed in light grey/dotted for reference. The transfer is surpris-
ingly good, especially when performed from an outline taken under a small
angle to one taken under a larger angle (left column), while a loss of accuracy
is inevitable when transferring from a larger to a smaller angle (due to self
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a) Transfer from an roughly 15◦ view
onto an roughly 25◦ view.
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b) Transfer from an roughly 25◦ view
onto an roughly 15◦ view.
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c) Transfer from an roughly 15◦ view
onto an roughly 35◦ view.
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d) Transfer from an roughly 35◦ view
onto an roughly 15◦ view.
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e) Transfer from an roughly 15◦ view
onto an affine transformed roughly
25◦ view.
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f) Transfer from an affine trans-
formed roughly 25◦ view onto an
roughly 15◦ view.
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g) Transfer from an roughly 25◦ view
onto an roughly 35◦ view.
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h) Transfer from an roughly 35◦ view
onto an roughly 25◦ view.

Figure 4.12: Transfer using conics
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occlusion), as is shown in the right hand column of figure 4.12 (see especially
image d). Note also images e) and f), which demonstrate that the algorithm
can indeed cope with affinely transformed outlines.

The spikes at the tops of outlines d), h), and to a lesser extent f), are due to
the fact that part of the top conic is becoming transferred too. This leads to
characteristic spikes arising from the fact that the conics calculated for this
part during the acquisition exceed the outline.

Figure 4.14 shows different views of three different vases, all transferred into
one canonical frame. It is obvious from here that recognition using the canon-
ical frame representation is indeed an option, although the agreement of the
vases degrades the further away from the top (the bottom side on the image).
This is, however, due to badly chosen reference points and can be fixed easily
(by choosing reference points of which one is close to the surface’s top, and
the other close to its bottom), as discussed below.

4.4 Possible Enhancements and Open Ques-

tions

4.4.1 Better Features than Intersections

Both methods use a conic’s midpoint and a bitangent-pair’s intersection as
the two features on the axis of symmetry needed to determine where each
conic’s midpoint is going. This is a rather unfortunate choice for several
reasons. The first becomes apparent when looking at figure 4.7; it shows
that the intersection’s position along the axis of symmetry will in general
be less accurate than that of the bitangent-points. The possible error can
in fact be orders of magnitude greater than the outline’s extension if the
bitangents are nearly parallel to the axis of symmetry. It would, therefore,
be worthwhile to use a feature which is less prone to errors, for example the
midpoint of the second ending outline. (The cross-points, although they too
are less error-prone, can not be used for this, since their virtual position on
the axis of symmetry can vary.)

Another reason becomes apparent when looking at figure 4.14.

Although the different views of each vase are nearly identical in the vicinity
of the top conic (and bitangent-points), their agreement degrades the further
from the top they are. This would be improved by choosing a point close to
the outline’s bottom as the second reference, so that the affine basis encloses
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a) b) c)

Figure 4.13: Images of the three vases that were used in the canonical frame
representation
(See figure 4.14)

the outline.

4.4.2 Unused Constraints

Several constraints are still unused, e.g.

• No conic can ever cross the outline at any point (since the outline is
the conic’s envelope).

• The symmetry is not used when transferring outline points.

However, how to make use of these additional constraints is as yet unclear.
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Figure 4.14: Seven outlines of three different vases, all transferred into the
canonical frame.
Images of the original vases are shown in figure 4.13.



Chapter 5

The Projective Camera

Treat nature in terms of the cylinder, the sphere, the cone, all in
perspective.

Paul Cézanne, from Emile Bernard, Paul Cézanne
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So far methods of transfer for the scaled orthographic (weak perspective)
and the affine camera model have been introduced. This chapter presents
a method of transfer for which the projective camera is the underlying geo-
metric model. However, this method is based on the one used for the affine
camera described in chapter 4. It too allows the transfer from one view onto
a second view as well as into a canonical frame, thereby recovering the gen-
erating function (where the outline is not self occluded) up to a projective
transformation. In contrast to the method for the affine camera that used a
conic and a point on the axis of symmetry, this method uses two conics.

The method is introduced by first describing the underlying geometry; this
is followed by a discussion of a possible implementation, only part of which
(the canonical frame representation) has so far been effected.

5.1 The underlying geometry

5.1.1 The projective Camera

The projective camera is defined in analogy to the definitions of the weak
perspective camera in 3.1.2 and the affine camera in 4.1.1, but with a matrix
of projection P (equation 3.8) such that
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(5.1)

in homogeneous coordinates.

However, it is, for practical purposes, sufficient to think of the projective
camera as a pinhole camera whose image can than be subject to an arbi-
trary projective transformation, that is a multiplication from the left with
the matrix of transformation

Tproj =







t11 t12 t13
t21 t22 t23
t31 t32 1





 (5.2)

The pinhole camera model is a model of a camera in which all rays pass
through a focal point generally not at infinity. It is also the model used in
section 2 (see figure 2.4). Although the focal point is fixed for one view, the
image plane can be any plane not passing through the focal point, and it is
possible to find a projective transformation to map the current view into any
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other view using one of the allowed image planes; this becomes important
below.

5.1.2 The Surface’s 3D Geometry

The surface is, as in chapter 4, represented by a stack of parallel circles whose
midpoints all lie on the axis of symmetry (figure 4.1). In general though, once
projected, the resulting ellipses1 will not all have the same aspect ratio nor
orientation, as was the case in chapter 4, and the projection of the conics’
midpoints will not be identical to the projected conics midpoints. For a
general projection, the outline will not be symmetrical (see figure 5.1).

However, using the two bitangent-pairs tangent to the two reference conics,
it is still possible to find a rotation and translation such that the y-axis is
the axis of symmetry (this can be done exactly as described in chapter 3),
and another transformation

T =







1 0 0
0 1 0
a 0 1





 (5.3)

such that the outline is again symmetric (and all conics have the same ori-
entation);2 see figure 5.2. This is similar to the method for removing affine
distortions used in chapter 3, but removes perspective fanning along the x-
axis.

However, the conics’ aspect ratio will still be different, and the question is
now if it is possible to find a projective transformation such that the aspect
ratio will be the same for all transferred circles the surface is made up of. It
is of course always possible to find a projection such that the two reference
conics will have the same aspect ratio, but that this need not mean that
all other conics will have the same aspect ratio too becomes apparent when
looking at figure 5.3.

However, there is a family of image planes such that all the projected circles
will not only have the same aspect ratio but will indeed be circles.3 These are
the planes that are perpendicular to the axis of symmetry, and in particular
the plane the surface is “standing” on. It is obvious that the surface’s bottom

1Although a projective transformation can transform any conic into any other conic,
for example a circle into a hyperbola, this is not of any practical consequence.

2Another approach is to map four bitangent points (two on each side) onto four points
in a frame in which the points are symmetric around the y-axis.

3The two cases are related only by a scaling in the direction of the axis of symmetry
anyhow.
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Figure 5.1: A general projection.
Note that

• Conics won’t have the same as-
pect ratio.

• Conics won’t have the same
orientation.

• The projection of a conic’s
midpoint will not be identical
to the projected conic’s mid-
point.

• The outline is not symmetric.

Figure 5.2: The outline from the left
figure made symmetric around the y-
axis.
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Figure 5.3: View of a cylinder. The focal point is on the same height as the
middle of the cylinder. Although both the top and bottom conics have the
same aspect ratio, this is not true for any other conic.

circle will then be identical to its projection (since it is already on the plane)
and will therefore stay a circle. The same is true for all other circles due to
the fact that the image plane is parallel to all circles (although all circles will
of course have a different scaling). This is shown for a cylinder in figure 5.4;4

it is true for any focal point outside the surface.

The projective transformation that changes to this image plane — perspec-
tive fanning along the y-axis — can be found by numerically solving for the
transformation

T =







1 0 0
0 1 0
0 b 1





 (5.4)

that makes both conics (the top and bottom one) have the same aspect ratio.
However, this has four possible solutions and care is necessary to pick the
right one. It is then possible to find an anisotropic scaling in either the x- or
y-direction which will transform the conics into circles (although this is not
really necessary).

Now all conics have the same aspect-ratio. What is more, it is clear from the

4Two different cases can be distinguished. In the first case the viewpoint is below the
bottom or higher than the top conic (this is the case shown in most examples), while in
the second case the viewpoint’s height is between that of the bottom and the top conic —
which results in somehow “strange” looking projections. The method discussed here will,
however, work for both cases.
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infinity

Figure 5.4: Projecting the circles of which a surface of revolution is made onto
a parallel plane will again result in circles. This is viewpoint independent.
That a conic’s midpoint is invariant to this particular projection can be seen
from similarity-triangles. The image shows a top, orthographic and side view
of a cylinder and its projection onto the plane it is standing on.
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above construction that the transformed conics’ midpoints are identical with
the circles’ transformed midpoints. That is, it is again possible to use conic-
midpoints (although strictly speaking not necessary). All that is needed to
find a method of transfer, is to know how points on the axis of symmetry
will transform.

5.1.2.1 The Cross-ratio

Given two points on the axis of symmetry in both the reference view and
the one to be transferred, it is in the affine case possible to determine where
every other point on this axis of symmetry would be transferred to. This was
due to the fact that the ratio of lengths on a line (or rather parallel lines) is
an invariant under affine transformation. This is no longer true for projective
transformation.

The “classic” projective invariant is the cross-ratio [17]. Proof of its invari-
ance is covered in most texts about projective geometry (see [22, 24]) and
is also found in [16]. It is defined for four points on a line (see figure 5.5)
and the simplest definition of the invariant uses ratios of length; for exam-
ple, if the distance between point A and point B is denoted by AB then the
cross-ratio τ is

τ =
AC

BC
·
BD

AD
(5.5)

A definition better suited for computing purposes (since one of the points
might be at infinity, resulting in the distance being infinity too) uses a homo-
geneous coordinate system defined on the line and determinants rather than
distances:

τ =
|XAXC |

|XBXC |
·
|XBXD|

|XAXD|
(5.6)

Here XI is the homogeneous coordinate of the point I. The coordinate
system can be chosen by arbitrarily fixing an origin and expressing all points
by their distance to the origin in the first and 1 in the second coordinate (a
point at infinity is denoted by a 0 in the second component). None of the
determinants can ever be zero, making the implementation on a computer
easy.

The invariance of the cross-ratio with respect to projective transformation
means that given 3 points on the axis of symmetry both in the reference
view and in the one that is to be transferred, it is possible to determine
where every other point on the axis of symmetry is transferred to.
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A B C D
x

Figure 5.5: Four collinear points define a simple projective invariant, the
cross-ratio

5.1.3 Summary

It has been shown that it is possible to transform any projective view of
a surface of revolution into a frame in which the projection of each cross-
sectional circle will have the same aspect ratio, using only two conics (the
two ending conics, but it is of course possible to use other conics as well). A
second advantage of this frame (apart from all conics having the same aspect
ratio) is that the concept of conic midpoints becomes meaningful again.

Given three points on the axis of symmetry (e.g. the reference conic’s mid-
points and one intersection with the axis of symmetry of a bitangent tangent
to both conics) it is possible to transfer outline points in a way analogous
to that described in chapter 4, but using the cross-ratio instead of a simple
ratio of length. The mechanics of this are described in the following section.

5.2 A possible Implementation

Both the acquisition as well as the transfer described below will assume that
we are dealing with outlines already transformed into a frame in which all
conics have the same orientation and aspect ratio, and in which the outline
is symmetric around the y-axis. That, and how this can be done, has been
outlined in section 5.1.

If for some reason it is necessary to effect the transfer onto a real image, it
is then always possible to transfer the reference and target view’s outlines
into the frame first and then reversing the transformation that brought the
target view into the frame, but using the reference-view’s transferred data.



CHAPTER 5. THE PROJECTIVE CAMERA 76

2

1

3

4

Figure 5.6: The eight bitangents between an arbitrary conic and the two
reference conics, resulting in 4 intersections with the axis of symmetry.

5.2.1 Acquisition

The acquisition can be done similarly to section 4.2.2 and consists of the
following steps:

1. For every single outline point find the orientation of the line tangent
to the outline at this point, and the line’s intersection with the axis of
symmetry (apex).

2. Find the conic that is tangent to the outline in this point, has the same
aspect ratio and orientation as the two reference conics, and has its
midpoint on the axis of symmetry.

3. In contrast to the affine acquisition, it is now possible to find four

bitangent-pairs between the conic and the two reference-conics, and
consequently also 4 intersections between the bitangent pairs and the
axis of symmetry (see figure 5.6).

This gives us six points on the axis of symmetry for each conic: the midpoint,
4 bitangent-intersections and the apex. This will be more than enough to
find the conic in a second view (the conic will in fact be over-determined).
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5.2.2 Transfer

The transfer is also closely related to the one used for affine images. Provided
that the target view has also been transferred into the common frame; the
transfer can be performed as follows:

1. Transfer all 6 points calculated during the acquisition phase into the
frame, using the cross-ratio between each point and three of the fol-
lowing: the two bitangent-intersections from bitangents between the
conics, and the two conic midpoints.

2. Find the eight lines (four on each side) that go through the transferred
intersections and are tangent to the appropriate conics.

3. Find the conic that is tangent to the eight lines, that has the same as-
pect ratio and orientation as the target outline’s conics and whose mid-
point is the transferred midpoint. The conic will be over-determined
by this and a least squares fit will be needed to solve for it.

4. Find the tangent to that conic through the transferred apex. The point
of tangency is the transferred outline point.

It is also possible to calculate the transfer even onto a target view not in the
common frame, if one additional point on the axis of symmetry (maybe an
additional bitangent-intersection from bitangents to the outline) is known.
This additional point is necessary since midpoints can not be used in an
arbitrary view. However, the bitangent-intersections from the bitangents
between the two conics can still be used, and this together with the additional
point are three points on the axis of symmetry — enough to use the cross-
ratio. The transfer can then be done as follows:

1. Transfer the apex and the four intersections using the cross-ratio —
the midpoint is not needed.

2. Find the eight lines (four on each side) which go through the transferred
intersections and are tangent to the appropriate target-conics.

3. Find the conic that is tangent to the eight lines. It is not possible to
use any additional features such as aspect ratio or orientation; however,
even with only eight lines, the conic is still over-determined.

4. Find the tangent to that conic through the transferred apex. The point
of tangency is the transferred outline point.
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bitangent-
intersection

bitangent-
intersection

bottom conic

top conic

Figure 5.7: A possible canonical frame. Choosing the reference conics to be
lines makes it possible to recover the generating function up to a perspective
fanning. One bitangent-intersection is at infinity.

5.2.3 Transfer into the Canonical Frame

5.2.3.1 How to pick a canonical frame

It has just been outlined how it is possible to transfer from one view in the
common frame to any other view, also in the common frame. Therefore
all that now remains for transferring into a canonical frame, is to pick one.
A possible canonical frame is shown in figure 5.7 but an infinite number of
possible frames can be chosen by, for example, fixing the two reference-conics
and letting the intersections take care of themselves.

5.3 Results

Figure 5.8 show the results for four views of the same object, all transferred
into one common frame. This compares favourably with the results achieved
by using the algorithm for the affine case on this — projective — data (fig-
ure 5.9. The four outlines are very close to each other and the only differences
are due to either self occlusion or a fitted conic that is slightly to small (see
figure 5.8). Figure 5.10 shows one of the images used. The different aspect
ratio of both the top and bottom conic is very visible.
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Figure 5.8: Four outlines of the
same vases viewed from dif-
ferent viewpoints, transferred
into the canonical frame. Note
how well the curves agree. Er-
rors are due to self occlu-
sion (a) or an ill-fitted ending
conic (b).

Figure 5.9: The same outlines,
but transferred using the algo-
rithm for affine views. Note
how it can’t cope with strong
perspective distortions (a).
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Figure 5.10: One of the images whose outline was transferred into the canon-
ical frame. Note the different aspect ratios of the top and bottom conic.



Chapter 6

Conclusions

Voilà le commencement de la fin.

This is the beginning of the end.

Charles-Maurice de Talleyrand, At the announcement of

Napoleon’s defeat at Borodino, 1812
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6.1 A Recognition System

During the last three chapters the transfer from one view of a rotationally
symmetric surface onto any other view of the same surface has been discussed
for three different camera models. The last two also offered the possibility to
transfer the outline into a so-called canonical frame, allowing the recovery of
the generating function up to an anisotropic scaling (affine) or perspective
transformation. However, how does the transfer fit into the framework of a
recognition system?

6.1.1 Transfer between two Views

The transfer from one view onto a second view can be used as a verification
step for a hypothesis formed from additional observations (see below). It is
possible either to transfer the outline from an image onto a standard repre-
sentation of the outline, or to transfer the standard representation into the
image.

Transferring from the image onto the standard representation has the advan-
tage that the features compared for verification have only to be calculated for
the transferred outline, while it is possible to use pre-compiled ones for the
standard outline. A multitude of different features are conceivable, ranging
from very simple ones such as the distance of n outline points taken in n
different directions from an origin (see [17]) or moments (it is possible to use
moments even with partly occluded outlines [10]) to very elaborate ones such
as descriptions of local curvature.

The advantage of transferring the standard outline into the image is that
problems with self-occlusion can be avoided — provided that the standard
view is viewed from an angle smaller than the one used in the image (the
standard view will preferably be close to a fronto parallel view).

6.1.2 Transfer into a Canonical Frame

This is even more powerful then the simple transfer between views. While
the transfer between views is only useful if

1. Very few possible surfaces need to be recognised.

2. A hypothesis as to what the surface is has already been found from
another source.
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the transfer into the canonical frame allows one to find such a hypothesis.
The only hypothesis needed to use the transfer into the canonical frame is
that the outline indeed belongs to a surface of revolution; it is then possible
to use the canonical-frame representation to take (invariant) measures of
the surface which can be used to build an indexing vector which will allow
hypotheses generation (see [17]). This hypothesis can then be tested by a
model-to-image transfer if necessary.

6.1.3 How to build a Recognition System

A recognition system consists of a lot more than just a verification step
or even a module that can generate hypotheses. The input will normally
be a grey level image such as in figure 1.2, and algorithms are needed to
extract continuous outline curves from there, to find possible candidates for
bitangents and conics, to match the bitangents to find possible bitangent-
pairs, and to find symmetries (modulo a projectivity or affine transformation)
that indicate the presence of rotationally symmetric surfaces.

Fortunately most of this software does already exist. In [17] Charlie Roth-
well describes a recognition system which will link up Canny edge data to
continuous outlines, and tries to approximate part of the outline with conics
or, failing that, straight lines.

He also describes a method for finding bitangents as well as a method for find-
ing projectively equivalent concavities (this was used for assembling a jigsaw
puzzle from outline data alone [19]) and can be used for finding projectively
symmetric outline parts denoting the possible presence of a rotationally sym-
metric surface.

All this facilitates finding a number of possible candidates for rotationally
symmetric surfaces in an image which can then either be verified or rejected.

6.2 Future Work

The first thing still to be done is obviously to implement the methods de-
scribed in chapter 5, although there is no reason for doubting the feasibility
of this approach.

A problem is, however, the requirement for two conics, since most objects
tend to have rounded edges, making it difficult precisely to locate conics (see
figure 6.1). This makes it interesting to examine how stable the algorithm
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Figure 6.1: Rounded edges on a surface’s generating function make it difficult
to find the exact location of the ending conics.

is regarding errors in the conics. Stability was not a problem for the affine
case which only used one conic, but the projective algorithm uses two, which
might make errors in the conics more critical.

Also some surfaces do not have two distinguished conics, and it might there-
fore be a good idea to look for an algorithm which does not make explicit
use of conics.
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azimuth, 23
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affine, 38

bitangent intersection, 19

camera
affine, 12
pinhole, 69
projective, 12, 69
weak perspective, 11, 22

canonical frame, 11, 50
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tangent-, 53
contour

apparent, 8
occluding, 8

contour generator, 16, 24
coordinate system

image, 24
object, 22

cross-ratio, 74
curve

generating, 8

direction
viewing, 23

distinguished features, 15
distinguished points, 13, 15

elevation, 23

features
distinguished, 15

frame
canonical, 11, 50

fronto-parallel, 26
function

generating, 22

generating curve, 8
generating function, 22
generator

contour, 16, 24

image coordinate system, 24
intersection, 19

bitangent, 19

limb, 8

normal
surface, 22

object coordinate system, 22
occluding contour, 8
outline, 8, 16, 24

reference, 35

perspective camera
weak, 11, 22

pinhole camera, 69
point

view-, 23
points

distinguished, 13, 15
profile, 8
projective camera, 12, 69
projective transformation, 69

88



INDEX 89

ratio
cross, 74

reference outline, 35
reference view, 28, 30
revolution

surface of, 22

silhouette, 8
surface normal, 22
surface of revolution, 22

tangent-cone, 53
target view, 30
transfer, 10, 11
transformation

projective, 69

view
reference, 28, 30
target, 30

viewing direction, 23
virtual, 28

viewpoint, 23
virtual angle, 28
virtual viewing direction, 28

weak perspective camera, 11, 22
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