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Zusammenfassung

In dieser Arbeit beschreibe ich meinen Ansatz zur Kombination von Methoden der
Fehlerfortpflanzung mit mehreren Algorithmen, die das Geometrie-basierte grou-
ping von Strukturen erlauben. Von der bekannten Literatur unterscheidet sich meine
Arbeit vor allem durch die Schwerpunktsetzung auf Anwendbarkeit: die tatsächli-
che praktische Anwendung zeigt deutlich, welche zusätzlichen Möglichkeiten man
durch Fehlerfortpflanzung gewinnt; andererseits habe ich, statt starr an der exakten
Lösung festzuhalten (die, wo möglich, natürlich gegeben wird) auch untersucht, wel-
che Auswirkungen die Verwendung von Näherungslösungen haben kann — und in
welchen, in der Literatur teilweise recht häufig anzutreffenden, Fällen solche Nähe-
rungslösungen verheerende Auswirkungen auf die Korrektheit (oder sogar Existenz)
des Ergebnisses haben können.

Warum glaube ich, dass solch eine Arbeit nötig oder auch nur nützlich sein kann?
Zumal doch die Grundlagen der Fehlerfortpflanzung (wenn auch nicht in der pro-
jektiven Geometrie) seit vielen Jahrzehnten bekannt sind und oft genug bereits in
der Schule unterrichtet werden? Einer der Gründe für die geringe Verbreitung der
Fehlerfortpflanzung unter Bildverarbeitern liegt meiner Meinung nach in der vor-
handenen Literatur, deren Interesse stets der korrekten Lösung gilt, ohne Blick auf
die praktische Anwendbarkeit.

Im Gegensatz hierzu ist die vorliegende Arbeit aus der Praxis für die Praxis entstan-
den: ich zeige anhand von Beispielen, dass sich viele Probleme tatsächlich einfacher
lösen lassen, wenn man Grundlagen der Fehlerfortpflanzung berücksichtigt — oder
sogar nur dann; ich denke die Anwendung auf Zebrastreifen in Kapitel 5 meiner
Dissertation ist so ein Beispiel. Dabei behalte ich jedoch stets die algebraische und
algorithmische Komplexität der verwendeten Verfahren sowie die Notwendigkeit zu
ihrer Verwendung (oder, auch das kann passieren, die mangelnde Notwendigkeit)
im Auge. Aus diesem Grund beschreibe ich nicht nur die Kombination von Fehler-
fortpflanzung und projektiver Geometrie (die für den uneingeweihten einige Schwie-
rigkeiten bereithält) sondern demonstriere die Anwendung dieser Prinzipien anhand
von 3 sehr verschiedenen Beispielen. Im Folgenden beschreibe ich den Aufbau meiner
Arbeit.

Nach Einleitung und einführenden Erläuterungen zu projektiver Geometrie und Feh-
lerfortpflanzung in den Kapiteln 1–3 beginnt der Hauptteil meiner Arbeit in Kapi-
tel 4, in dem die Verbindung zwischen Fehlerfortpflanzung und projektiver Geome-
trie herausgearbeitet wird. Die zugrundeliegende Idee ist nicht neu und geht auf
Kanatanis N -Vektoren zurück; darüber hinausgehend beschreibe ich aber auch die
Anwendung der gleichen Grundsätze auf andere Parametrierungen und leite eine
Reihe neuer Ergebnisse her, wie zum Beispiel eine hervorragende Approximation
der Kovarianz eines an einige Edgel angepassten Linienstücks, eine Abbruchbedin-
gung für inkrementelle line-fits und einen neuen Algorithmus für die Berechnung des
Doppelverhältnisses von 4 Linien, welcher Aufgrund der Verwendung von Fehlerfort-
pflanzung tatsächlich sogar schneller ist als bisherige Verfahren. Desweiteren gebe
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ich eine Erklärung, warum die von vielen Autoren verwendete sphärische Normalisie-
rung von Koordinaten tatsächlich einer Euklidischen Normalisierung überlegen ist;
und schließlich gebe ich eine Übersicht darüber, wie viele der häufigsten Messgrößen
am sinnvollsten verglichen werden können — allein dieser letzte Abschnitt könnte
bereits viele der in der Bildverarbeitung so häufig anzutreffenden, fein eingestellten
Parameter überflüssig machen.

In den daran anschließenden drei Kapiteln beschreibe ich verschiedene Anwendungs-
szenarien. Die erste Anwendung in Kapitel 5 ist die Erkennung von Zebrastreifen
(und anderer periodischer Strukturen). Es handelt sich hier um eine Anwendung
von der ich glaube, dass sie so ohne Fehlerfortpflanzung nicht möglich gewesen wäre;
besonders interessant an dieser Anwendung ist, wie einige wenige Konfidenz-Tests
eine Vielzahl manuell zu wählender Parameter ersetzen können, wodurch ein extrem
stabiles System entstanden ist.

Die Algorithmen, die in Kapitel 6 beschrieben werden, beschäftigen sich mit der
Segmentierung von Häuserfronten (orthogonalen und parallelen Strukturen) in Ein-
zelbildern. Es wird kein fertiger Algorithmus präsentiert, stattdessen wird dieses
Szenario genutzt, um eine Anzahl unterschiedlicher und auf unterschiedlichen Skalen
operierender Techniken zu vergleichen. Der Schwerpunkt liegt auf der Bestimmung
kollinearer Liniensegmente und von Fluchtpunkten.

Das letzte Anwendungskapitel, Kapitel 7, beschreibt schließlich Teile der Segmentie-
rungsroutinen, die meinen ältesten Publikationen über die Erkennung rotationssym-
metrischer Objekte zugrundeliegen. Ein wesentliches Merkmal ist dabei das Bild der
Rotationsachse. Dieses lässt sich theoretisch als eine Linie durch die Schnittpunkte
von Bitangenten berechnen. Da diese jedoch erheblich in ihrer Genauigkeit variie-
ren können, haben wir hier ein exzellentes Beispiel, um verschiedene Algorithmen zu
vergleichen; ich zeige, wie selbst ein bekannter und häufig genutzter Algorithmus wie
die kleinste Summe der Fehlerquadrate zu unbrauchbaren Ergebnissen führen kann,
wenn die zugrundeliegende Annahme unabhängiger, isotroper und gleichverteilter
Fehler nicht zutrifft, und stelle bessere Alternativen vor.
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Symbols

x, X : scalars.
x, X : vectors. In a transformation, capital letters usually indicate the source of

a transformation, small letters indicate the target.
P : matrix.
Σ : covariance matrix.
Jyx : Jacobian; matrix of first derivatives of y with respect to x. This is a

matrix proper if x and y are both vectors, a vector (either row or column)
if one of the two is a scalar variable, and a scalar if both x and y are scalar
variables.

∝ : proportional to.
∞ : infinity.
IR : set of real numbers.

( � )− : pseudoinverse.

( � )−n : pseudoinverse computed by setting all eigenvalues except the first n to
zero.

| � | : determinant.
| � |n×n : determinant of the upper left n× n matrix.
‖ � ‖ : norm.
( � )T : transpose.
( � )−T : inverse of the transpose (or, of course, transpose of the inverse).
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Chapter 1

Introduction

The last thing we decide in writing a book is what to put first.

Blaise Pascal, 1623–1662
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14 Grouping and Error Propagation

1.1 Grouping and Error Propagation

This thesis describes the approach used for, and the improvements possible by, the
use of error propagation in conjunction with several algorithms for the grouping
of structures based on geometric entities. But rather than rigidly favouring the
exact solution each and every time1 I have put particular weight on practicability,
demonstrating the relative gain for many approaches and giving shortcuts where the
results are not marred by their use; but also demonstrating how common shortcuts
used by many authors can lead to disaster if the underlying assumptions are violated.

1.1.1 Why Error Propagation?

Why do I believe that such a thesis is necessary and indeed valuable? The principles
of linear error propagation, which I will use in this thesis, have been known for a
long time, often enough they are even taught in school; they are the staple of
photogrammetrists, geodesists, physicists, as well as many other scientists. But —
they are rarely enough used in computer vision. True, a number of publications
exist, starting with Kanatani’s work [70, 75] more than 13 years ago, and with
Förstner’s contribution to the “Handbook of Computational Geometry for Pattern
Recognition, Computer Vision, Neurocomputing and Robotics” [49] as the latest,
very nice, example2; but by and large error propagation has been all but ignored by
the computer vision community.

I believe that the reason for this disregard is twofold: for one thing error propagation
is simply unknown in computer vision circles, and if Kanatani didn’t manage to
change this then surely this thesis won’t be able to either. But I also believe that
error propagation is seen as an unnecessary complication: “Let me solve this really
complicated and important problem first, and then I can worry about details like
error propagation” seems to be the attitude of many a researcher, or even “Sorry,
but error propagation is much too slow for any real(-time) application”. And such a
mind-set is unfortunately fostered by authors like Kanatani, who are more interested
in correct than in practicable solutions. And it is here that I hope this thesis could
have a small impact: demonstrating that many problems are indeed much easier
solved using error propagation, or indeed only solvable using error propagation — I
believe that the application described in Section 5 is such an example — but all the
time with a firm eye on computational complexity as well as the necessity for error
propagation (or, as it sometimes happens, the lack of it). It is to this end that I not
only describe the combination of error propagation with projective geometry, which
for the unwary keeps a number of stumbling blocks at hand, but also demonstrate 3
very different application domains. In the following I’ll describe the outline of this
thesis in more detail.

1Exact in its derivation, that is.
2Chapter 4.1 lists more literature on the subject
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1.2 The Outline of this Thesis

The flow of this thesis goes from the theoretical foundations (projective geometry,
error propagation, and their combination) to practical applications showcasing one
or more of the previously described theoretical principles; within the application
chapters I go from the 2D case of a single planar homography to the case of sev-
eral homographies all within one image and from there to the case of an even less
restricted class of objects, surfaces of revolution.

In more detail, I’m starting this thesis with an overview of the state of the art in
projective geometry (Chapter 2) and error propagation (Chapter 3) respectively.
These chapters do not contain anything new and are for a huge part lifted straight
out of [103] and a couple of other books, in spirit if not in words. If you know your
way around projective geometry or error propagation I would recommend to simply
skip the respective chapter, they are here for completeness, and as a handy reference
for later work.

The actual thesis starts with Chapter 4, which combines projective geometry and
error propagation. The underlying idea is not new, and as far as the application to
homogeneous coordinates is concerned can be found in [75]; however, in this chapter
I also consider the application of these principles to other parameterisations than
homogeneous coordinates and, starting from first principles, derive a number of new
results such as an excellent approximation to the covariance of a line segment fitted
to edgels, a new stopping-criterion for incremental fits based on a χ2-test, and a
new algorithm for the calculation of the cross-ratio of 4 lines which due to the use
of error propagation in fact performs faster than current algorithms. I will also give
an intuitive explanation why the spherical normalisation used by many authors is
indeed superior to an Euclidean normalisation; and finally I will give an overview
on how to compare a number of common stochastic entities. Just this last section
alone could already put away with many of the numerous, finely tuned parameters
so common to computer vision algorithms.

The next three chapters describe different application scenarios. In Chapter 5 I
describe the application of error-propagation principles to the grouping and recog-
nition of zebra crossings and other repeated structure. This application was first
described by me in [6], and is a nice example of an implementation which I be-
lieve would have been impossible without the use of error propagation due to the
high variations of a zebra-crossing’s size and quality even within a single image;
of particular interest here is how only a few confidence-tests can replace a host of
manually chosen parameters, resulting in a uniquely stable algorithm. It describes
the groundbreaking work on which later publications such as [135] build.

In Chapter 6 I outline an algorithm for the grouping of houses (or, indeed, any struc-
ture consisting of orthogonal and parallel elements). Over the years we have seen a
few algorithms for the reconstruction of buildings from monocular images [36, 87, 97],
however, in contrast to multi-view approaches these nearly always require manual
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segmentation of image regions. The algorithm outlined in this chapter could be seen
as an attempt to remedy this situation. It is, however, included in this thesis for a
different reason: buildings show a number of diverse features at different scales, and
I will in particular have a closer look at collinear line segments of only a few pixels
to several hundreds of pixels in length and distance as well as vanishing points, the
image of intersection of parallel lines at infinity, which can be anywhere from lit-
erally in the image to literally at infinity. What is more, these features come with
differing accuracies, and even one and the same feature can have different accuracies
attached to it depending on context. This application is therefore well suited as a
showcase for several different ideas and approaches such as a new algorithm for the
iterative improvement of vanishing-point position and one for the automatic group-
ing of vanishing points; a new objective function for the (partial) calibration of a
camera from vanishing-points which takes the different uncertainties in the positions
of the vanishing points into account and extends the usual Legoland assumption to
more general setups; an extension on previous work which takes the vanishing-point
information into account when merging line-segments; and finally a comparison of
the performance of several different error-measures, both new ones first introduced
in this thesis as well as established ones from the literature, for the identification of
collinear line segments.

Chapter 7 finally describes part of the grouping algorithm underlying some of my
older publications on the recognition of surfaces of revolution such as [3–5, 9], but
also newer publications on their reconstruction, such as [8]. An important feature
for both recognition as well as reconstruction of SORs is the object’s axis. The axis
can be calculated, e. g., based on the intersections of bitangents, which can vary
considerably in their accuracy; it is therefore an excellent example to compare the
performance of a number of established algorithms on a number of different features
and to demonstrate how even a well-known and often-used algorithm like total least
squares will fail if the underlying assumptions (iiid-data) are violated; much better
alternatives are introduced and an extensive comparison and discussion shows the
merit of error propagation for a problem which, in similar form, one can see tackled
with unsuitable tools at nearly any computer-vision conference, even today. The
comparisons are done on real contour-data derived from real images which previously
appeared in publications about the grouping and recognition of SORs.

This thesis ends, as all theses do, with a conclusion and outlook in Chapter 8.

Due to the diverse nature of the underlying problems, ranging from projective ge-
ometry to error propagation, from intrinsically two-dimensional problems like the
recognition of repeated structure to intrinsically three-dimensional problems like
the grouping of box-like and even (partly) free-form objects (surfaces of revolution),
there is no separate chapter entitled “literature survey”. Instead you can find a
small overview over the then relevant literature in each chapter’s introduction, and
then again whenever a direct reference can help to set the work described in context.
The bibliography itself comes in two parts, starting with a list of my own relevant
work on page 195 and the bibliography proper on page 197.
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Chapter 2

Projective Geometry

. . . experience proves that anyone who has studied geometry is in-
finitely quicker to grasp difficult subjects than one who has not.

Plato, The Republic, Book 7, 375 B. C.
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18 Projective Transformations

2.1 Introduction

When working in computer vision and image understanding, one of the first things
one often seeks to describe is the image formation process, i. e. how are the real
world and any specific image of this world related to each other. This connection
can be made elegantly by projective geometry.

Projective geometry is much older than computer vision. According to [138] the
first systematic treatise on projective geometry was published 1822 by Poncelet
in his Traité des propriétés projectives des figures. Prompted by Felix Klein’s Er-
langen programme of 1872 [79] as well as a general interest in invariant theories,
projective geometry became rather fashionable among the mathematicians of the
late 19th and early 20th century (e. g. [39]). The book that by many in the vision
community is considered the standard reference on projective geometry, Algebraic
Projective Geometry by J. G. Semple and G. T. Kneebone [138], dates back to 1952.
Only comparatively recent trends in computer vision require a somewhat more in-
volved algebra; mostly tensor algebra as it is used in shape from multiple view
approaches [59]. However, since this thesis concentrates on single view geometry,
only standard projective geometry is used here.

This chapter describes the theory and principles of projective geometry as they
apply to this thesis. Starting from 2D projective transformations, the notion of ho-
mogeneous coordinates is introduced and several subgroups of the projective group
are presented (Section 2.2). This leads naturally to the discussion of different cam-
era models in Section 2.3. Points, lines and conics are introduced (Sections 2.4
and 2.5) as well as the crossratio of four collinear points or four coincident lines
respectively (Section 2.6). Finally some special transformations (canonical frames
in Section 2.7 and “projective symmetry” in Section 2.8) are presented, and an al-
ternative representation of the projective plane is introduced: the Gaussian sphere
(Section 2.9), which has proven useful for error-propagation purposes or algorithms
like the grouping by vanishing points discussed in Section 6. This introduction is
naturally a rather brief and incomplete one, the interested reader can find additional
information in, e. g., [43, 69, 103, 138, 146].

2.2 Projective Transformations

Projective geometry describes a group based on central (conic) projections. Con-
fining ourselves to an image’s two dimensions, each projection can be visualised as
a central projection from an arbitrary plane Π′ onto a second plane π, compare
Figure 2.1. The totality of all those projections from one plane onto another forms
the projective group [138].

Since any two-dimensional plane in 3D can be transferred into any other two-
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Figure 2.1: A central projection from one plane onto another.

dimensional plane by rotation and translation1, we can think of any plane Π′ as
a rotated and translated version of the special plane Π formed by the points X =
(X, Y, 0)T. Any point X on Π is transformed into a new point X′ on an arbitrary
plane Π′ with

X′ = RX + t, (2.1)

where R ∈ IR3×3 is the matrix of rotation and t ∈ IR3 the vector of translation.

Since the third coordinate of X was chosen to be 0, the rigid transformations be-
tween Π and Π′ (translation and rotation) can be combined into a single 3 × 3
transformation matrix, namely




X ′

Y ′

Z ′


 =




r11 r12 t1
r21 r22 t2
r31 r32 t3






X
Y
1


 . (2.2)

Here rij denotes the element in the ith row and jth column of R.

The central projection from a point X′ ∈ IR3 on the plane Π′ on to a point x =
(x, y, 1)T ∈ IR2 on the plane π is given by

x =
X ′

Z ′
=

r11X + r12Y + t1
r31X + r32Y + t3

y =
Y ′

Z ′
=

r21X + r22Y + t2
r31X + r32Y + t3

.

(2.3)

This makes the nonlinear nature of projection in Euclidean coordinates apparent.

Equation (2.3) does not yet describe the group of 2D projective transformations; in
particular the rij are not general, since they are columns of a rotation matrix with

1Possibly by an infinite amount.

Error Propagation in Geometry-Based Grouping



20 Projective Transformations

only 3 degrees of freedom [103]. Repeated application of Equations (2.2) and (2.3)
leads to the form of a general projective transformation:

x =
X ′

Z ′
=

p11X + p12Y + p13

p31X + p32Y + p33

y =
Y ′

Z ′
=

p21X + p22Y + p23

p31X + p32Y + p33
.

(2.4)

This transformation has 8 degrees of freedom (DOF), despite having 9 parameters
pij — any one parameter pij 6= 0 can arbitrarily be set to pij = 1 by multiplying
both numerator and denominator with 1/pij. Such a transformation, and equally
any projective transformation from a space of dimensionality n into a space of the
same dimensionality n, is sometimes called a homography .

2.2.1 Homogeneous Coordinates

Equation (2.4) can be expressed by a single, linear matrix transformation such that




x1

x2

x3


 =




p11 p12 p13

p21 p22 p23

p31 p32 p33






X1

X2

X3


 (2.5)

or
x = PX, (2.6)

if the convention is adopted that

(
x
y

)
=

(
x1/x3

x2/x3

)
. (2.7)

This 3-vector representation of a point is known as homogeneous coordinates. Its
main advantage is the fact that, using homogeneous coordinates, a projection can
be expressed by a single matrix multiplication, which hides the nonlinearity inherent
in projection and is therefore handy for computational purposes. For this reason
homogeneous coordinates will be used throughout the remainder of this thesis, unless
otherwise stated.

In homogeneous coordinates any finite two-dimensional point x = (x, y)T can be
expressed as the triplet X = (X, Y, Z)T with Z 6= 0. The conversion between the
two is




X
Y
Z


 = k




x
y
1


 (2.8)

(
x
y

)
=

(
X/Z
Y/Z

)
. (2.9)
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From Equations (2.8) and (2.9) it is clear that the homogeneous representation X

is only defined up to an arbitrary scale factor k 6= 0; only the ratio of homogeneous
coordinates is significant. We also see from Equation (2.9) that in the limit Z → 0
a point at infinity can be expressed quite naturally as X = (X, Y, 0)T, compare
also Section 2.4.2. Any non-singular matrix P ∈ IR3×3 forms a valid projective
transformation with eight degrees of freedom (see above).

The group of projective transformations discussed above contains several subgroups.
These are discussed in the next sections, going from the more special to the more
general.

2.2.2 The Euclidean Group

Equation (2.6) describes a Euclidean transform if

Peucl = k




r11 r12 tx
r21 r22 ty
0 0 1


 = k

(
R t

0 0 1

)
, (2.10)

where R ∈ IR2×2 is an orthogonal matrix, i. e.

RRT = RTR = I2. (2.11)

It is easy to show that all orthogonal matrices describe either rotations (det(R) = 1)
or reflections (det(R) = −1). The usual parameterisations for a rotation or reflection
are

Rrot =

(
cos(α) − sin(α)
sin(α) cos(α)

)
(2.12)

Rrefl =

(
cos(α) sin(α)
sin(α) − cos(α)

)
. (2.13)

The Euclidean transformation therefore has 3 degrees of freedom (the angle of ro-
tation α and the vector of translation t = (tx, ty)

T), and it is easy to see that all
transformations of this type form a group. Compare Figure 2.2(a) on Page 23 for
examples of all possible Euclidean transformations.

2.2.3 The Similarity Group

The similarity group is a generalisation of the Euclidean group through the addition
of a uniform scale-factor s to the matrix of rotation or reflection R. Equation (2.10)
becomes

Psim = k




s � r11 s � r12 tx
s � r21 s � r22 ty

0 0 1


 = k

(
s � R t

0 0 1

)
. (2.14)
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Consequently, a similarity transformation has 4 degrees of freedom. It is again easy
to see that all similarity transformations form a group. Figure 2.2(b) on Page 23
gives examples of similarity transformations.

2.2.4 The Affine Group

The affine group is derived from the similarity group through the inclusion of
anisotropic scaling and skew. This introduces two additional degrees of freedom,
resulting in 6 degrees of freedom altogether. An affine transformation has the ma-
trix

Paff =




a11 a12 a13

a21 a22 a23

0 0 a33


 (2.15)

where det(Paff) 6= 0. Skew alone can be described by a matrix

Pskew =




1 ax 0
ay 1 0
0 0 1


 , (2.16)

where ax and ay describe skew in x-direction (i. e. parallel to the x-axis) and y-
direction respectively. For ax = −ay this also describes a rotation around the origin
and isotropic scaling; the effect of skew can conversely be created by a suitable
combination of rotations and anisotropic scaling. Figure 2.2(c) on Page 23 gives
examples of affine transformations, in particular skew in y-direction.

2.2.5 The Projective Group

The projective group finally can be derived from the affine group by introducing so-
called perspective skew in the x- and y-direction. This has also been called projective
shear or chirp and keystoning. This is simply the full matrix in Equation (2.5), or

Pproj = PaffPproj skew (2.17)

where the projective skew alone can be parametrised as

Pproj skew =




1 0 0
0 1 0
bx by 1



 (2.18)

if bx and by describe projective skew in x-direction (i. e. symmetric around the x-
axis) and y-direction respectively. An example of projective shear in one or both
directions can be seen in Figure 2.2(d).

Figure 2.2 and Table 2.1 give an overview over the projective group and its subgroups
as well as some invariant features.
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(a) Rotation and
translation.

(b) Isotropic scal-
ing.

(c) Anisotropic
scaling and skew.

(d) Projective
skew.

Figure 2.2: Visual effects of different group-actions: (a) Euclidean, (b) Simi-
larity, (c) Affine, (d) Projective.

Group D
O

F

Matrix Invariant properties

Projective
Group

8




p11 p12 p13

p21 p22 p23

p31 p32 p33




� cross-ratio (ratio of ratios of
collinear lengths)

� concurrency and collinearity
� order of contact
� tangent discontinuities and cusps

Affine
Group

6




a11 a12 a13

a21 a22 a23

0 0 a33




� ratio of lengths of collinear or
parallel segments (e. g. midpoints)

� ratio of areas
� linear combinations of vectors
� parallelism

Similarity
Group

4 k




sr11 sr12 tx
sr21 sr22 ty
0 0 1




� ratio of lengths
� angles

Euclidean
Group

3 k




r11 r12 tx
r21 r22 ty
0 0 1




� lengths
� areas

Table 2.1: Common subgroups of the projective group and their geometric
properties. Groups lower in the table inherit from groups higher in the table
(but the converse is of course not true). See also [103, introduction].
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Figure 2.3: Generic camera Model.

2.3 Camera Models

This section describes the four camera models used in this thesis, namely the weak
perspective camera in Section 2.3.1, the affine camera in Section 2.3.2, the projective
camera in Section 2.3.4 (preceded by a short description of the perspective and
constrained perspective camera models in Sections 2.3.3 and 2.3.5), and what I
call the quasi-calibrated camera in Section 2.3.6 — the most realistic and therefore
the preferred model for most applications discussed later. These models are all
useful approximations of real cameras for certain applications, and each section
gives examples of such applications. Section 2.3.7 finally discusses the limits of all
these linear models when compared to real, nonlinear cameras. This section is in its
approach complementary to a good discussion of camera models in the Appendix
of [103].

The discussion is based on the simple model of a pinhole-camera depicted in Fig-
ure 2.3. Note the small difference in the placement of the origin between Figure 2.1
on Page 19 and Figure 2.3. The former is called a viewer-centred coordinate sys-
tem, while the latter is called image-centred [68]. It is easy to see from Figure 2.3
that the projection from arbitrary homogeneous world-coordinates X = (X, Y, Z, 1)T

onto homogeneous image coordinates x = (kx, ky, k)T is given by

x =




1 0 0 0
0 1 0 0
0 0 1

f
1


X. (2.19)
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Figure 2.4: The weak perspective camera.

Different values for f (which is often taken to be the focal length, from which it
takes its name) lead to different camera models; we distinguish the two cases f =∞
described in Sections 2.3.1 and 2.3.2 and f 6=∞ described in Sections 2.3.3 and 2.3.4.

2.3.1 The Weak Perspective Camera

The weak perspective camera is derived from Equation (2.19) in the limit f → ∞.
This means that all rays are parallel to each other and orthogonal to the image
plane, as illustrated in Figure 2.4. In addition to this projection, the image plane
can undergo an arbitrary Euclidean transformation (see Equation (2.10)).

This model describes the case of a calibrated camera viewing a planar object in
a plane parallel to the image plane, and at a known distance. Only the object’s
position and orientation within that plane is assumed unknown. This setup is some-
times found in inspection tasks, where a calibrated camera is installed at a known
distance above a conveyor-belt which carries flat objects with a fixed orientation
towards the camera (namely lying on the belt). If the distance between the camera
and the planar object (and therefore the object’s size in the image) is not known, it
is customary to replace the Euclidean transformation of the image plane used above
by a similarity transformation according to Equation (2.14). The resulting model is
often called scaled orthographic projection.

Special precautions have to be taken when applying this model to objects that
are neither planar nor parallel to the image plane. Telecentric lenses (as seen in
Figure 2.5) can be used and give a very good approximation of this model. The
size of the object is, however, limited by the diameter of the front lens, which has
to be bigger than the object. In practice the model of a weak perspective camera is
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f

Figure 2.5: Normal lens (top) and telecentric lens (bottom).

often used whenever the change in depth within the object is small compared to the
object’s distance from the camera. Since small is often taken to mean a difference
in size of an order of magnitude or more, this can usually only be achieved with
telephoto-lenses; an extreme example might be images of (stellar) constellations
taken through a telescope.

Allowing an arbitrary object to freely change its orientation in 3D will usually result
in changes in the object’s appearance which cannot be modelled by a Euclidean or
similarity transformation. For planar objects, these changes can be modelled by an
affine transformation of the image plane (compare Equation (2.15) and the affine
camera described in the next section). For arbitrary, non-planar, fully 3-dimensional
objects this can become arbitrarily complex, and cannot normally be described by a
transformation of the image plane. Note, however, that in both cases the resulting
effect is entirely due to changes in the object’s orientation relative to the camera;
it is often possible to recover completely the object’s orientation from its weak
perspective image, which is not possible for any of the other models discussed below
(with the exception of the quasi-calibrated camera under certain restrictions).
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Figure 2.6: The affine camera. Movement of the image plane around the origin
(plus scaling) is equivalent to an affine transformation of the image plane.

2.3.2 The Affine Camera

The affine camera, like the weak perspective camera in Section 2.3.1, assumes
f → ∞. However, the image plane can now undergo an arbitrary, unknown 2D
affine transformation. This is illustrated in Figure 2.6 by a movement of the image
plane around the origin, which together with scaling is equivalent to an affine trans-
formation. For planar objects in front of an affine camera, the result of rotating the
image plane is equivalent to rotating the object. This means that it is not possible
anymore to infer the object’s orientation from its image (as was possible with the
weak perspective camera), since it is not clear whether any distortions are due to
rotations of the object or of the image plane.

The affine camera can be used to model an uncalibrated CCD-camera under restric-
tions which are otherwise unchanged from that of a weak perspective camera (i. e.
the change in depth within the object is small compared to the object’s distance
from the camera); the additional degrees of freedom introduced by the use of an
affine are used to approximate the unknown camera parameters, in particular if the
camera’s sensor is not orthogonal to the camera’s optical axis.

2.3.3 The Perspective Camera

The perspective camera or pin-hole camera depicted in Figure 2.7 is the linear
camera model which most closely resembles the real cameras used in computer vision.
Here f is the distance between the pin-hole and the image plane; this corresponds
to the distance between a camera’s lens and the image plane for real cameras. This
distance is therefore also called the focus-setting. For a camera focused at infinity
this is equivalent to the camera’s focal length. More generally, for a camera focused
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Figure 2.7: The perspective camera.

at a distance p and with focal length F this is

f =
pF

p− F
. (2.20)

In addition to the conic projection onto the image plane, the image plane itself
can be subject to an arbitrary affine transformation. Since this is equivalent to a
movement of the image plane around the origin (and subsequent scaling operation),
it corresponds well to the usual sources of mal-calibration in real cameras: a sensor-
array which is slightly tilted or displaced, a lens which is not exactly centred, an
unknown aspect-ratio and an unknown focus-setting f (and therefore overall scale).

The model’s main drawback, and the reason it is not often used in (uncalibrated)
computer vision, is its comparative complexity due to the fact that perspective pro-
jections do not form a group — a perspective projection of a perspective projection
is not necessarily a perspective projection. This can be avoided when using the
projective camera model described next.

2.3.4 The Projective Camera

The projective camera is similar to the perspective camera described above. The
only difference is that the image can undergo an arbitrary projective transformation
(instead of an affine transformation). This has the advantage of improved simplicity
over the perspective camera (from a mathematicians point of view), since projective
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Figure 2.8: The projective camera. It is not possible to distinguish between
the object and its shadow from the images of their respective outlines.

transformations form a group. It also models the process of taking images of images.
This has e. g. been used to deal with shadows [89, 154], see Figure 2.8. The use of
a projective camera model for this application is however only necessary if both an
object and its shadow are considered valid representations of the object, and this
ability is also one of the model’s main disadvantages — its inherent inability to
distinguish between the image of an object and the image of its shadow, at least
from the outline alone.

A problem with all the models discussed so far is that a number of assumptions
which are sensible for real cameras are not easily incorporated into any of the above
camera models. This has given rise to what I call the constrained perspective and
the quasi-calibrated or “sensible” camera model, described in the next two sections.

2.3.5 The Constrained Perspective Camera

This is essentially a perspective camera as described in the previous section, but
with the added constraint that the image was taken by a human or otherwise known
operator from an ordinary perspective, and at a roughly known orientation — i. e.
we know which side of the image is up, and the horizontal and vertical direction
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within the image are roughly known. This is true for almost all images which we
usually encounter and can provide rather strong constraints on possible solutions as
we will see in Sections 5–7.

2.3.6 The Quasi-Calibrated Camera

The “sensible” or quasi-calibrated camera, my preferred camera model for most of
the applications discussed later on, is also called natural camera in [87].

Using a calibrated camera means that all internal camera-parameters — the image
coordinate scale factors (sx, sy)

T, the principal point (tx, ty)
T, and the focal length

f — as well as all external parameters (position and orientation of the camera) —
are known with high precision.

A quasi-calibrated camera, in this context, means a camera where only a rough
approximation for these values exist: the focal length as printed on the lens (or
simply an educated guess), the scale factors as found in the camera’s manual, the
image centre as principal point. While these values will not, as a rule, be very
accurate, they will certainly be within sensible bounds. It is possible to collect all
these parameters into a matrix of internal camera-parameters

Pcamera =




sx 0 tx
0 sy ty
0 0 1/f


 (2.21)

This is basically the same matrix as given in [103].

In addition it is also often possible to make a few generic assumptions about the
external camera parameters, in particular the height above ground (about head-high,
some 1.6 m–1.8 m), roll-angle (usually accurate to within a few degree) and pitch-
angle (horizon somewhere in the image) which can additionally constrain possible
interpretations of the image scene. The effects of the choice of camera model will
be discussed in detail in Sections 5–7.

2.3.7 Real Cameras

Of course all six models given above are only approximations of real cameras. They
all have in common that they only attempt to model linear effects. However, real
cameras suffer from several nonlinear effects. These range from comparatively sim-
ple nonlinear (barrel or pincushion) distortions [139] to complex effects dependent
on the particular wavelength. Although in my experience good lenses will not suffer
much from any of these problems up to a field of view of about 40 ◦, it is none the
less advisable to check for any of theses problems and correct for them, if necessary.
Algorithms can be found e. g. in [139]; [14] uses a very nice approach in keeping
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with this thesis (minimising vanishing point dispersion), although the actual imple-
mentation is in my opinion flawed. The need to correct for nonlinear distortions
can make the notion of uncalibrated cameras, which have become quite fashionable
since Faugeras published his landmark article in 1992 [44], seem less appealing.

2.4 Points and Lines

We saw in Section 2.2 that the two-dimensional point p = (x, y)T can be expressed
in homogeneous coordinates as a triplet P = (X, Y, Z)T = k(x, y, 1)T (compare
Equation (2.8)). If we define a line as the set of all points for which the equation

aX + bY + cZ = k(ax + by + c) = 0 (2.22)

holds, we can write this line as a 3-vector ` with

` =




a
b
c


 (2.23)

and the equation that specifies all points P on the line as

`TP = PT` = 0. (2.24)

A line ` which passes through two points P1 and P2 satisfies `TP1 = 0 and `TP2 = 0.
Therefore ` can be calculated as

` = P1 ×P2 (2.25)

where × denotes the cross-product.

2.4.1 Duality

Writing the line ` as an homogeneous 3-vector makes apparent the duality between
points and lines in plane projective geometry — points and lines cannot be distin-
guished from Equation (2.24). It is in fact possible for any result derived for points
to be applied to lines and vice versa; this will for example be used in Section 2.6
when introducing the crossratio.

Another example is the calculation of the intersection P of two lines `1 and `2. This
is the dual problem to finding the line through two points in Equation (2.25), and
the intersection of the two lines is therefore given by

P = `1 × `2. (2.26)

It should, however, be noted that, although the structure is the same for both
points and lines, this is not necessarily the case for the individual parameters of a
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transformation. If A describes the transformation from one plane Π onto a second
plane Π′, i. e. a point x is transformed into another point x′ as

x′ = Ax (2.27)

so is the transformation from a line ` on Π onto a line `′ on Pi′ given by the inverse
of its transpose A−T, it is

`′ = A−T` (2.28)

as can be seen from

`′
T
x′ = (A−T`)T(Ax) = `TA−1Ax = `Tx = 0 (2.29)

2.4.2 Special Points and Lines

We will now discuss several points and lines of particular interest. We can see
from Equations (2.8) and (2.9) on Page 20, which described the conversion between
Euclidean (image) and homogeneous coordinates, that not every homogeneous coor-
dinate corresponds to an image coordinate. We have already mentioned that the set
of points (X, Y, 0)T with X2 + Y 2 > 0, which cannot be mapped onto (finite) image
coordinates using Equation (2.9); these points are customarily treated as points at
infinity (in the direction indicated by X and Y ). This makes the point (0, 0, 0)T

the only point in homogeneous coordinates without a well-defined counterpart in
image coordinates; it is customary to exclude (0, 0, 0)T from the set of homogeneous
coordinates.

Conversely, for lines in homogeneous coordinates the special case is the line (0, 0, c)T.
It is easy to see that this has to be the line at infinity, since all points at infinity
(X, Y, 0)T lie on this line, it is (0, 0, c) (X, Y, 0)T = 0. Note that there is only one line
at infinity, since homogeneous coordinates are invariant to uniform scaling; it is again
customary to exclude the line (0, 0, 0)T from the set of homogeneous coordinates.
The line (a, b, 0)T, on the other hand, is simply the line through the origin whose
normal-vector is given by (a, b, k)T.

2.4.3 Vanishing Points and Lines

Additional distinguished points and lines are vanishing points and vanishing lines
respectively; these can be interpreted as projective transformations of points and
lines at infinity (in 3D). Lines that are parallel in the world (and could therefore be
said to intersect at a point at infinity) will not, in general, appear parallel under a
projective transformation. Since order of contact is a projective invariant (compare
Table 2.1) this means that the lines’ original intersection at infinity will be projected
to a new location generally not at infinity. This point is called the lines’ vanishing
point since it is the point where infinitely long lines seem to vanish when viewed in
an image. Figure 2.9 shows examples of vanishing points.
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Figure 2.9: Vanishing points and vanishing line.

Two such sets of lines, both parallel to the same plane, but not parallel to each
other, define two separate vanishing points which in turn define a line. This line is
called the plane’s vanishing line, since in an image it is the locus where the plane
seems to vanish. An image can contain several vanishing lines, each associated with
a different plane in 3D. An example for a vanishing line is given in Figure 2.9.
Additional vanishing lines (not shown in the figure) go through the point-pairs
(P1,P3) and (P2,P3).

2.4.4 The Horizon

One vanishing line of particular interest is the line customarily termed the horizon.
It is formed by two vanishing points corresponding to different directions parallel to
the ground-plane (compare Figure 2.9). The name horizon is adopted here although
it is somewhat misleading, since the horizon encountered in the real world is not
a line, but rather part of a conic (a hyperbola, to be precise). And although the
difference between the two is quite small in most images (usually within a pixel),
one should keep this difference in mind, since it can become arbitrarily large under
certain conditions.

2.5 Conics

While the last section described important point and line-based features, such as the
duality between points and lines and special points and lines such as the vanishing
point and vanishing line, these are by no means the only geometric entities that are
easily integrated into projective geometry. Another important geometric structure
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are conics, which are self-similar under projective transformations. This section
describes their embedding into homogeneous coordinates and projective geometry.

A conic curve in the plane, i. e. an ellipse, parabola, or hyperbola, is defined by the
quadratic homogeneous expression

AX2 + BXY + CY 2 + DXZ + EY Z + FZ2 = 0. (2.30)

Note that this homogeneous equation has 6 parameters, but only 5 degrees of free-
dom, as only the ratio of parameters in Equation (2.30) is significant. It can be
written as

PTCP = 0 (2.31)

with a symmetric matrix C ∈ IR3×3 and vector P ∈ IR3 as follows

C =




A B
2

D
2

B
2

C E
2

D
2

E
2

F


 (2.32)

P = (X, Y, Z)T.

If a point P transforms as p = AP under the action of a matrix of transformation
A ∈ IR3×3, so is the corresponding conic C transformed as

c = A−TCA−1. (2.33)

The resulting matrix c ∈ IR3×3 is again a symmetric matrix of the form given in
Equation (2.32) and therefore a conic, it is cT = (A−TCA−1)T = A−TCA−1 = c. It
can indeed be shown that all conics are projectively equivalent, compare for example
the appendix of [103].

It should be noted that a conic’s midpoint is of course not invariant under general
projective transformations, Figure 2.10 illustrates this effect. This is due to the fact
that the ratio of lengths is not an invariant under projective transformations, as
stated in Table 2.1 on Page 23.

2.5.1 Duality

Conics are so called self-dual figures. This means that they can be considered to be
both the locus of points as well as the envelope of tangent-lines. The latter view is
commonly referred to as a line-conic. The line-conic’s equation is

L = |C|C−1 (2.34)

where |C| is the determinant of C and `TL` = 0 for all tangent-lines `; it transforms
as

l = ALAT. (2.35)
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Figure 2.10: A conic’s midpoint is not invariant to projective transformation.
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Figure 2.11: Pole and polar of a conic.

2.5.2 Pole and Polar of a Conic

For any point P outside a conic there are two tangents from P to the conic C as
illustrated in Figure 2.11. The two points of tangency define a line `P which is
called the polar of point P with respect to the conic C. Conversely, the point P

is called the pole of line `P with respect to the conic C. The interrelation between
pole, polar, and conic is given by

`P = CP. (2.36)

Note that using Equation (2.36) it is also possible to calculate the polar which
corresponds to a pole inside the conic, although the notion of tangents is not defined
for these points (the polar corresponding to a point on the conic is the tangent to
the conic at that point).

Error Propagation in Geometry-Based Grouping



36 The CrossratioPSfrag replacements

X

αac

αXAC

A
B

C
D

x

a

b

c d

Figure 2.12: The crossratio. Capital letters denote points, and small letters
denote lines.

2.6 The Crossratio

We can see from Table 2.1 on Page 23 that neither length nor the ratio of length
is preserved under projective transformation. Luckily there is one feature which
is preserved and this is the crossratio, or ratio of ratios of collinear lengths. The
crossratio is indeed by far the most important projective invariant, and Mundy
and Zisserman ventured in [103] that likely all invariant properties of a geometric
configuration can ultimately be interpreted in terms of some number of crossratio
constructions.

2.6.1 Definition

The crossratio of four collinear points {A,B,C,D} is defined with respect to Fig-
ure 2.12, usually [72, 103, 138] as

cr(A,B,C,D) =
AC

BC
�

BD

AD
=

C − A

C − B
�

D −B

D − A
, (2.37)

where AC is the directed Euclidean distance between point A and point C, and
{A, B, C, D} are scalars representing the corresponding Euclidean position of each
point along the line relative to an arbitrarily chosen origin. That the crossratio
is indeed a projective invariant can easily be proven by direct substitution and
cancellation of the resulting non-zero factor in each term [103, 138, 146].

2.6.2 The Six Crossratios of Four Points

The form of Equation (2.37) suggests that the value of the crossratio of four collinear
points depends on the order of these points. There are 4! = 24 possible permutations,
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suggesting the existence of 24 different values for the crossratio cr. In fact there are
at most 6 distinct values of the crossratio within these 24 permutations, as can easily
be shown [103, 138, 146]. These are

{
cr, 1− cr,

1

cr
, 1− 1

cr
,

1

1− cr
,

cr

1− cr

}
. (2.38)

For a general set of four points {A,B,C,D} these 6 functions of cr will indeed
produce six distinct values. However, if the four points are related in a suitable way,
some of the six crossratios formed from Equation (2.38) may be equal. A complete
catalogue of these special cases can be calculated by equating cr with each of the
other expressions and solving for cr; following [138] the three special cases are:

1. {1, 1, 0, 0,∞,∞}: two of the four points coincide.

2. {−1,−1, 1/2, 1/2, 2, 2}: this case is called harmonic separation, see Section 2.8.

3. {−ω,−ω,−ω,−ω2,−ω2,−ω2} with ω = e2πi/3: The four points, which cannot
all have real parameters, form an equianharmonic tetrad [138, Page 48].

It might be interesting to note that in every case all the values of the crossratio
occur the same number of times in the full set of 24: 4 times in the general case, 8
in case 1 and 2, and 12 in case 3.

The existence of 6 distinct values for the crossratio dependent on the order of points
could possibly cause problems for some applications where the order is not known,
especially since projective transformations do preserve order only up to a cyclic
permutation. A possible invariant which does not depend on the order can be
calculated as [103, 138]

I(cr) =
(cr2 − cr + 1)

3

cr2(cr− 1)2
. (2.39)

The application of this equation allows one to use the crossratio without the need
to determine the order of points beforehand, as well as in cases where a cyclic
permutation of the points due to some projective transformation occurred.

2.6.3 The Crossratio of Four Lines

Since points and lines are dual, there must also be a crossratio of four coincident lines
(the dual of collinearity is incidence at a point). Such a set of coincident lines is called
a pencil. Where in the case of four points on a line the points could be described
by a single parameter position on the line, in the case of four coincident lines it is
possible to uniquely describe each line by its gradient. One possible formulation for
the crossratio of four lines {a,b, c,d} is in terms of the angles between the lines [103]
(see also Figure 2.12):

cr(a,b, c,d) =
sin(αac)

sin(αbc)
�

sin(αbd)

sin(αad)
. (2.40)
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Any fifth line x not coincident with the other four will intersect the pencil at four
points of intersection {A,B,C,D}. These intersections form in turn a crossratio
on the line, as illustrated in Figure 2.12. It is easy to prove that the two crossratios
are identical, cr(a,b, c,d) = cr(A,B,C,D), using only the law of sines, that is

sin(αac)

AC
=

sin(αXAC)

XC
. (2.41)

and similarly for the other angles, compare Figure 2.12. Substituting these terms in
Equation (2.40) and cancelling out some of the terms one immediately gets (2.37).

2.6.4 Alternative Formulations of the Crossratio

Equations (2.37) and (2.40) are not particularly convenient for the actual computa-
tion of the crossratio, since it is always possible that one of the points {A,B,C,D}
is an ideal point at infinity, requiring the introduction of special cases when com-
puting the Euclidean distance used in Equation (2.37). Similar problems exist for
the calculation of the angles in Equation (2.40) if the pencil’s intersection is a point
at infinity, in which case all the lines are parallel.

Therefore the crossratio is often calculated using the equation

cr(A,B,C,D) =
|ACX|
|BCX|

�

|BDX|
|ADX| =

|acx|
|bcx|

�

|bdx|
|adx| = cr(a,b, c,d), (2.42)

where |ACX| is the determinant of a matrix formed by the three column-vectors
A, C, and X. The point X as well as the line x can be chosen arbitrarily as long as
none of the matrices in Equation (2.42) become singular2. This means in particular
that the point X must not be collinear with the points {A,B,C,D}, and the line
x must not be coincident with the lines {a,b, c,d}. A proof that Equation (2.42)
is indeed equivalent to Equations (2.37) and (2.40) can e. g. be found in [72]. An
alternative proof is outlined below:

The determinant |ACX| can be written as

|ACX| = (A×C)TX. (2.43)

We have seen in Section 2.4 that A × C = kx if x is the line through A and C.
Furthermore

A×C = ‖A‖2‖C‖2 sin(αAC)
x

‖x‖2
(2.44)

and consequently

|ACX| = (A×C)TX = ‖A‖2‖C‖2 sin(αAC)‖X‖ cos(αxX). (2.45)

2Note that any of the matrices will of course become singular if the two points (lines) used
are identical. However, if the four points (lines) are distinct from each other then either all the
matrices will be singular, or none, depending solely on X.
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Figure 2.13: A conic can be defined using the crossratio.

Since the homogeneous points {A,B,C,D} are collinear, the line x goes through
all of them, resulting in similar equations for the other three combinations. From
there it is easy to see that Equation (2.42) is indeed equivalent to Equation (2.40).
Equation (2.45) suggests that X ∝ x ∝ (A×C) is a reasonable choice for X — we
will see in Section 4.5 that this is in fact not so.

2.6.5 Conics and the Crossratio

Conics can be defined with respect to the crossratio: take four points A, B, C, D,
no three of which are collinear. Draw a pencil of lines from an arbitrary point E

to all four fixed points. The locus of the vertices X′ of all pencils with constant
crossratio is a conic, compare [103, p. 490] and Figure 2.13.

2.6.6 Projective Coordinates

The cross-ratio can be used to define projective coordinates. This is easy to see in
the case of projective coordinates on the line as in Figure 2.14(a). In the Euclidean
case two points on a line define a coordinate system where one point is the origin
and the second point’s position relative to the first determines the scale factor.
However, scale (or, more precisely, length) is not a projective invariant. We therefore
need to know a third point’s position along the line. Only then is it possibly to
describe every other point’s position on the line uniquely by its crossratio with the
three base-points. Conversely, it is also possible, given three base-points and the
crossratio, to compute the Euclidean position of the forth point on the line by solving
Equation (2.37) for this position; it is without loss of generality (w. l. o. g.):

D =
B(A− C) + cr � A(C −B)

(A− C) + cr � (C −B)
. (2.46)
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Figure 2.14: Projective coordinates on the line and plane.

The same is possible in the plane. Euclidean coordinates in the plane consist of
an origin and two orthonormal vectors which define two independent directions as
well as a scale-factor. Again, scale (length) is not a projective invariant, nor is
orthogonality. In order to construct a projective coordinate system of the plane 4
points are needed, no three of which are collinear. Several approaches have been used
to define projective coordinates on the plane using 4 reference-points; however, they
are all equivalent since 5 points only have two functionally independent invariants,
corresponding to the planes 2 degrees of freedom.

One often used approach singles out one reference-point and draws lines from there
to the other 3 reference points, resulting in 3 coincident lines. Any fifth point would
add a forth line, and the crossratio of four lines would uniquely determine the ray
on which the forth point is located. Selecting a different base-point we end up with
a similar construction, giving a second ray. The point where the two rays intersect
is the fifth point (compare Figure 2.14(b)).

Another way to uniquely describe a points’ position on the plane is to solve for
the transformation that projects the base-points into a fixed position and determine
any other point’s position within this frame. This approach is discussed in the next
section.

2.7 Canonical Frames

We have seen in the last section that the position of 4 points on a plane allows us to
uniquely specify the position of each additional point on that plane independently
of any projective transformation applied to that plane. These projective coordinates
are, however, not a particularly intuitive way to describe most image features, and
it is therefore often desirable to find some quasi-Euclidean representation instead.
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Figure 2.15: The outline of a traffic-sign as seen in the image (left) and after
transformation into a canonical frame (right).

This can easily be done if the entire object plane is transformed in such a way that
the projective coordinates’ four reference-points (or lines) are transformed onto four
points (or lines) in a fixed position, the so called canonical frame.

2.7.1 Motivation

Three possible uses for canonical frames are described below; all have been used
within this thesis.

Verification and Recognition: Canonical frames have traditionally been used for
verification and recognition purposes [127, 129][9], as they allow for the direct
comparison of features within a quasi-Euclidean framework. Possible com-
parisons range from direct comparison of pixel-positions to the calculation of
higher order features of non-algebraic curves, where they considerably reduce
the number of derivatives required (from up to seventh order to only first
or second order [158]). It is noteworthy that all frames are mathematically
equivalent in the absence of errors. This is however not the case for practical
applications, as we will see in, e. g., Section 4.4.2.

Recognition within a canonical frame can be implemented as simple as a com-
parison with different models, and as complicated as the extraction of invari-
ants or the application of an index-function. Examples for both uses are given
in Section 7.

Backprojection: Normally, image pixels or low-level features like edgels or lines
are projected into the canonical frame in order to test a hypothesis. If instead
the known contour (or other features) of a hypothesis are projected from the
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frame back into the image we talk about backprojection. This is often done
for verification directly in the image, recognising the fact that in practice, and
in the presence of errors, all canonical frames are not equal.

Another use is the prediction of additional image features from a hypothesis,
which, if found, would lend additional credibility to the particular hypothesis.
This is used in Section 5.

Fitting: Using the canonical frame to fit higher order structures to low-level fea-
tures (mainly edgels) allows us to enforce additional constraints not easily
enforced within the image. The basic idea here is to find the transformation
from the image into the canonical frame which minimises the error between
the transformed image features and a structure in the canonical frame. It is
then possible to invert the transformation in order to calculate the structure’s
position within the image.

This approach is of course only useful in the presence of errors (fitting would
not be required otherwise) and therefore discussed in more detail in Sec-
tion 4.4.2, where it is used.

2.7.2 Commonly used Frames

In the case of 4 points, commonly used frames include e. g. the unit square

{
(0, 0, 1)T, (1, 0, 1)T, (0, 1, 1)T, (1, 1, 1)T

}
(2.47)

and the triangle of reference and unit point

{
(1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T, (1, 1, 1)T

}
, (2.48)

where the first three points are called the vertices of the triangle of reference, while
the last point is called the unit point [103, 138]. Other canonical frames are often
based on the object’s appearance in the Euclidean world. Figure 2.15 shows an
example where the unit square is also the object’s natural frame. In the absence of
measurement errors, all canonical frames are of course mathematically equivalent.

2.7.3 Commonly used Image Features

A canonical frame describes a particular instance of a projectively transformed plane
(or, more general, space). In order to define this particular instance, it is necessary
to determine the projective transformation between the original space and its rep-
resentation within the canonical frame. In the case of planar structures as discussed
here, this transformation has 8 degrees of freedom, and it is clear that the posi-
tion within the image and frame of any structure which fixes at least 8 degrees of
freedoms can be used to describe the transformation between the two planes. In
practice, however, this structure will nearly exclusively be made up of points and
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Figure 2.16: Some distinguished points: a. Bitangent-points, b. inflection, c.
casttangent-point.

lines. The reason for this is that the use of points and lines leads to a set of linear
equations (compare Section 2.7.4), while higher order algebraic structures generally
do not. Also, points (edgels) and lines (straight edgel chains) are the most basic
image features found.

Three different types of points are commonly used in computer vision:

1. Corners of grey-level discontinuities as found by corner detectors.

2. Intersections of higher-order algebraic features, usually lines fit to grey-level
discontinuities.

3. Distinguished points. These are points on a curve which are easily distin-
guishable from all the other points on the curve by order of contact, which is a
projective invariant (compare Table 2.1). Examples are points of bitangency
or inflections (see Figure 2.16), which are easily identified using only up to
first or second order derivatives.

Once a point and a curve are identified it is often easy to create a number of
additional distinguished points. Examples are rays cast from one distinguished point
and tangent to the curve at a second point, so called casttangents. This second
point, the casttangent-point, is another distinguished point. Another example is
the intersection of a line through two distinguished points and the curve (compare
Item 2), again generating extra distinguished points (although of course collinear
with the first two).

2.7.4 Calculation of Canonical Frames

Finding the transformation A ∈ IR3×3 such that N ≥ 4 image points Xi are mapped
onto the corresponding frame-points xi is easily done by solving the equation

AX = xk (2.49)

for A. X, x ∈ IR3×N are two matrices, where each column represents one image
or frame point respectively, and k ∈ IRN×N is a diagonal matrix of scale-factors
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accounting for the fact that the overall scale of each homogeneous coordinate can
be chosen arbitrarily. The resulting equations are of the form:

a11Xi + a12Yi + a13Zi = kixi

a21Xi + a22Yi + a23Zi = kiyi

a31Xi + a32Yi + a33Zi = kizi

(2.50)

and it is always possible to eliminate ki. We assume that w. l. o. g. zi = 1 (this
is obviously not the case for the triangle of reference (2.48), but the underlying
principle is the same) and get

a11Xi + a12Yi + a13Zi = a31Xixi + a32Yixi + a33Zixi

a21Xi + a22Yi + a23Zi = a31Xiyi + a32Yiyi + a33Ziyi.
(2.51)

Furthermore, since the overall scale of A is arbitrary we can choose w. l. o. g. a33 = 1
and get, for N = 4



X1 Y1 Z1 0 0 0 −X1x1 −Y1x1

0 0 0 X1 Y1 Z1 −X1y1 −Y1y1

X2 Y2 Z2 0 0 0 −X2x2 −Y2x2

0 0 0 X2 Y2 Z2 −X2y2 −Y2y2

X3 Y3 Z3 0 0 0 −X3x3 −Y3x3

0 0 0 X3 Y3 Z3 −X3y3 −Y3y3

X4 Y4 Z4 0 0 0 −X4x4 −Y4x4

0 0 0 X4 Y4 Z4 −X4y4 −Y4y4







a11

a12

a13

a21

a22

a23

a31

a32




=




Z1x1

Z1y1

Z2x2

Z2y2

Z3x3

Z3y3

Z4x4

Z4y4




. (2.52)

The existence of this linear system ensures the existence and uniqueness of a solution
for A given four point correspondences, provided that no three of the points are
collinear[103].

A more elegant implementation would use a singular value decomposition (SVD)
approach to calculate the eigenvector to the smallest (zero!) eigenvalue of the system




...
Xi Yi Zi 0 0 0 −Xi

xi

zi
−Yi

xi

zi
−Zi

xi

zi

0 0 0 Xi Yi Zi −Xi
xi

zi
−Yi

xi

zi
−Zi

xi

zi
...







a11

a12

a13

a21

a22

a23

a31

a32




= 0. (2.53)

This way it is not necessary to single out any particular aij = 1. In addition, such
an approach will also work in the presence of errors, and given N 6= 4 point-pairs.
SVD is, however, computationally more expensive.

The same basic approach can be used when 4 lines are given, no three of which are
coincident, solving for A−T instead (compare Equation (2.28)). Rearranging Equa-
tion (2.28) to read L = AT`k it is even possible to combine the equations for points
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and lines into one system of equations; the equation for a line-pair corresponding to
Equation (2.52) and w. l. o. g. Ci 6= 0 would read




...
ai 0 aiAi bi 0 biAi ci 0
0 ai aiBi 0 bi biBi 0 ci

...







a11

a12

a13

a21

a22

a23

a31

a32




=




...
ciAi

ciBi
...


 . (2.54)

Closed form solutions for combinations with higher-order algebraic forms, e. g. con-
ics, are unfortunately not as easy to find.

2.7.5 Semi-Frames

So far, we have always assumed that a canonical frame fixes all of a planar transfor-
mation’s 8 degrees of freedom. For many applications, however, this is not necessary.
Imagine a frame which solely consists of a set of horizontal lines with fixed distance
from the origin. Neither an anisotropic scaling factor in x direction, nor any skew
nor translation in that direction would change the appearance of the frame. It
would therefore be sufficient to solve for a 5 degrees of freedom transformation and
arbitrarily fix the remaining 3 degrees. This could, e. g., look like

A = k




1 0 0
a21 a22 a23

a31 a32 a33


 . (2.55)

2.8 Symmetry under Projective Transformations

Symmetry plays a crucial role in everyday life; many man-made objects possess
symmetry, and this has been exploited in vision systems [55, 102, 120, 128], [5, 9]. It
is therefore reasonable to ask what happens to symmetry under a general projective
transformation.

Two points are said to possess symmetry with respect to a line, the axis of sym-
metry, if the line is the perpendicular bisector of the line segment joining the two
points. They are said to be symmetric with respect to a third point, the centre of
symmetry, if the third point bisects the line joining the points [65]. Symmetry is
therefore an inherently non-projective quality, since it depends on the invariance of
midpoints and, in the case of axial symmetry, angles3. It is nonetheless possible to

3For an affine transformation the concept of skewed symmetry can be defined.
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identify some properties of symmetry that do not rely on the invariance of angles
or the ratio of lengths and this will be done in Section 2.8.1. We will then see in
Section 2.8.2 that these properties describe a particular type of projective trans-
formation, namely a plane harmonic homology. Section 2.8.3 finally shows that a
plane harmonic homology maintains its structure under arbitrary projective trans-
formations, and therefore is the most appropriate description of symmetry under
projective transformations.

2.8.1 Properties of Symmetry

Symmetry can be described in terms of the transformation H ∈ IR3×3 which trans-
forms one side x into its symmetric complement x′, we get the necessary condition

Hx = k′x′

Hx′ = kx

=⇒ HHx′ = kk′x′

=⇒ HH = kk′I3. (2.56)

It is always possible to scale H so that kk′ = 1. H is called an involution or
automorphism.

Equation (2.56) is only the necessary condition for symmetry; additional restrictions
are needed in order to ensure that H represents a symmetry transformation. In
the case of axial symmetry the transformation H obviously leaves the axis itself
unchanged; in other words, the axis forms a set of fixed points or united points. In
the case of point symmetry, the centre of symmetry is left unchanged. It turns out
on closer inspection that axial symmetry has another fixed point at infinity, in the
direction perpendicular to the axis, while point-symmetry has a fixed line at infinity.

In the projective case, the condition above reduces to that of a fixed point and a line
of fixed points in arbitrary position, as long as the point is not located on the line.
Interestingly, this means that there is no intrinsic difference between axial symmetry
and point symmetry in a projective space.

Finally, symmetry is characterised by the fact that the line segment joining x and its
symmetric complement x′ is bisected by the axis of symmetry (in the case of axial
symmetry) or the point of symmetry (in the case of point symmetry). The ratio of
collinear lengths is, however, not a projective invariant; the closest approximation
within a projective space would be a constraint on the crossratio which any pair of
symmetric points forms with its midpoint and the point at infinity: the crossratio
is always cr = −1.This is called harmonic separation (see Section 2.6.2).

To identify a transformation that could take the role of symmetry within a projec-
tive space, we are looking for a transformation with a line of fixed points and an
additional fixed point not on that line which fulfils Equation (2.56) and with the
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required crossratio of cr = −1. We will see in the next section that a plane harmonic
homology has all these attributes.

2.8.2 Homologies

One condition on a transformation that could take the role of symmetry within a
projective space was the existence of a line of fixed points and an additional fixed
point not on that line. We can see from Equation (2.6) on Page 20 that any 2D
projective transformation of a homogeneous vector x ∈ IR3 can be expressed as
its multiplication with a matrix P ∈ IR3×3. This matrix will in general have 3
eigenvectors xi ∈ IR3, xi 6= 0 and corresponding eigenvalues λi, such that

Pxi = λixi. (2.57)

Since homogeneous coordinates are invariant to overall scale this means that a gen-
eral projective transformation will have at least 3 points which remain fixed under
this particular transformation4. Depending on the multiplicity of the λi there are 6
distinctive cases. These are discussed in more detail in [138].

Here, we are only interested in cases that produce a line of united points, that is an
eigenvalue of geometric multiplicity 2. There are two and only two such cases, the
first case with one degenerate eigenvalue λ0 of algebraic and geometric multiplicity
2 and one simple eigenvalue λ2 and the second case of one degenerate eigenvalue λ0

of algebraic multiplicity 3 and geometric multiplicity 2. These cases are customarily
called the plane homology and the special plane homology respectively, and the
corresponding set of united points is formed by a line ` ∈ IR3 of united points and
a single united point v ∈ IR3, also called the vertex. Of these two only the plane
homology is of interest to us, since in the case of the special plane homology the line
of united points and the single united point coincide, vT` = 0.

According to [138] any plane homology H ∈ IR3×3 can always be parameterised as

H = I3 +
1− cr

cr
�

v`T

vT`
(2.58)

as long as vT` 6= 0, that is the homology is not a special plane homology. Accord-
ingly, any plane homology with crossratio cr = −1 can always be parametrised as

H = I3 − 2
v`T

vT`
. (2.59)

This is called a plane harmonic homology . By construction, any plane harmonic
homology has a line of united points ` and a single united point v as well as cr = −1.

4It is possible that two of these points — or even all three — coincide. It is also possible
that more than 3 such points exist. A simple example for the latter is P = I3, the identical
transformation.
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(a) Symmetry with
respect to a line.

(b) Symmetry under affine
transformation.

(c) Symmetry under pro-
jective transformation.

Figure 2.17: Symmetry under transformations.

It also satisfies the necessary condition for symmetry (2.56), it is

HH = I3 − 4
v`T

vT`
+ 4

v`Tv`T

vT`vT`

= I3 − 4
v`T

vT`
+ 4

v(`Tv)`T

vT`(`Tv)

= I3 − 4
v`T

vT`
+ 4

v`T

vT`
= I3. (2.60)

This shows that Equation (2.59) really describes a transformation as outlined in
Section 2.8.1. It also describes Euclidean symmetry: ` = (a, b, c)T and v = (a, b, 0)T

describe axial symmetry; v = (x, y, z)T and ` = (0, 0, 1)T describe point symmetry.

2.8.3 Symmetry under Projection

Under an arbitrary projective transformation P ∈ IR3×3 with Pv = ṽ and P−T` = ˜̀
the plane harmonic homology H transforms as H̃ = PHP−1. That H̃ is again of the
form (2.59) can be seen from:

H̃ = PHP−1

= PI3P
−1 +

1− cr

cr
�

Pv`TP−1

vT`

= PP−1I3 +
1− cr

cr
�

Pv(P−T`)T

vTPTP−T`

= I3 +
1− cr

cr
�

ṽ˜̀
T

ṽ
T˜̀. (2.61)
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It follows (from the previous section) that any symmetry-transformation is of the
form given in Equation (2.59), and (from Equation (2.61)) that all symmetry-
transformations keep this form under an arbitrary projective transformation. Con-
versely, it is always possible to find a projection matrix P such that PHP−1 de-
scribes a symmetry. A plane harmonic homology therefore describes the form of a
symmetry-transformation under an arbitrary projective transformation. Figure 2.17
gives examples for symmetry under different transformations.

2.9 The Gaussian Sphere

Persons used to the Euclidean plane generally find it difficult to envisage the pro-
jective plane with its ideal points at infinity, but without the usual invariance of
angles and length (or at least ratio of length). So it is only understandable that
other models have been proposed.

2.9.1 The Ray-Space Model

Perhaps the most widespread model is that of a ray space, a space of coincident
rays embedded into a three-dimensional space IR3, as described in e. g. [103]. In this
space each ray — all rays emanate from a common origin — represents a projective
point. Only the direction of the ray matters in this model. In projective space
the crossproduct of two points defines a line, see Section 2.4. Consequently in ray
space a line is represented by the crossproduct of two rays — a plane through the
origin spanned by the two rays. Conversely, the crossproduct of two planes is the
ray common to both planes, representing a projective point. This is illustrated in
Figure 2.18.

The process of image formation is modelled as the intersection of all theses rays and
planes with a plane not through the origin (note the similarity between this model
and the viewer centred camera model in Section 2.3). Consequently, ideal points
with respect to this image plane are represented by rays parallel to the image plane,
while a plane through the origin and parallel to the image plane represents the ideal
line. It is easy to see from this model that the distinction between ideal points and
other points is really quite arbitrary, since the image plane can be chosen randomly.
The same model can be used to describe the mapping from one plane onto a second
plane, where the origin of the rays is the centre of projection, and it is possible to
model arbitrary relationships between two planes by a composition of rotations and
anisotropic scaling in IR3, compare [103].
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Figure 2.18: Ray-space model. Each ray corresponds to a point in the image
plane. Two rays span a plane, two planes define a ray. Ideal points correspond
to a ray parallel to the image plane.

Figure 2.19: Gaussian sphere model.

Error Propagation in Geometry-Based Grouping



2.9.2 The Gaussian Sphere Model 51

2.9.2 The Gaussian Sphere Model

A slightly different model, but based on the one above, is the model of a Gaussian
or unit sphere. A projective point corresponds to the point where a line from the
sphere’s origin to the projective point intersects the sphere, and a projective line
corresponds to the great circle that is the intersection between the sphere and a plane
through the sphere’s origin and the projective line (compare Figure 2.19). Note that
any line through the origin will intersect the sphere at 2 points on opposite sides of
the sphere. It is therefore customary to avoid this ambiguity by considering only a
semi-sphere.

It is obvious that the ray-space model can easily be converted into the Gaussian
sphere model by calculating the intersections between rays and planes on the one
side and the sphere on the other. Easier still, if a ray is expressed as k(x, y, z)T,
the corresponding point on the Gaussian sphere is simply its normalisation into a
unit-vector, 1√

x2+y2+z2
(x, y, z)T.

2.9.3 Calibrated Cameras and Gaussian Sphere

The Gaussian sphere model has some particularly convenient features when dealing
with calibrated cameras. It is then possible to calculate coordinates on the Gaussian
sphere (x, y, z)T from image coordinates (X, Y )T as




x
y
z


 =

1√
X2 + Y 2 + f 2




X
Y
f


 (2.62)

where f is the distance between the centre of projection and the image plane. It
is often called the camera’s focal length, although this is strictly only true for a
camera focused at a point at infinity, compare the discussion on Page 28. The
beauty of this construction is that directions which are perpendicular in reality will
also be perpendicular on the Gaussian sphere (compare the rays pointing to the
vanishing points in Figure 2.19), although they are not perpendicular in the image5.
Conversely, assuming that a sufficient number of directions in the image are known
to be perpendicular in reality, this can then be used to calibrate an unknown camera,
compare Section 6.3.2. In addition, Kanatani [69] showed that using the model in
Equation (2.62), which he called N -vectors6, has several advantages with respect to
numerical computations as well as error distribution, compare also Section 4.

5The same is of course also true for the ray-space model, into which the Gaussian sphere model
can be transformed.

6N standing for normalised.
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Chapter 3

Probability and Statistics

The most may err as grossly as the few.

John Dryden, Absalom and Achitophel, 1631–1700
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3.1 Introduction

Measurements in any discipline are generally encumbered with measurement errors.
This is particularly true for image measurements, where a less than ideal imaging-
process is followed by a discretisation of the image. It is, on the other hand, a
reasonable assumption that knowledge about the accuracy of our measurements is
essential when decisions based on these measurements are required. Systems which
ignore this are at best cumbersome, requiring the user to fine-tune a generally high
number of sometimes obscure parameters; at worst they will often simply fail.

Although this chapter covers the general aspects of statistical properties and er-
ror propagation, I will use examples from computer vision throughout this chapter.
Virtually all image measurements boil down to measuring edgel positions, possibly
with subpixel accuracy. Section 3.2 gives a short introduction into the kinds of er-
rors customarily encountered when dealing with any measurements, as well as some
basic concepts used in statistics. The edgel positions are then used to construct
higher order structures — contours, line segments, conics, and ever more complex
configurations. Section 3.3 describes how the measurement error in image coordi-
nates — or any random variable — is propagated into derived quantities. One of
the standard tasks in computer vision is to decide whether some structure derived
from image measurements conforms to a given model. Section 3.4 explains how
confidence tests, and in particular the χ2-test can be used as a decision making tool.
Section 3.5 finally describes some common probability distributions on the sphere;
this is applicable to angles and other measurements with only finite support.

Much of what is said in this chapter can be found e. g. in [29, 100], or [43, pp. 151–
164]. Books on photogrammetry [144]1 or [49] can be another rich source of in-
formation and inspiration for someone working in computer vision, in particular
where error propagation is concerned. An introduction into confidence testing can
be found in any textbook on statistics, examples are [81, 145]. Books concerned
with statistics on directional data in contrast are much harder to find, the reader is
referred to [95, 156].

3.2 Basic Concepts in Statistics

The following gives a short introduction into the basic concepts of statistics, see [81,
100, 145] for more information.

1Note, however, that at least the 4th edition of the Manual of Photogrammetry contains several
gross errors.
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3.2.1 Error Types

This entire chapter would not have been necessary if it were not for the fact that
any observation will always contain errors. These errors are traditionally grouped
into three categories: random errors, systematic errors, and blunders.

Blunders — or outliers, as they are customarily called in computer vision —
are gross errors generally due not to the observed process or variable, but
to the observer. If at all possible, they should be removed from the set of
observations. How to reliably classify outliers is unfortunately still an open
question, the reader is referred to [46, 67, 140, 151] for examples from nearly 20
years of outlier removal in computer vision. Particularly en vogue is currently
once more a method called RANSAC — Random Sample Consensus — which
was introduced in 1981 by Fischler and Bolles [46].

Outliers are ignored in the following unless otherwise stated.

Systematic errors — or systematic effects, as they are commonly named in the
recent literature — are not really errors in the observations, but rather in
the underlying model. It is therefore usually possible to remove or avoid sys-
tematic effects if an appropriate model is chosen, and part of Section 4 is
dedicated to the process of model-selection. An example of systematic effects
often encountered in computer vision are radial distortions of the image due
to an imperfect lens, see Section 4.2.1. It is well known how to model this
effect (usually by an odd polynomial of the distance to the principal point,
compare e. g. [139]), and therefore easy to account for it. This is usually not
done by incorporating the model of the radial distortion into that of (perspec-
tive) projection — which would lead to rather intractable equations — but by
correcting the observations for this particular effect. In computer vision, such
corrections are often part of (partial) camera calibration.

Random errors are the only kind of effects with which traditional statistics is
concerned, although the use of the term “error” is deprecated in modern liter-
ature, and the term statistical properties used instead. This captures the fact
that from a statistical standpoint, observations can be considered samples of
an unknown probability distribution of a random variable. Discrepancies be-
tween several observations are therefore not due to errors, but simply serve to
describe the particular probability distribution. It is statistics’ task to gain as
much information as possible about this distribution from the observations.

So how can we describe the properties of our unknown probability distribution? A
very concise description can often be given by the use of moments, as described in
the next section.
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3.2.2 Mean and Central Moments

Probability distributions can often be described in terms of their mean and central
moments. The population mean of a random variable x, also called first moment
or expectation, is denoted by E(x) and is defined (if it exists) as the average value
µx of the variable over all possible values, weighted by their respective probabilities
Px ∈ IR or probability density function2 px ∈ IR, it is

E(x) = µx =
n∑

i=1

xiPx(xi) (3.1)

or

E(x) = µx =

∫ ∞

−∞

x px(x) dx (3.2)

in the continuous case. Given two random variables x and y and three constants
a, b, c, the following rules hold [100]:

E(E(x)) = E(x) (3.3)

E(x + y) = E(x) + E(y) (3.4)

E(c) = c (3.5)

E(c � x) = c � E(x) (3.6)

=⇒ E(a � x + b) = a � E(x) + b. (3.7)

If x and y are independent random variables, it is also true that

E(x � y) = E(x) � E(y). (3.8)

Note, however, that, in general, E(x2) 6= (E(x))2.

Central moments, which can be used to describe most pdfs, are expectations with
respect to the mean, where the kth central moment is defined as

mk = E
(
(x− E(x))k

)
. (3.9)

One particularly important central moment is the second moment or variance σ2
x.

It is:

σ2
x = m2 = E

(
(x− E(x))2) = E

(
(x− µx)

2) (3.10)

= E
(
x2 − 2xµx + µ2

x

)
(3.11)

= E
(
x2
)
− 2µxE(x) + µ2

x (3.12)

= E
(
x2
)
− µ2

x. (3.13)

2In the following denoted by pdf.
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The variance’s positive square root σ > 0 is called standard deviation. Note that
Equation (3.13) can easily lead to numeric problems for big values of µ2

x. The
equations corresponding to Equations (3.4)–(3.8) are:

σ2
x+y = σ2

x + σ2
y (3.14)

σ2
c = 0 (3.15)

σ2
c � x = c2

� σ2
x (3.16)

=⇒ σ2
a � x+b = a2

� σ2
x. (3.17)

Related to the concept of the variance is that of the cofactor q, which could be
viewed as a relative variance. It is

q2
x =

σ2
x

σ2
0

(3.18)

for a possibly unknown value of σ2
0, the reference variance.

The Equations (3.2), (3.10), and (3.13) can only be used if the pdf px is already
known. In order to estimate the pdf from observations alone, we have to approximate
the population mean and population variance (and possibly higher order moments)
by the sample mean and sample variance. Given N measurements xi, (i = 1 . . . N)
the sample or empirical mean x is defined as the arithmetic mean:

x =
1

N

N∑

i=1

xi. (3.19)

It is E(x) = µx. The sample variance is defined as

s2
x =

1

N − 1

N∑

i=1

(xi − x)2 (3.20)

and it is E(s2
x) = σ2

x. Higher order moments can be approximated similarly.

3.2.3 Normal Distribution

The most important probability distribution, and one uniquely defined by mean and
variance, is the normal or Gaussian distribution

N(µx, σ
2
x) =

1√
2πσ2

x

e
− 1

2
(x−µx)2

σ2
x . (3.21)

3.2.4 Multidimensional Extension

The above can easily be extended for multi-dimensional random variables. If x ∈ IRn

is a vector of N (not necessarily independent) random variables, so is the expectation
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simply

E(x) = µx =
N∑

i=1

xi Px(xi) (3.22)

or

E(x) = µx =

∫ ∞

−∞

x px(x) dx (3.23)

in the continuous case, where the summation (or integration) can be performed
separately for each vector-element. Note that Px, px ∈ IR.

The central moments of order (k1 + · · ·+ kn) can be calculated as

E
(
(x1 − µx1)

k1
� · · · � (xn − µxn)kn

)
. (3.24)

Of particular importance are again the second order central moments of x ∈ IRn,
which can be set up as all combinations between each two elements of the vector. The
result can be arranged as a matrix Mxx ∈ IRn×n. This matrix is customarily called
the matrix of second central moments, the variance-covariance matrix or simply the
covariance matrix. It is

Mxx = E((x− µx)(x− µx)T) =




mx1x1 mx1x2 · · · mx1xn

mx2x1 mx2x2 · · · mx2xn

...
...

. . .
...

mxnx1 mxnx2 · · · mxnxn




=




σ2
x1

σx1x2 · · · σx1xn

σx2x1 σ2
x2

· · · σx2xn

...
...

. . .
...

σxnx1 σxnx2 · · · σ2
xn


 = Σx. (3.25)

Note that this is a square symmetric matrix since

σxixj
= E((xi − µxi

) � (xj − µxj
)) = E((xj − µxj

) � (xi − µxi
)) = σxjxi

. (3.26)

Higher order central moments can always be constructed using Equation (3.24). The
equations corresponding to Equations (3.3)– (3.7) and Equations (3.14)– (3.17) are
(with random variables x,y ∈ IRn, constant vectors b, c ∈ IRm and a constant matrix
A ∈ IRm×n):

E(E(x)) = E(x) (3.27)

E(x + y) = E(x) + E(y) (3.28)

E(c) = c (3.29)

E(Ax) = AE(x) (3.30)

=⇒ E(Ax + b) = AE(x) + b (3.31)
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Σx+y = Σx + Σy (3.32)

Σc = 0 (3.33)

ΣAx = AΣxA
T (3.34)

=⇒ ΣAx+b = AΣxA
T. (3.35)

A cofactor matrix can be defined analogous to Equation (3.18), it is

Qx =
1

σ2
0

Σx. (3.36)

The sample mean x and sample covariance matrix Sx are defined in analogy to
Equations (3.19) and (3.20) as

x =
1

N

N∑

i=1

xi (3.37)

Sx =
1

N − 1

N∑

i=1

(xi − x)(xi − x)T. (3.38)

The n-dimensional normal distribution is given by

N(µx,Σx) =
1√

(2π)n|Σx|
exp(−1

2
(x− µx)

TΣ−1
x (x− µx)), (3.39)

where |Σx| is the determinant of Σx ∈ IRn×n. Additional distributions are given
in Section 3.4 (the χ2-distribution, used for testing) and 3.5 (an adaption of the
normal distribution to cyclic data), but the normal distribution is by far the most
important distribution used in this thesis. Its theoretical and practical importance
is due to the central limit theorem which states that the sum

∑n
i=1 xi of n inde-

pendent random variables x1, . . . , xn will be asymptotically normally distributed
as n → ∞. Normal distributions are encountered very often in practical applica-
tions; in particular, random variables that represent independent measurements in
photogrammetry, geodesy, or surveying are often nearly normally distributed [100].
Another reason for the normal distribution’s prominence is its simple form which is
completely described by mean and variance. This makes it particularly well suited
for the propagation of statistical properties as described in the next section.

3.3 Error Propagation

The idea of error propagation — or propagation of statistical properties — is the
following: given a vector of measurements x ∈ IRn with pdf px, and a derived vector
y ∈ IRm such that

g : x→ y = g(x) (3.40)

Error Propagation in Geometry-Based Grouping



60 Error Propagation

find the pdf py for y depending on x and px.

An example might make this more transparent: calculating the line ` through two
points p1 and p2. Displacing one or both of the points will generally change the
position of the line. So if we know that the two points (which could, e. g., be
measured image coordinates) are random variables with probability distributions
pp1

and pp2
, it suggests itself to ask what the resulting line’s probability distribution

p` will be.

3.3.1 Principle

For simplicity, let us consider the one-dimensional case first, i. e. random variables
x = x ∈ IR and y = y ∈ IR. We would expect that the probability for any event x′ to
fall into a small region dx around x should be equal to the probability of an event
y′ falling into the corresponding region dy around y in the limit dx → 0. This can
be written as

px(x)|dx| = py(y)|dy|. (3.41)

If we assume that the inverse function

g−1 : y → x = g−1(y) (3.42)

is defined, we can write

px(x)|dx| = px

(
g−1(y)

) ∣∣∣∣
∂g−1(y)

∂y
dy

∣∣∣∣ = py(y)|dy| (3.43)

or

py(y) = px

(
g−1(y)

) ∣∣∣∣
∂g−1(y)

∂y

∣∣∣∣ . (3.44)

Taking the absolute value in Equations (3.43) and (3.44) ensures the correct sign of
py(y). This is not a problem, since both g(x) and g−1(y) are monotonic (otherwise
they would not be invertible).

The extension to the multidimensional case x,y ∈ IRn is straightforward [100], it is

py(y) = px

(
g−1(y)

)
|Jxy| , (3.45)

where |Jxy| = |∂x/∂y| is the determinant of the Jacobian of the inverse transforma-
tion x = g−1(y) with respect to y.

The difficulty with the propagation of distributions is that we have to assume the
existence of the inverse function. This means in particular that usually no solution
is possible for x ∈ IRn, y ∈ IRm, m 6= n, where, in general, no inverse transformation
exists. This is, for example, the case with our example of the line through two
points, since it is not possible to infer from the parameters of the line the positions
of the points. The necessity to use the inverse function severely limits the usefulness
of propagation of statistical properties. And even if Equations (3.44) or (3.45) can
be applied, so will the resulting pdf, in general, become arbitrarily complex.
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3.3.2 Linear Case

All these problems do not exist if we concentrate on linear functions only, i. e. func-
tions of the form y = Ax + y0 with x ∈ IRn, y,y0 ∈ IRm, and A ∈ IRm×n. Linear
functions will, in general, not change the particular type of distribution [100]. What
is more, we have already seen from Equations 3.31 and 3.35 that

E(y) = E(Ax + b) = AE(x) + b (3.46)

Σy = ΣAx+b = AΣxA
T (3.47)

and in the case of a multidimensional normal distribution, we can directly write
down the new distribution3.

Unfortunately, most interesting functions are not linear. It is therefore necessary
to find a way to apply the above equations to any arbitrary, nonlinear function
g(x). This is usually done by approximating g(x) by a linear function f(x). Series
expansion, and Taylor series expansion4 in particular, is generally used for this
purpose. The next section gives a short introduction into Taylor series expansion
and the resulting laws for the propagation of statistical properties.

3.3.3 Explicit Functions

Any C1 function y = g(x) can be written as

y = g(x0 + ∆x) = g(x0) + Jyx0∆x +O2(‖∆x‖2). (3.48)

In the vicinity of x0 this can usually be approximated by a linear function f(x) with

y = g(x0 + ∆x) ≈ y′ = f(x0 + ∆x) = g(x0) + Jyx0∆x = y0 + Jyx0∆x, (3.49)

where Jyx0 = ∂y

∂x

∣∣
x0

is the Jacobian of g(x) with respect to x at the point x0.

Note that the statistical properties are now associated with ∆x instead of x, it is

E(∆x) = E(x− x0) = E(x)− E(x0) = µx − x0 (3.50)

Σ∆x = Σx−x0 = Σx + Σx0 = Σx. (3.51)

The linearisation will usually introduce an error. In order to keep this error small, it
is customary to set x0 = µx and therefore E(∆x) = 0. From there and Equa-
tion (3.49) we can calculate the mean and variance for the linearised function
y′ = f(x) as

E(y′) = E(y0 + Jyx0∆x) = E(y0) + Jyx0E(∆x)y0 = µy′ (3.52)

Σy′ = Σy0+Jyx0∆x = Σy0
+ Jyx0Σ∆xJ

T

yx0
= Jyx0ΣxJ

T

yx0
(3.53)

3It is possible to derive similar equations for higher-order central moments, independent of the
distribution [100].

4It should be noted that a Taylor series will not necessarily converge, and even if it does, it will
not necessarily converge towards the function g(x) it is meant to represent — although it normally
does.
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Figure 3.1: Bias and deformation of the pdf due to nonlinearities. The true
transformed pdf (grey) is deformed and also slightly offset with respect to the
linear approximation (black).

with y0 = g(x0). Note that, in general, µy′ 6= µy = g(µx), that is the linearisation
introduces a bias. This is always the case if g(x) is not well approximated by its
tangent within the region of dispersion of its random variables, as seen in Figure 3.1.
This bias will always inflate the estimated covariance matrix, while the truncation
of the Taylor series could either increase or decrease the result [29].

Just how good or bad this approximation is within a given region ‖x− x0‖2 ≤ ∆x

can be computed by calculating an upper bound on the remainder O2(‖∆x‖2). Four
different forms for x, g(x) ∈ IR are given in [65], and these are easily extended to
x ∈ IRn, compare e. g. [22, p. 279]; in this thesis I will however only deal with first
order approximations.

It is worth noting that, although the application of Equation (3.52) and in particular
Equation (3.53) can result in extremely complex expressions, generating and using
these expressions is a purely mechanical task which can in theory5 be done by any
computer algebra program. For our example of a line ` ∈ IR3 though two points
p1,p2 ∈ IR3 this can be done as follows.

We know from Equation (2.25) that ` can be calculated as ` = p1 × p2, or alterna-
tively as ` = p1×p2 = p2×p1 with

pi× =




0 −zi yi

zi 0 −xi

−yi xi 0


 . (3.54)

5I still have to meet a computer algebra program which produces C-code that will not happily
divide by zero or take the square-root of a negative argument.
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The Jacobian is therefore J`pi
= (p2×, p1×). If we know that the two points are

normally distributed with covariance matrices Σp1
,Σp2

∈ IR3×3 we can calculate the
line’s covariance matrix as

Σ` = (p2× , p1×)

(
Σp1

0

0 Σp2

)(
pT

2×

pT

1×

)
= p2×Σp1

pT

2×
+ p1×Σp2

pT

1×
(3.55)

using Equation (3.53). The mean is the line ` itself. Note that the covariance
matrices are of course all singular, since both points and lines only have 2 DOF
each. This will be discussed in more detail in Section 4.

3.3.4 Implicit Functions

In practice, a result y0 ∈ IRm is often not calculated by an explicit function, but
rather found as the set of parameters which extremises some function of the original
data, i. e. the function g(x) is not explicitly known (and its Jacobian therefore cannot
be calculated as usual). What is known instead is a cost-function C(x,y) ∈ IR which

we are trying to minimise. The necessary condition for an extremum is ∂C(x,y)
∂y
|x0 = 0,

and the implicit function theorem (compare [29, 43]) gives us the Jacobian Jy0x
for

an unknown function y = g(x) as

Jy0x
= −

(
∂2C

∂y2

)−1(
∂2C

∂x∂y

)T
∣∣∣∣∣
y0

(3.56)

if the Hessian H =
(

∂2C
∂y2

)
∈ IRm×m is invertible at the minimum y0. Using the

idea of Lagrange multipliers, we can extend the above even further to constrained
minimisation, see [29, 43] for more details.

Note that using Equation (3.53) a result’s uncertainty can be calculated even if the
result itself has not been obtained as the solution to some optimal algorithm min-
imising both the error and uncertainty of a particular calculation (a problem which
often has no closed form solution), but rather by some faster but less accurate algo-
rithm. However, using a faster, closed form solution might introduce a considerable
bias and blow up Σy′ , and the selection of a function g(x) that is both fast and
accurate enough can become somewhat of an artform. Section 4 is practising this
art for a number of common computer-vision constructs, mainly the ones introduced
in Section 2.

3.3.5 Monte-Carlo Simulations

A second method for the propagation of statistical properties which is completely
different from the analytical method given above is the Monte Carlo simulation. The
basic idea is simple: given a function y = g(x) and a vector x (assumed perfectly
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known), a large number of corrupted vectors xi = x+ ri is created, where the ri are
distributed according to the measurement error’s pdf p∆x (assumed known). This
large population is then used to estimate the pdf py of the samples yi = g(xi).
In particular, the mean µy and covariance matrix Σy can be approximated by the
sample mean y and sample covariance matrix Sy using Equations (3.37) and (3.38).
Note that g(x) does not need to be given explicitly; the yi could just as well have
been found by minimisation or any other technique.

The quality of Monte Carlo simulation relies only on the number of samples —
between 10,000 and 1,000,000 samples are not unusual — and the quality of the
pseudo random number generator, which should have a period at least 10 times
greater than the number of samples required [29].

The two methods — analytical first order error propagation and Monte Carlo simu-
lation — complement each other. First order error propagation is a fast and — for
sufficiently small errors — reliable method which gives an analytical, closed form
solution for py. However, the equations used can become unwieldy, and it relies
on the goodness of the linear approximation (which could in theory be assessed by
calculating an upper bound for the remainder O2(‖∆x‖2), compare Section 3.3.3).

Monte Carlo simulation, on the other hand, makes no assumptions on the function
g(x) or resulting pdf py and is easy to program; these advantages are offset by an
extremely long execution time (several minutes or even hours). Also, the result of
Monte Carlo simulation is just a high number of points yi instead of a closed-form
probability density function.

In practice, Monte Carlo simulation is therefore often used to assess the goodness
of the analytical solution found by first order error propagation; either visually,
plotting both the points found by Monte Carlo simulation as well as the confidence
regions found by first order error propagation, or analytically, where for example
the χ2 distribution described in the next section is used to compute the probability
that the points yi follow the distribution py.

3.4 χ2 Testing

The following gives a very short introduction into confidence testing, namely the
χ2 confidence test. More detailed information could be found in any textbook on
statistics.

When using thresholds in a (computer-vision) algorithm, the underlying question
is very often: “Am I satisfied that the observed value is the one that I’m looking
for?”. In statistics, questions like this6 can be answered by confidence tests. The
test of choice if the underlying distribution is Gaussian, as is frequently the case for
measured values, is often the χ2-test. Its application is simple and will be explained

6Or, more accurately, the question “Am I not dissatisfied. . . ?”.
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below for the example of two lines. The task is to decide whether a line measured
in the image should be considered identical to an ideal line or not.

Assume that the lines have been parametrised by their angle ϕ with the x-axis
and their distance d from the origin, ` = (ϕ, d)T, and that the measured line’s
covariance matrix is given by Σ` ∈ IR2×2. Simply speaking, the χ2-test answers the
question: “Am I p% satisfied that the difference between `1 and `2 is due to random
fluctuations consistent with Σ`?” by evaluating (`1−`2)

TΣ−1
` (`1−`2) ≤ χ2

p,2, where
the subscript 2 denotes the number of degrees of freedom (ϕ and d in this case).

More generally we get (possibly after a suitable coordinate transform such that a
covariance matrix becomes diagonal)

N∑

i=1

d2
i

σ2
di

≤ χ2
p,ν (3.57)

where ν is the number of degrees of freedom (which need not be N , as we will
see when fitting a line to edgels in Section 4.3.3) and p is the amount of required
certainty in percent, called the significance level, and traditionally also often denoted
by α or, confusingly, 1− α in some textbooks.

3.5 Directional Statistics

Statistics commonly deals with distributions in IRn, most commonly with distri-
butions on a line (n = 1) or plane (n = 2). Many measurements, however, are
concerned with quantities of a cyclic nature, in computer vision usually angles. In-
deed, when Gauss developed the theory of errors he did so primarily to analyse
certain directional measurements in astronomy. It is one of the ironies of statis-
tics that the measurements under consideration were sufficiently accurate to allow
him to develop the theory in relation to an infinite linear continuum rather than
the actual topology, a sphere [95]. The subject of directional statistics received in-
creased interest only after the 1953 landmark-paper by R.A. Fisher [47] and is thus
a comparatively new branch of statistics.

The aim of this section is to introduce some very basic concepts of directional statis-
tics needed later on; the reader is referred to [95, 156] for good introductory texts
on the subjects.

3.5.1 Directions and Orientations

Directions in computer vision are usually associated with contours fitted to discon-
tinuities in luminance, where one side will be lighter than the other. We can then
differentiate between a contour’s orientation, which can take values in the interval
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PSfrag replacements
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Figure 3.2: Difference between the
orientation αo ∈ [−π/2, π/2) and
the direction αd ∈ [−π, π) for a
greyscale-discontinuity.
The discontinuity’s normal vector
n = (sin(αd),− cos(αd))

T is pointing
from dark to light.

αo ∈ [−π/2, π/2), and its direction, taking values in the interval αd ∈ [−π, π). The
orientation describes a geometric entity; turning this entity by 180◦ does not change
it’s representation, and the possible range of orientations is therefore limited to a
semi-circle (semi-hypersphere) — the directions αo and αo +180◦ represent the same
orientation αo. Data like this is called axial data. The direction, on the other hand,
is uniquely defined by a normal vector n = (sin(αd),− cos(αd))

T pointing from the
dark to the light side of a grey-level discontinuity, as shown in Figure 3.2, making
each direction unique within one complete turn of a circle (hypersphere).

3.5.2 Mean and Variance

Directional data requires a notion of mean and variance different from usual statis-
tics. Assume that two directions α1 = 1 ◦ and α2 = 359 ◦ are given. Naively applying
Equation (3.19) to calculate the mean would give a value of α = 180 ◦, while intu-
ition tells us that α = 0 ◦. If, however, directions are instead understood as points
on the unit-circle7 xi = (cos(αi), sin(αi)

T) (or, alternatively, vectors of unit-length),
we can calculate8:

(
C
S

)
=

N∑

i=1

(
cos(αi)
sin(αi)

)
(3.58)

α =





arctan(S/C)− π C < 0, S < 0
−π/2 C = 0, S < 0
arctan(S/C) C > 0
π/2 C = 0, S > 0
arctan(S/C) + π C < 0, S > 0

. (3.59)

It suggests itself to also calculate the resulting vector’s length R =
√

C2 + S2, the
mean resultant length. It is easy to see that R will be close to its maximum value
R = N if the αi are very concentrated, while it will be close to its minimum value
R = 0 if the αi are very dispersed. Thus N−R is a sensible measure of the dispersion

7Or hypersphere in the general case xi ∈ IRn.
8Many programming-languages provide a function atan2(x,y) for this purpose.
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of the whole sample about its estimated centre — analogous to the variance on a
straight line — and indeed

S0 =
N − R

N − 1
(3.60)

is called the (sample) spherical variance. Note that 0 ≤ S0 ≤ 1, while of course for
the variance on a line 0 ≤ σ2 ≤ ∞. A value which is more similar in magnitude to
the usual variance on the line is given by

s2
0 = −2 ln(1− S0). (3.61)

For axial data (i. e. −π
2
≤ αi < π

2
) the corresponding equations are [95]:

(
C ′

S ′

)
=

N∑

i=1

(
cos(2αi)
sin(2αi)

)
(3.62)

α =
1

2
α′ (3.63)

S0 = 1− (1− S ′
0)

1/4
. (3.64)

There is no known distribution on the circle which has all the properties of the
normal distribution. It is most closely approximated by the von Mises distribution
or the wrapped normal distribution, see e. g. [95, 156] for details.However, as was
the case for Gauss’ original use of his distribution on strictly speaking cyclic data, I
too found that for the applications discussed in this thesis the Gaussian distribution
is sufficient.
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Chapter 4

Combining Projective Geometry and
Error Propagation

. . . fügte ich rittlings zusammen, was zusammengehörte.

. . . astraddle I joined together what belonged together

Felix Salten, Josefine Mutzenbacher, 1869–1945
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4.1 Introduction

This chapter, which lies at the heart of this thesis, combines the projective geometry
constructs described in Chapter 2 with the statistical principles of Chapter 3, and
in particular error propagation.

Starting from first principles, with an error model for single edgels in Section 4.2,
I revisit the line-fitting problem in Section 4.3. There the covariance of a line is com-
puted, based on the covariances of the single edgels; for the case of independently,
identically, and isotropically distributed (iiid) edgels (which is the usual assumption
when fitting a line to edgels) I also present, in Section 4.3.2, an excellent but pre-
viously unpublished approximation to that covariance based mainly on line-length;
and in Section 4.3.3 I introduce a new stopping-criterion for incremental fits which is
based on a χ2-test. Section 4.4 compares several algorithms for vanishing-point cal-
culation, clearly demonstrating that algorithms based on Euclidean distance, which
are unfortunately still all too common in the literature, are inadequate for intersec-
tions far away from the image. In Section 4.5 I introduce a new algorithm for the
calculation of the cross-ratio of 4 lines, which performs nearly as well as the best
possible algorithms, but without knowledge about the lines’ intersection — which
makes the algorithm about an order of magnitude faster than other algorithms with
comparable performance. Extensive Monte Carlo simulations are used throughout
this section to evaluate and compare the relative performance of several compet-
ing algorithms both with regard to accuracy as well as speed. Section 4.6 finally
demonstrates how to compare stochastic projective entities, and how to account for
additional uncertainty in the model, e. g. due to an imperfect world.

The use of error propagation, while being a staple of photogrammetrists, geode-
sists, and many other scientists, has always been somewhat neglected in computer
vision. Most notable is probably the influence of Kanatani [71–75, 77], who can
be said to have pioneered this particular field. The main difference which sets
this work apart from Kanatani’s is its focus on applicability — whereas Kanatani
concentrates on the correct solution, I mostly concentrate on the most adequate so-
lution, weighing computational cost and implementational complexity against the
gain in accuracy. Also related to the work described here is the work by Brillault-
O’Mahony [20, 21], who used statistical considerations for vanishing-point detec-
tion, and grouping and recognition of high-level 3D-structures (see Section 6). More
recent work includes [11, 52, 66, 115–117, 130, 141], of which the work by Pen-
nec [116, 117] is closest to the work presented here. A very recent addition is
Förstner’s [49] contribution to the “Handbook of Computational Geometry”, which
collects a number of simple to use tools for uncertain geometric reasoning, and in
particular gives a number of explicitly calculated Jacobians which retain the ele-
gance of projective algebra. It can serve as a nice and concise introduction into my
work; however, as was the case with Kanatani’s work, Förstner’s focus is on elegant
rather than computationally efficient solutions, which are at the heart of this thesis;
his work differs also in the use of a less rigorous approach testing uncertain geomet-
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Figure 4.1: Surface discontinuities do not always lead to visible edges.

ric relations — he directly tests observed entities against each other, rather than
against the estimated true value, as I will recommend in e. g. Section 4.6.2. Finally
I should point out that I have already published some of the results presented here
in [6].

4.2 Edgels

The work described in this thesis is completely edge-based. All features described
later on can ultimately be reduced to edgels (edge-elements). We can distinguish
two kinds of edges in 3D. The first one corresponds to a change in luminance,
hue, saturation, or all three within one surface. These changes, which we will call
surface markings, are always detectable using an appropriate setup. The second
kind of edge corresponds to a surface discontinuity. This is not necessarily associated
with any apparent change in visual properties, and the detectability of these kinds
of edges within a certain image depends on the object’s orientation towards the
camera, lighting, and other external conditions. Figure 4.1 shows examples for
surface markings as well as visible and invisible surface-discontinuities.

These edgels are located, often with subpixel accuracy, in the image using an edge
detector [24]. The next two sections describe possible sources for error in the location
of the edgels and how to model this error, as well as a possible parameterisation of
edgel location and its probability distribution.

4.2.1 Error Sources

So what are the particular types of errors encountered in the imaging (and recon-
struction) process, and which of those will I address in this thesis? Aberrations of
the lens, which have been well documented in many publications [16, 18, 86, 144],
include chromatic (axial and lateral) as well as monochromatic aberrations (also
called Seidel aberrations after an 1857 paper by Ludwig von Seidel, i. e. spherical
aberration, coma, astigmatism, field curvature and curvilinear — barrel and pin-
cushion — distortions). In practical applications we also see vignetting, flares and
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diffraction — and of course simple defocus. Additional errors are being introduced
by the CCD chip, foremost of course the discretisation itself, but we are also dealing
with (thermal) pixel noise and with differences in the sensitivity of neighbouring (or
further away) sensors which create a bias. In most of todays 1-chip colour cameras
we get additional errors due to the interpolation of colour information from the
mosaicing (usually Bayer) filter and possibly also from lossy compression (usually
jpeg), both of which are particularly pronounced near edges. And finally, as a last
source for error, we also have the effect of the edge detector itself.

The error sources given above can be grouped into two different categories, reversible
and non-reversible effects. Curvilinear distortions and bias in the individual pixel
values are easily removed by a simple calibration of the camera; as such they are
really systematic errors and will be ignored in the following; the same is true for
some of the errors introduced by the edge detector [106].

Most of the other lens effects, however, although quite systematic in their formation,
are not easily reversible. In their sum total they will serve to make the image less
sharp, and as such act as a low-pass filter blurring the image; approximating their
influence by a convolution with a Gaussian is not uncommon [86]. If we then proceed
to apply an edge filter like the well known Canny filter to the image this additional,
non-uniform blurring will have a negative effect on the positional accuracy of the
edgels found [24], at least in the neighbourhood of texture or additional edges. Lossy
compression and demosaicing, on the other hand, tend to introduce random artefacts
near edges, as will the pixel noise of the CCD chip, and these will directly influence
the positional accuracy, since they violate the continuity assumptions which are the
foundation of subpixel approximation.

Accurately modelling all these different error sources and their effect on the posi-
tional accuracy of edgels is well beyond the scope of this thesis. However, Figure 4.2
shows the histogram of the positional errors for typical edgels along a typical (but
perfectly straight) line for images taken with two different cameras, as well as the
equivalent Gaussian distribution (i. e. one with the same standard deviation). And
although the measured distributions are clearly not Gaussian (note in particular the
high number of nearly accurate edgels, about 5% to 10% for this particular test-
case), they are none the less reasonably well approximated by a Gaussian — and
this is in fact what I will do for the remainder of this thesis.

It might be worth pointing out that both histograms in Figure 4.2 have approxi-
mately the same standard deviation (around σ ≈ 0.1 pxl). This demonstrates nicely
that the locational error for a perfect line is mostly a function of the sensor type used
(a Bayer-type mosaicing filter in both cases). However, in reality most lines aren’t
quite perfect1, and might suffer additional distortion depending on the lens used.
So in addition to the one hand-selected (perfect) line above I also calculated the his-
tograms over all lines, and those are given in Figure 4.3. And here the two variances

1For this test I used lines printed on paper — and since the paper wasn’t perfectly flat when
the images were taken, not all lines are perfectly straight.
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Figure 4.2: Typical distributions of positional error for a perfect line. Plotted
are the deviations of edgels from the true line for a Canon 6 Mpxl camera (left)
and a Sony 800 kpxl camera (right). Overlayed are the equivalent Gaussian
distributions.

Figure 4.3: Typical distributions
of positional errors (below) for all
edges within an image (to the left).
Plotted are the deviations of edgels
from the true edge for a Canon
6 Mpxl camera (left) and a Sony
800 kpxl camera (right). Overlayed
are the equivalent Gaussian distribu-
tions.
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Figure 4.4: Typical distribution of
positional errors for all edges within
a real-world image (Figure 5.5, σ ≈
0.22 pxl, and equivalent Gaussian
distribution.

are clearly different for the two cameras, with σ ≈ 0.27 pxl for the Canon but only
σ ≈ 0.15 pxl for the Sony — here the higher resolution camera (the Canon) registers
the higher standard deviation, since the same positional error in 3D will result in a
bigger error (measured in pixel) in the image; the better lens of the Canon, suffering
from fewer of the above-mentioned defects than the lens of the Sony, by comparison
does not have as much of an effect due to the particular test-image chosen.

Figure 4.2.1 finally shows the distribution of positional errors for a real-world image
(a street scene also used throughout most of Chapter 5, e. g. in Figure 5.5); here too
we see the typical, Gauss-like distribution with its overpronounced peak for very
small errors.

In this section we have seen that a Gaussian distribution is not altogether an unre-
alistic approximation for the particular distribution of location errors when fitting
edgels. In the following I will describe how to represent the edgel coordinates and
their distribution.

4.2.2 Geometric Representation

Edgels can be represented by their Euclidean coordinates within the image plane
(x, y)T. Other possible representations include (pseudo) homogeneous coordinates,

x = (x, y, 1)T, (4.1)

which will be used throughout this chapter unless stated otherwise. Kanatani [69]
and others suggested a parametrisation (x, y, f)T with x2 + y2 + f 2 = 1, where f
is of the same order of magnitude as x and y, often the focal length the image was
taken with (if known, compare Section 2.9), the length of the image diagonal, or
some other image dimension.
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All coordinates computed in the image, independent of the parametrisation used,
will contain errors due to the measurement process. These can be characterised by
the edgels’ covariance matrix, which for the pseudo homogeneous representation in
Equation (4.1) would be structured as follows:

Σx =




σ2

x σxy 0
σxy σ2

y 0
0 0 0



 . (4.2)

If the error can be modelled by a Gaussian distribution, as is the case for many
practical applications [100], this covariance matrix is sufficient to completely char-
acterise the edgel’s distribution. Using Equation (3.53) it is possible to calculate
the covariance matrix for all other parametrisations from the covariance matrix in
Equation (4.2). Note that Σx is of course singular, since an edgel has only two
degrees of freedom, independent of the parametrisation used. It is therefore not
possible to directly compute its inverse. Instead the Moore-Penrose generalised or
pseudo inverse should be used, or the problem should be reduced to the equivalent
problem in fewer dimensions, again using Equations (3.52) and (3.53). However, in
the context of projective geometry the latter is usually not desirable. Section 4.3.2.2
shows that (4.2) can be approximated by a diagonal matrix for many practical ap-
plications — the main thrust of the argument being that the covariance along the
edge is usually of no consequence.

4.3 Lines

Detecting lines or, more generally, linear structures within an image is a classi-
cal problem in computer vision. Lines can convey valuable information about the
3D-structure depicted, particularly in our modern world, where parallel lines and or-
thogonal corners abound. Computer vision was concerned from the beginning with
the construction of line drawings from natural scenes (and their subsequent interpre-
tation), an approach still used today [110, 112–114, 148]. But lines convey valuable
information about the structure of a scene even if no complete and realizable graph
is available, as the applications described in Sections 5 and 6 will show.

Lines in computer vision are, in general, defined in terms of edgels, and it is therefore
not too surprising that here too we distinguish lines due to surface markings on the
one hand and due to surface discontinuities on the other. Common to both types of
lines is the fact that the local neighbourhood of the line will be planar. Although
other contours might appear as a line under special circumstances, this is generally
limited to one particular viewpoint and therefore of no interest to us (see Figure 4.5).
However, this particular case makes apparent one of the differences between a line
in the image and a line in 3D. We will in the following ignore the pathological case
and assume that any 2D-line corresponds to a linear structure in 3D.

Finding the line ` that best approximates a set of points (or edgels) xi is a classical
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Figure 4.5: Nonlinear structures
might appear as lines under certain
conditions. In the image to the left,
the top structure looks line-like ex-
cept for the occasional highlights, al-
though the shadow below the struc-
ture reveals that it is clearly not a
line.

problem [43]. We can differentiate between three cases:

1. Fitting a line to a fixed number of points.

2. Incrementally fitting a line to an (unknown) number of points along a contour.

3. Fitting a line to an (unknown) subset of points.

Only the first two cases are discussed here, as I am concentrating on the effect of
errors in valid measurements rather than the effect of outliers; the third case was in
computer vision traditionally solved by a Hough transform [61], which can be used
to identify possible lines and the corresponding points, followed by the approach
used for Case 1. The Hough transform is however more and more replaced by
an algorithm called RANSAC [46], a method of robust statistics. Although not
discussed within this thesis, I would like to point out that RANSAC in particular
needs a method to distinguish between inliers and outliers which can model both
the noise of individual edgels as well as a line’s uncertainty, and should therefore
benefit especially from the methods described in Section 4.3.3.

The remainder of this section is structured as follows: Section 4.3.1 lists a number
of possible line-parameterisations. The basic principles when either directly (1) or
incrementally (2) fitting a line to points are the same and are therefore discussed
for the first case only (fixed number of points, Section 4.3.2). An iterative solution
first described by Kanatani [73, 77] is given in Section 4.3.2.1. In Section 4.3.2.2
I next discuss in which cases this can be simplified so that a closed form solution
is possible and give an excellent but previously unpublished approximation to that
covariance based mainly on line-length. In Section 4.3.3 finally I introduce a new
stopping-criterion for incremental fits which is based on a χ2-test; a summary is
given in Section 4.3.4.

4.3.1 Parameterisations

Representations of a line in the image plane require a minimum of two parameters (a
line on the plane has two degrees of freedom). Well known parametrisations include
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slope-intercept (y = mx + b), intercept-intercept (x/a + y/b = 1), angle-intercept,
and angle and distance to the origin. It is well known that both slope as well as
intercept become infinite for vertical lines (and in the case of intercept-intercept
parametrisation also horizontal lines).

In addition there are a number of redundant representations for lines, using more
than 2 parameters. An example already discussed in Section 2.4 is the homogeneous
3-vector (a, b, c)T. With a2 + b2 = 1 this becomes the normal form. Kanatani [69]
and others suggested a parametrisation (a, b, c/f)T with a2 + b2 + c2/f 2 = 1, where
f is a constant of the same order of magnitude as c, often the focal length the image
was taken with (compare Section 2.9), the diagonal length of the image, or some
other image dimension. Note that a covariance matrix for any of these redundant
representations will of course be singular.

Parametrisations particularly appropriate to line segments as measured in the image
have also been developed, e. g. using a line segment’s endpoints (x1, y1, x2, y2) as cited
in [140] or a line segment’s centre (mean edgel position) and angle with the x-axis,
(α, x̄, ȳ)T which I first presented in [6].

It is of course possible to convert any representation into any of the two-parameter
or redundant representations, but, in general, not into the line segment representa-
tions. However, these conversions, while theoretically possible, can become numer-
ically problematic; one example is the conversion from and to the slope-intercept
representation for near vertical lines. We will later see that some parametrisations
are better suited to a certain task than others, and that in particular the angle-centre
representation is well suited for the line segments commonly fitted in computer vi-
sion. The next section re-visits the line-fit problem, starting from first principles.

4.3.2 Fixed Number of Points

The problem of fitting a line to a fixed number of points can be stated as follows:
given n points xi, i = 1 . . . n, with distributions pxi

(xi), find the line ` with distri-
bution p`(`) that maximises the conditional probability

P (`|x1 . . .xn) =
P (x1 . . .xn|`)P (`)

P (x1 . . .xn)
−→ max

`
(4.3)

where P (`|x1 . . .xn) is the probability of observing the line ` given the points
x1 . . .xn, P (x1 . . .xn|`) is the probability to observe the points x1 . . .xn given `,
P (`) is the line’s a-priori probability, and P (x1 . . .xn) is the points’ a-priori proba-
bility.

It is obvious that for any fixed set of points xi, i = 1 . . . n the term P (x1 . . .xn)
can have no influence on which line ` maximises Equation (4.3). Also, in nearly
all applications no knowledge exists about the individual lines’ a-priori probabilities
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P (`), which are therefore usually assumed constant2. This reduces Equation (4.3)
to

P (`|x1 . . .xn) ∝ P (x1 . . .xn|`) −→ max
`

. (4.4)

If all the points xi, i = 1 . . . n are independently distributed observations of a perfect
line3, we can multiply the individual probabilities

P (x1 . . .xn|`) =
n∏

i=1

P (xi|`) −→ max
`

. (4.5)

The individual point’s probability depends on its distance from the line and its
particular covariance matrix. If the point has the Euclidean coordinates (x, y)T and
the line is given by its normal form we can write

xi = (xi, yi, 1)T (4.6)

Σxi
=




σ2
xi

σxiyi
0

σxiyi
σ2

yi
0

0 0 0


 (4.7)

` = (a, b, c)T = (sin(α),− cos(α), c)T. (4.8)

Using Equation (3.53) the individual point’s probability is then given by

P (xi|`) =
1√

2π`TΣxi
`

exp

(
−1

2

`Txix
T

i `

`TΣxi
`

)
. (4.9)

Maximising Equation (4.5) is therefore equal to minimising a sum of weighted Eu-
clidean distances

min
`

1

n

n∑

i=1

`Txix
T

i `

`TΣxi
`

(4.10)

under the condition a2 + b2 = 1. There is, in general, no closed form solution to
Equation (4.10).

A slightly different approach was presented by Kanatani [73]. Instead of min-
imising Euclidean distance his approach minimises algebraic distance with vectors
` = (a, b, c/f)T and xi = (x, y, f)T under the condition ‖`‖2 = ‖xi‖2 = 1, where f
is again a constant in the order of magnitude of the focal length. This approach was
later extended to f = 1 by Kanazawa and Kanatani [77]. They employ an elaborate
scheme to avoid the bias which would be introduced by a naive iteration. A short
description of their algorithm can be found in the following section.

2If a particular application does provide a-priori knowledge about, for example, a line’s angle,
this should of course be used. However, I’ll assume that this is not the case here and, indeed, in
virtually all computer vision applications that deal with projective geometry.

3This is approximately the case.
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4.3.2.1 Iterative Solution

As mentioned before, no closed form solution exists for Equation (4.10). It might
seem reasonable though to rewrite Equation (4.10) as

min
`

`TM` (4.11)

with M =
1

n

n∑

i=1

wixix
T

i (4.12)

and wi =
1

`′
T
Σxi

`′
(4.13)

and iteratively solve for `, where `′ is a previously found solution. It can, however,
be shown that this approach will lead to a biased solution for `, and Kanazawa and
Kanatani [77] suggested the following approach instead:

1. Let c = 0 and wi = 1, i = 1 . . . n.

2. Compute the matrices M (compare Equation (4.12)) and

N =
1

n

n∑

i=1

wiΣxi
.

3. Compute the smallest eigenvalue λ and corresponding eigenvector ` of

M̂ = M− cN.

4. If the iteration reached a stationary state (∆λ = 0, [77] uses λ ≈ 0) abort,
else update c and wi as follows and return to 2

c ← c +
λ

`TN`

wi ←
1

`TΣxi
`
.

An estimate for the line’s covariance matrix is given by

Σ` =
c

n− 2

(
M̂
)−

2
(4.14)

where ( � )−2 denotes the generalised inverse computed by ignoring the smallest eigen-
value, which might not be exactly zero due to numerical reasons or a premature
termination of the above steps [77].

It should be noted that using Equation (4.14) the line’s covariance can be calculated
even if only the cofactor matrices are given for the individual points. This is based
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on a χ2 distribution with n− 2 DOF. It is in this case, however, impossible to make
any statement about the quality of the fit.

The algebraic distance used above can be interpreted geometrically when using the
ray-space or Gaussian sphere model (Section 2.9): imagine a unit sphere touching
the image in the image centre. Each point in the image corresponds to the point
on the sphere where a line from the sphere’s origin to the image point intersects the
sphere; each line in the image corresponds to a great circle where a plane through
the origin and the original line in the image intersects the sphere. Minimising the
algebraic distance finds the plane through the origin with minimum mean squared
scaled orthographic distance from these points on the sphere. The intersection
between this plane and the image plane is the line with minimum algebraic distance
to the original points.

4.3.2.2 Direct Least Squares Solution

The iterative solution described above is comparatively slow. It would therefore be
useful if some faster algorithm could be devised, preferably some closed form solu-
tion, or an approximation to such a solution. In order to use a closed form solution
to Equation (4.10) we need to be able to approximate the denominator by a term
independent of `. For this we need to know what the individual edgels’ covariance
matrices look like. Most modern edge-finders will do a sub-pixel approximation or-
thogonal to the (perceived) edge direction, which might result in different variances
orthogonal to (σ2

⊥) or parallel with (σ2
‖) the edge, but to a good approximation

independent of the individual edgel itself4. The resulting covariance matrix is

Σxi
= R−T




σ2
‖ 0 0

0 σ2
⊥ 0

0 0 0



R−1

with R =




cos(αi) − sin(αi) 0
sin(αi) cos(αi) 0

0 0 1




where αi is the estimated angle between the edge through xi and the x-axis5. The
denominator in Equation (4.10) then becomes

`TΣxi
` = σ2

i = σ2
⊥ cos2(α− αi) + σ2

‖ sin2(α− αi) (4.15)

where α is the angle between the fitted line and the x-axis. Although, in general,
α 6= αi, the difference will nonetheless be small for any reasonable edge-finder.
Figure 4.6 shows some typical histograms over the deviation from the true angle for
6 different angles 0 ≤ α ≤ 5

12
π.

4σ2

⊥ and σ2

‖ might depend on the perceived edge direction, but this effect is generally sufficiently
small — and constant for any single line — to be safely ignored in this application.

5It is of course R−T = R.
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Figure 4.6: Estimated angle versus true angle for different angles. Plotted are
typical histograms over the deviation from the mean for lines at approximately
0◦, 15◦, 30◦, 45◦, 60◦, and 75◦.

Since the difference between the perceived angle αi and true angle α is generally
well below 2◦, we can, with sin2(α − αi) ≤ 0.00122 and cos2(α − αi) ≥ 0.9988,
approximate Equation (4.15) with

`TΣxi
` ≈ σ2

⊥ = σ2 (4.16)

which is independent of xi and interestingly also σ2
‖ . This conforms with the intuition

that in fitting a line to points the individual point’s position along the direction of the
line (and therefore also its covariance in that direction) is of small or no consequence
for the fitting process. The particular instance of the Canny edge detector [24] used
throughout this thesis results in a standard deviation of 0.1 pxl ≤ σ ≤ 0.3 pxl,
depending on the sensor type and image quality. This finally leads to the equation
commonly minimised in orthogonal regression

min
`

1

nσ2
`T

(
∑

i

xix
T

i

)
` (4.17)

under the constraint a2 + b2 = 1. This is well known [40, 43] to be minimised by the
line ` that passes through the point

(
x̄
ȳ

)
=

1

n

n∑

i=1

(
xi

yi

)
(4.18)

(we will call this point the line’s centre point or simply centre) and whose normal-
vector is the eigenvector to the matrix’s

Mxx =
1

nσ2

n∑

i=1

(
(xi − x̄)2 xiyi − x̄ȳ
xiyi − x̄ȳ (yi − ȳ)2

)
(4.19)
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smaller eigenvalue λmin, where the mean squared weighted orthographic distance in
Equation (4.17) corresponds to λmin.

Once the line ` has been found, it is easy to calculate its covariance matrix using
Equation (3.53) for any of the representations mentioned in Section 4.3 (although
the actual equations involved can get somewhat lengthy, they are easily enough
created, as discussed in Section 3.3.3). Using the α, x̄, ȳ parametrisation has the
added advantage that the covariance matrix becomes to a very good approximation
block-diagonal, i. e.

Σ` =




σ2
α 0 0
0 σ2

x̄ σx̄ȳ

0 σx̄ȳ σ2
ȳ


 (4.20)

and as small deviations in the centre-point’s position along the line are normally
of little importance this can be further approximated by a diagonal matrix with
σ2

x̄ = σ2
ȳ = 1

n
σ2. This is in agreement with Equation (4.16) for the special case that

Σx describes a circular covariance region.

However, in many cases and for many applications it might not be necessary to
calculate explicitly the line’s covariance matrix using Equation (3.53). Since the
edgels along a line are usually quite evenly distributed, where the distance between
individual edgles depends mainly on the angle between the line and the x-axis, it is
perfectly reasonable to give a rule of thumb for the covariance matrix based only on
the length of the line l, the number of edgels n and the angle α. The relationship
in (4.21)– (4.22) have been found experimentally, however, they are a nearly perfect
representation of the true values, compare Figure 4.7.

σ2
α ≈ 12

σ2

n′3
(4.21)

with n′3 = l3
(
1 + 121/3 − 121/3 max(‖ cos(α)‖, ‖ cos(π/2− α)‖)

)
(4.22)

σ2
x̄,ȳ ≈

σ2

n
. (4.23)

Here n′ is the equivalent number of edgels, an empirically found, purely arithmetic
figure, it is usually n ≥ n′ ≥ l (unless the edgel-chain contained holes). Equa-
tion (4.23) can immediately be derived from Equation (4.18).

Figure 4.7, which plots the linearised variance (12σ2/σ2
α)

1/3
over n′, shows how well

Equation (4.21) approximates the actual values for σ2
α measured for 5411 fitted lines

from 10 different images of various real-life street scenes. Equations (4.21)–(4.23),
which have never been published before, are similar in spirit to the dependence of σ2

α

on line-length l derived by Brillault [20] — however, her theoretical approach, which
considered only the endpoint-positions as a source for errors, gives a completely
different qualitative behaviour not consistent with reality. They can be used to
further speed up computations while retaining the full power of error propagation.
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Figure 4.8: Incrementally fitting a line and mean square error (residual). The
circles on the left hand side correspond to a 1σ-region around the edgels.

4.3.3 Incremental Fit

Equation (4.17) is especially advantageous when doing an incremental fit along a
contour of linked edgels xi, adding one edgel at a time. Equation (4.18) and (4.19)
are easily updated using

x̄′ =
n � x̄ + xn+1

n + 1
(4.24)

Mx′x′ =
σ2nMxx + nx̄x̄T + xn+1x

T

n+1 − (n + 1)x̄′x̄′T

σ2(n + 1)
(4.25)

(compare (3.13) — these equations simplify considerably if we forego the normali-
sation in (4.19), which is only needed for the calculation of the error measure λmin).
In addition to computing the line ` with highest probability P (`|x1 . . .xn), the task
is now also to decide which edgels actually form a line and when to stop fitting.
This is commonly done (e. g. in [127]) by finding a seed-region of about a dozen
edgels whose mean square error is below a given threshold (say 0.1 pxl2). Once such
a seed region has been found, further edgels will be added using Equations (4.24)
and (4.25) until the mean square error (4.17) exceeds the fixed threshold.

There are three problems with this approach:

1. A comparatively large seed region is needed for the mean square error to be
meaningful. This makes it impossible to fit small line segments of only a few
pixels length.

2. Even then the seed-region is often fitted not to a real line segment but to the
slightly curved corner segment which frequently leads up to a line segment.
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3. Once a line has reached a certain length, it is easy to overshoot its end, since it
takes several “bad” edgels to raise the mean square error above the threshold.

I will instead present in the following a new approach which remedies both Items 1
and 2 and helps to mitigate 3. Although fairly straightforward, this has to my
knowledge not been described outside [6], namely that incrementally fitting a line
to points can also be thought of as confidence testing, compare Section 3.4. Here
the hypothesis is that the point belongs to the line, and we test whether there is
sufficient reason for confidence in this hypothesis (or, rather, not enough reason to
disbelieve that hypothesis). One possible test is the χ2-test. Using a confidence test
corresponds to using a variable threshold, whose value increases with line-length,
instead of a fixed threshold. This is done by evaluating

λmin =
1

nσ2
`T

(
n∑

i=1

xix
T

i

)
` ≤ χ2

p,n−2 (4.26)

(compare Equations (4.17) and (4.19) as well as Figure 4.8), where p is the required
probability (confidence level, really) of the outcome and n − 2 is the number of
degrees of freedom of fitting a line to n edgels. This approach allows us to overcome
problems 1 and 2, as can be seen from Fig. 4.8: the threshold depends on the number
of edgels to which we are currently fitting, so that we can easily discriminate between
linear and nonlinear patches even for very short line segments. The third problem,
the problem of overshooting, can unfortunately not be solved but only mitigated by
the use of a χ2 error measure — when fitting to some ten edgels it is often possible
that two or three bad edgels are needed to drive the error measure (4.26) over the
threshold. Other methods are therefore needed to overcome this particular problem,
e. g. refitting from the end of the line towards the beginning, or a curvature analysis
of the error-behaviour. In [127] the problem is worked around by dropping the last
m edgels.

4.3.4 Summary

In Section 4.3 I started with a list of previously used line-parameterisations and
introduced a new parameterisations, the (α, x, y)T parameterisation. Starting from
first principles in Section 4.3.2 I then revisited the problem of fitting a line through
a number of feature points. Two different methods were introduced in Section 4.3.2
— an iterative method developed by Kanatani and Kanazawa [73, 77], and a direct
least squares approach. In Section 4.3.2.2 I gave a detailed derivation under which
circumstances a direct least squares solution is reasonable and showed that in fitting
a line through edgels these can be said to be to a good approximation independently,
identically, and isotropically distributed (iiid). In this case virtually no difference
in accuracy exists between the two methods, and the direct approach should be
used, since it is always faster — Kanatani’s method solves a problem equivalent
to the direct approach in each iteration. Kanatani’s method, on the other hand,
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is preferable whenever points are used which cannot be said to be identically and
isotropically distributed, e. g. if points from other sources are used in addition to
edgels. This was not explicitly demonstrated in this section, but we will see an
example of this in Section 7.

I also gave a new approximate formula for the line’s covariance, which can be used
to further speed up calculations in the case where we are fitting to iiid edgels,
and I demonstrated its excellent agreement with the true covariance values. In
Section 4.3.3 I finally extended the direct least squares solution to incremental line
fits, where in each step an additional edgel is added to (or removed from) the line.
Here I described the use of a simple χ2 error measure as a sliding threshold which
allows to fit lines through fewer edgels than was previously possible.

4.4 Points

It has already been mentioned in Section 4.3 that lines can convey important in-
formation about man-made environments. In particular I will define points mainly
as the intersection of lines. This is true both for corners, which can in general be
defined as the point of intersection of two or more spatially close lines, but in par-
ticular also for parallel lines, which identify main directions in the world. These
lines, which are parallel in 3D, will be coincident (concurrent) in the image, and it is
therefore only logical to search for coincident lines — and their point of intersection
— when looking for either corners or a structure that originally consisted of parallel
lines. In the following I will mainly concentrate on originally parallel lines as this is
generally the more complicated case. Corners, which are usually only of interest in
or near the image, follow the same approach, but generally are easier to compute.

Calculating corners or vanishing points (the intersection of originally parallel lines)
really consists of two problems. First we need to identify possible candidate lines
which we believe to intersect all in the same point; only then can we compute
the most likely intersection of all these candidate lines. Standard approaches for
the former, which is not the subject of this section, are e. g. the Hough trans-
form [13, 51, 94, 107, 142, 159] (see [20, 93] for more references), RANSAC [119, 134],
or perceptual grouping algorithms [88, 89, 96]. The latter are usually based on the
assumption that a normal camera was used to create the image rather than some
arbitrary projective transformation. Section 5 gives an example of a perceptual
grouping algorithm used for vanishing-point detection, where the individual lines
bounding a pedestrian crossing are identified based on constraints on the camera-
position; Section 6 gives another example where constraints on nearness and direc-
tion are used to group candidates for corners. Although not the subject of this thesis
I would like to point out that of course Hough and RANSAC like algorithms could
benefit from a statistical approach too; Hough through the use of covariance regions
rather than lines when building the array [99], while the χ2 measure suggests itself
as a reliable criterion to determine membership in a class when using RANSAC.
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Once a set of candidate lines has been identified we are left with the task of finding
the point x which is the most likely intersection of n lines `i, i = 1 . . . n. This does
sound like the dual problem to fitting a line to n points as discussed in Section 4.3
— this is in fact not the case, since this intersection can potentially lie at infinity,
in which case the weighted Euclidean distance implicit in Equations (4.6) to (4.10)
is not defined — the reason we could use this approach in Section 4.3 is the fact
that both the edgels and a line fitted to these edgels are restrained to lie within the
image, which is not necessarily the case here. The approach by Kanatani described
in Section 4.3.2.1, which minimised algebraic distance (distances on the surface of a
unit sphere) rather than Euclidean one, is of course still usable and will be discussed
in Section 4.4.1.

Minimising algebraic distance (at least the particular one used by Kanatani) works
very well, and is indeed nearly always the method of choice when calculating in-
tersections. There exists, however, a very different interpretation to the problem of
vanishing-point detection, and it is quite instructive to have a closer look at this
approach. It is based on the assumption that the lines were indeed originally par-
allel in 3D. Instead of calculating the location of the intersection in the image, all
lines are first transformed into a canonical frame of parallel lines. The homography
connecting the two frames directly specifies the location of the intersection. This is
described in Section 4.4.2. If instead of the lines the original edgels are transformed
into this frame, we get a new set of lines for free which all pass through the calcu-
lated intersection. This approach is described in Section 4.4.2.2. A comparison of
the individual approaches and their respective advantages and disadvantages can be
found in Section 4.4.3.

4.4.1 Minimising Algebraic Distance

Finding the point x with ‖x‖ = 1 which minimises the algebraic distance to n
lines `i, i = 1 . . . n, is the dual problem of finding the line ` with ‖`‖ = 1 which
minimises the algebraic distance to a set of points as described in Section 4.3.2.1.
The algorithm given there can be applied here by interchanging all occurrences of
x and `, the distance measure to minimise then becomes

min
x

1

n

n∑

i=1

xT`i`
T

i x

xTΣ`i
x

(4.27)

The geometric interpretation is similar to the one in Section 4.3.3, again using the
Gaussian sphere (or ray-space) model from Section 2.9: each line in the image
corresponds to a great circle on the unit sphere (a plane through the unit-sphere’s
origin), and minimising the algebraic distance finds the point x on the unit sphere
with minimum mean squared scaled orthographic distance to the great circles (the
planes). This is equivalent to representing each great circle (plane) by its normal-
vector (a point on the unit sphere) and finding the great circle (plane through the
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sphere’s origin) which best fits these points — the problem solved in Section 4.3.2.1.
The great-circle’s (plane’s) normal vector corresponds to the intersection x.

We will see in Section 4.4.3 that the nonlinear distortion of the covariance-regions
inherent to the projection onto the unit sphere is in fact more adequate to the
problem than the original formulation on the Euclidean plane (although it is still
not perfect). This is one of the reasons why this approach works so well.

4.4.2 Canonical Frame Minimisation

The underlying assumption when looking for some lines’ common intersection is
often that the lines were originally parallel in 3D. So instead of looking for a point
closest in (algebraic) distance to a given set of lines, this approach tries to identify a
homography H into a canonical frame such that all lines become horizontal6 again.
The intersection is then the point given by x = H−1(1, 0, 0)T (assuming horizontal
lines in this and the following equations).

A general homography H has 8 degrees of freedom. The condition that all lines
should be parallel after the transformation `′i = H−T`i only fixes 2 DOF (one for an
intersection at infinity, and one for the angle which the lines form with the x-axis).
We therefore have to decide on a 2 degree of freedom parametrisation for H which
uniquely identifies H. A possible parametrisation is given by

H =




1 0 0
0 1 0
p 0 1






cos(β) − sin(β) 0
sin(β) cos(β) 0

0 0 1


 (4.28)

H−T =




1 0 −p
0 1 0
0 0 1






cos(β) − sin(β) 0
sin(β) cos(β) 0

0 0 1


 (4.29)

This parametrisation consists of a rotation around the image origin, followed by a
(possibly negative) projective foreshortening along the x-axis.

The homography H can now be used to transform the lines `i into a canonical frame
of horizontal lines `′i = H−T`i, or alternatively to directly transform the edgels xi,j

which originally gave rise to the lines `i, x′
i,j = Hxi,j. The later would, in addition

to the lines’ intersection x, also calculate a new set of lines ˆ̀
i, which will all pass

exactly through this intersection. Both approaches are described below.

4.4.2.1 Canonical Frame and Lines

We assume that the lines are given as a homogeneous 3-vector proportional to the
normal form characterised by the angle αi and the distance ci = −xi sin(αi) +

6Or any other predefined direction.

Error Propagation in Geometry-Based Grouping



4.4.2 Canonical Frame Minimisation 89

yi cos(αi) from the origin as `i = ki(sin(αi),− cos(αi), ci)
T. These will then trans-

form as

`′i = H−T`i = ki




sin(αi + β)− cip
− cos(αi + β)

ci




T

(4.30)

Since we have no information about the transformed lines other than that they
should all be horizontal, we can only use the transformed lines’ angles to construct
an error measure. The angle is

α′
i = arctan

(
tan(αi + β)− cip

cos(αi + β)

)
(4.31)

Following an argument similar to the one in Section 4.3, the equation to minimise
would be

χ2 = min
β,p

n∑

i=1

α′
i
2

σ2
α′

i

(4.32)

where σ2
α′

i
can be calculated using Equation (3.53) as

σ2
α′

i
= Jα′

i(αi,ci)J(αi,ci)`i
Σ`i

JT

(αi,ci)`i
JT

α′

i(αi,ci)
(4.33)

with Jα′

i(αi ,ci) =
(cip sin(αi + β)− 1 , p cos(αi + β))

2cip sin(αi + β)− p2c2
i − 1

(4.34)

and J(αi,ci)`i
=

(
1 0 0

−xi cos(αi)− yi sin(αi) − sin(α) cos(α)

)
(4.35)

if the line was given in (α, x, y)T notation — or similarly for any other notation.

If speed of computation is an issue, then the following approximation is viable: the
angle in Equation (4.32) is well approximated by the tangent function under the
assumption of small to medium sized errors (the relative error is only about 4 % for
up to 20◦ of error in the orientation); we can therefore minimise the slightly simpler
function

χ2 = min
β,p

n∑

i=1

t′i
2

σ2
t′i

(4.36)

t′i
2

= tan(αi + β)− cip

cos(αi + β)
(4.37)

σ2
t′i

= Jt′i(αi,ci)J(αi,ci)`i
Σ`i

JT

(αi,ci)`i
JT

t′i(αi,ci)
(4.38)

Jt′i(αi,ci) =

(
1− cip sin(αi + β)

cos2(αi + β)
, − p

cos(αi + β)

)
(4.39)

and (4.35) as given above.

The most likely intersection in this frame is located at (1, 0, 0)T (in homogeneous
coordinates), and this is mapped onto the homogeneous image coordinate

x =




cos(β)
− sin(β)
−p


 (4.40)
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Its covariance matrix can be calculated using Equations (3.53) and (3.56) (using the
implicit function theorem).

Both Equation (4.32) and Equation (4.36) result in moderately complicated non-
linear functions of the parameters β and p, for which no closed form solution ex-
ists. In order to locate the minimum, any of a number of numerical optimisation
schemes [123] can be employed instead. A reasonable start-value is important to
honour the small error assumption explicitly used for Equation (4.36), and implic-
itly present in the use of Gaussian distributions for angles in Equation (4.32). A
reasonable start value could, for example, be found by one or two iterations of the
algebraic distance algorithm in Section 4.4.1.

4.4.2.2 Canonical Frame and Edgels

If the original edgels are still available, rather than just the lines, it is tempting to
directly transform the edgels into a canonical frame. Only the y-coordinates of each
transformed edgel are of interest (assuming once more a frame of horizontal lines),
and the function which is to be minimised becomes

χ2 = min
β,p

n∑

i=1

mi∑

j=1

(y′
i,j − ȳ′

i)
2

σ2
y′

i,j

(4.41)

where

y′
i,j =

xi,j sin(β) + yi,j cos(β)

pxi,j cos(β)− pyi,j sin(β) + 1
(4.42)

ȳ′
i =

mi∑

j=1

y′
i,j

σ2
y′

i,j

/

mi∑

j=1

1

σ2
y′

i,j

(4.43)

σ2
y′

i,j
= Jy′

i,jxi,j
Σxi,j

JT

y′

i,jxi,j
(4.44)

Jy′

i,jxi,j
=

(pyi,j − sin(β) , pxi,j + cos(β))

(pxi,j cos(β)− pyi,j sin(β) + 1)2 . (4.45)

xi,j is the jth edgel of the ith line. Again, Equation (4.41) can only be minimised
numerically. In addition to the approach in Section 4.4.2.1, this strategy also cal-
culates a new set of lines of the form `′i = (0,−1, ȳi)

T in the canonical frame or

ˆ̀
i =

1√
p2ȳ2

i + 1




pȳi cos(β)− sin(β)
−pȳi sin(β)− cos(β)

ȳi


 (4.46)

in the image. Such refitted lines can, e. g., be used for the calculation of the cross-
ratio as described in Section 4.5, although in Section 4.5.2 I will present a new
method which allows the calculation of the cross-ratio without prior calculation of
the intersection and a new set of lines, at nearly the same accuracy.
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Figure 4.9: Monte Carlo simulation of the calculation of line-intersections for
three typical constellations. The two top figures demonstrate how well the the-
oretically derived covariance matrix (the ellipses, enclosing 99% of all points)
and the Monte-Carlo simulation agree for intersections close to the image. The
bottom figure shows that for far away intersections (×) the covariance-region
becomes hyperbolic in Euclidean coordinates, which is poorly modelled by Gaus-
sian noise.

4.4.3 Comparison and Summary

A Monte Carlo simulation shows that both the algebraic distance as well as the
canonical frame algorithms work equally well under the condition of small errors.
Figure 4.9 shows sample scatter-diagrams for three typical constellations, using the
algorithm from [73] (both types of algorithms produce virtually identical diagrams).
It becomes apparent that both types of algorithms work best when the intersection is
located in or near the image (Figure 4.9, top row). The hyperbolic covariance-region
in Figure 4.9, bottom row, shows clearly why an Euclidean model is not adequate
for the calculation of these intersections, as was mentioned in the introduction to
this section.

The spherical normalisation, and in particular Kanatani’s N-vectors, are indeed
much better adapted to the problem than are Euclidean coordinates. We can see
in Figure 4.10 that the projection of a hyperbola onto the sphere will result in an
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Figure 4.10: The projection of a hyperbolic covariance region (left) onto a
sphere (middle and right) becomes elliptical. The image region is marked by a
dashed rectangle.

“elliptic” region, in this case with the midpoint close to “infinity” and the covariance-
region wrapping around both sides of the unit-(half)-sphere. The left figure shows
a setup similar to the one in Figure 4.9 (bottom), with the image region marked by
a dashed rectangle and the scatter-plot delimited by a hyperbola containing 99%
of the intersections. Figure 4.10 (middle and right) show the projection onto the
unit sphere, using N-vectors, where the intersections are now well contained within
an approximately elliptical region on the sphere, which would be well modelled by
Gaussian error on the sphere.

The canonical-frame method is of course not affected by these considerations at all,
as it only uses angular distances, which do not suffer from these effects.

I have said that both types of algorithms produce comparable results. However,
Kanatani’s method is up to an order of magnitude faster for small covariance matri-
ces, where it converges rapidly. Processing times for larger uncertainties are about
equal, but here Kanatani’s method calculates slightly more accurate results, since
the small-error condition needed for Equation (4.32) is not valid anymore, and his al-
gorithm is therefore the method of choice for the fast calculation of line-intersections.

The decision whether to accept the hypothesis that the n lines tested were indeed
coincident can as usual be based on a χ2 test with ν = n− 2 degrees of freedom.

4.5 The Crossratio

The cross-ratio of 4 collinear points — or, alternatively, 4 coincident lines — is
one and probably the fundamental projective invariant. However, virtually no four
measured points will be collinear, nor will four measured lines be coincident, even
if we know that they should be. In the following we will mainly concentrate on the
crossratio of four lines, since for the reasons discussed in Sections 4.3 and 4.4 (fitting
lines is easier than calculating their intersection) this is usually the more error-prone
case.
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Two radically different approaches to the calculation of the crossratio are described
below. The family of solutions described in Section 4.5.1 calculates the lines’ in-
tersection first and the crossratio only afterwards, thereby following a more con-
servative approach. In contrast, the approach described in Section 4.5.2 does not
require any knowledge about the lines’ intersection. This is a direct consequence of
the application of error-propagation principles to the problem of the calculation of
the crossratio, and has to my knowledge not been discussed outside of [6] and this
thesis.

Section 4.5.3 compares the different approaches and shows clearly the crossratio’s
sensitivity to noise and to the particular method chosen to compute it — but also
that with some care and the tools of error-analysis and error propagation it is possible
to construct an algorithm which can calculate the cross-ratio as good as the best
algorithms, but in a fraction of the time usually needed.

4.5.1 Refitting Lines

The approach for the calculation of the crossratio described in this section could
be termed the classical approach. Given four lines `i, i ∈ {A, B, C, D}, which are
not quite coincident, one first calculates the lines’ most likely common intersection
— hopefully by one of the methods discussed in Section 4.4. From there a new set
of lines ˆ̀

i is calculated, which passes through this intersection. Only then is the
crossratio calculated, usually using Equation (2.42).

Three different representations of this approach are introduced in the following,
corresponding to the three methods for the calculation of the lines’ intersection in
Section 4.4.

4.5.1.1 Refitting in the Image Plane

In this approach, which was suggested by Kanatani[74] and others, one first calcu-
lates the lines’ intersection in the image plane, using the algebraic distance algorithm
described in Section 4.4.1. From there a set of new lines ˆ̀

i ∈ IR3 is calculated which
pass through this intersection and the original line segments’ centres. One can then
calculate the new lines’ crossratio using Equation (2.42),

cr(ˆ̀A
ˆ̀

B
ˆ̀

C
ˆ̀

D) =
|ˆ̀A

ˆ̀
C`X |

|ˆ̀B
ˆ̀

C`X |
�

|ˆ̀B
ˆ̀

D`X |
|ˆ̀A

ˆ̀
D`X |

. (2.42 a)

`X can be any arbitrary 3-vector; the only formal criterion for `X is that the scalar
product with the vanishing point must not be 0 (the line `X must not pass through
the vanishing point). It is therefore often chosen to be the dual of the vanishing
point itself [72].
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4.5.1.2 Canonical Frame and Lines

In this approach all four lines are transformed into a canonical frame of horizontal
lines, using the method described in Section 4.4.2.1. The crossratio is then calcu-
lated from the y-coordinates of the transformed lines’ centre points alone, using e. g.
Equation (2.37), i. e.

cr(ˆ̀A
ˆ̀

B
ˆ̀

C
ˆ̀

D) =
ŷC − ŷA

ŷC − ŷB

�

ŷD − ŷB

ŷD − ŷA
. (2.37 a)

4.5.1.3 Canonical Frame and Edgels

Here the edgels are transformed into a canonical frame, instead of the lines, using the
approach described in Section 4.4.2.2. Only the ȳ′

i are then used for the calculation
of the crossratio, again using e. g. Equation (2.37).

All three approaches described so far are basically equivalent in that they first
calculate the lines’ vanishing point (which is implicitly given by a canonical frame
representation) and only then proceed to calculate the crossratio, differing only in
the method used to calculate the vanishing point itself, and they will therefore all
give similar results. However, the necessity to find a good approximation of the
vanishing-point position means that all three algorithms are rather slow. While this
is not a problem if only one or two crossratios need to be calculated, it can become a
considerable burden if several thousand calculations are needed, e. g. if the crossratio
is used for classification into two or more populations, where the biggest population
would be due to random configurations of lines and could safely be ignored. It would
then be convenient if a fast method for the calculation of the crossratio existed that
would not require the calculation of the vanishing point. A possible approach is
presented in the next section.

4.5.2 Direct calculation of the Crossratio

The main problem with any approach for the calculation of the crossratio that
would not also calculate the vanishing point is of course the fact that a crossratio is
computed for 4 non-coincident lines, although it is only defined for coincident ones
(or equivalently 4 collinear points).

But what if we know that the original lines really were coincident? The formula
usually used to compute the cross-ratio

cr(`A`B`C`D) =
|`A`C`X |
|`B`C`X |

�

|`B`D`X |
|`A`D`X |

. (2.42 b)

which can e. g. be found in [72, 103], does not make explicit use of the condition of
coincidence. The result might be meaningless if the lines are not coincident (and
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certainly highly dependent on `X , which can be arbitrarily chosen, as long as it does
not pass through the vanishing point), but it can be calculated.

It is therefore interesting to analyse the quality of the result. The key here is the
choice of `X in dependence of the four lines `i and their covariances. The optimal
choice for `X could in theory be computed by minimising the cross-ratio’s variance
— calculated using Equation (3.53) — with respect to `X . Unfortunately, no closed
form solution exists, and numerical minimisation would be just as computationally
expensive as the direct computation of the vanishing point in Section 4.5.1.

What can be said, however, is that `X should intersect the `i close to their centre
points, and at right angles. This can be seen if we interpret `X as a line intersecting
the other four lines `i, i ∈ {A, B, C, D}, as seen in Figure 4.11. If the lines `i are
not perfect lines but ones fitted to a number of edgels, it is clear that the fitted lines
will become less and less accurate the further away from the line segments’ centre
points we go — the grey hyperbolas to the left and right of each line segment in
Figure 4.11 represent the border of an n-σ-interval. This means conversely that the
resulting cross-ratio will be all the more reliable, the closer to their centre points
the lines `i will be intersected by `X , but also the closer to a right angle the angle
between `i and `X has been chosen. Figure 4.12 gives an error-bar representation of
the crossratio of 4 horizontal and equidistant lines (cr = 4/3) as a function of that
angle by plotting c̄r(α`X

)± sc̄r(α`X
) (the sample variance) for different angles α`X

.
It can clearly be seen that the calculated crossratio becomes completely unreliable
if the intersecting line `X is approximately collinear with the line segments, but is
else not overly sensitive to small changes in the orientation7 — suggesting that it
might indeed be possible to calculate a reasonable approximation of the crossratio
without prior calculation of the vanishing point.

Even if the accuracy of a cross-ratio thus calculated were lower than possible, one

7More complicated line-constellations can of course results in a less benign relationship.
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could still use this as a first test using the χ2-test described in Section 4.6.4 and
only calculate the vanishing point and a better approximation8 to the cross-ratio
and its covariance if it did pass the test, using one of the approaches discussed in
Section 4.5.1.

This would already considerably speed up processing compared with the straight-
forward approach of first calculating the vanishing point and then the cross-ratio,
since the cross-ratio is both much faster to compute and usually has much higher
discriminating power9. Note that even if the new fast algorithm were less accurate
than the more conservative approach, no information will be lost. Only the number
of false positives would increase. We will, however, see that with a carefully chosen
`X the accuracy of the fast algorithm can be virtually as good as that of the more
traditional ones.

The only remaining question is how to best choose the `X . We have seen above that
some weighted equilibrium needs to be found between a line `X which intersects
the `i as close as possible to their centres, and a right-angle intersection between
`X and the `is, since it is generally not possible to fulfil both requirements at the
same time. In the following I will present two approaches which put more weight
on either the first or second condition; the approach described in Section 4.5.2.1
tries to maintain as-close-as-possible right-angle intersections, while the approach
described in Section 4.5.2.2 tries to pass a line close to the individual lines’ centre
points. Many more approaches can be conceived; the two approaches used here have
mainly been chosen for their didactic properties — the first one works particularly
bad, the second one particularly good, mostly due to the weighting chosen.

4.5.2.1 Right Angle Intersection

Keeping the intersections between `X and the `is as close as possible to a right angle
is equivalent to finding the line orthogonal to a line through the vanishing point and
with minimum average angular distance to the four lines `i. This determines a
family of parallel lines, and fixing the remaining parameter requires us to specify
a point through which `X is expected to pass, the mean position of the four lines’
centre points suggesting itself.

However, the above description requires us to know the position of the vanishing
point. In order to avoid calculating the vanishing points position we will use a
slightly modified approach; we will choose a line which passes through the point
(x̄, ȳ)T and whose homogeneous normal vector n ∈ IR3 is given as the vector pointing

8It is worth remembering that any algorithm will only compute an approximation unless the
measured lines have been coincident to begin with.

9For most scenes taken from human environments we will usually have only 2n+1 (with n small,
often n = 1) vanishing points through which most lines pass, compare Section 6. Coincidence alone
therefore has only very little discriminating power.
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from that point into the direction of the intersection between `A and `D, i. e.

n = (`A × `D)×




x̄
ȳ
1


 (4.47)

and the resulting line becomes

`X =




nx

ny

−x̄nx − ȳny


 . (4.48)

The point (x̄, ȳ)T itself, rather than using the centre-points’ mean position, will be
calculated as

(
x̄
ȳ

)
=




∑

i∈{A,B,C,D}

(
σ2

xi
0

0 σ2
yi

)


−1

∑

i∈{A,B,C,D}

(
σ2

xi
0

0 σ2
yi

)(
xi

yi

)
. (4.49)

This will be done for didactic reasons only, generating comparable scales in Fig-
ure 4.14ff.

Calculating the direction of `X completely ignores the individual lines’ covariance
matrices, and it is therefore not overly surprising that the results achievable will
remain well below that of the standard approaches, as can be seen in Section 4.5.3.

4.5.2.2 Line Fit

This approach tries to fit `X to the `i’s centre points using a weighted fit. It is easy
to see from Figure 4.11 that the bigger the variance σ2

αi
in the angle αi, the closer

should `X be to the line’s centre point xi, and this makes minimising the following
equation a good candidate

min
`X

∑

i∈{A,B,C,D}

σ2
αi

`T

X

(
xi

1

)
(xi, 1)`X (4.50)

with `X ∈ IR3 and xi ∈ IR2 — the xi are centre points of measured line segments
and therefore never at infinity10. The resulting line `X passes through the point

x̄ =

(
x̄
ȳ

)
=

∑
i∈{A,B,C,D} σ2

αi
xi∑

i∈{A,B,C,D} σ2
αi

(4.51)

and its normal-vector is the eigenvector to the smaller eigenvalue of

∑

i∈{A,B,C,D}

σ2
αi

(
(xi − x̄)2 (xi − x̄)(yi − ȳ)

(xi − x̄)(yi − ȳ) (yi − ȳ)2

)
. (4.52)

10If one or more of the lines stem from a different source and therefore do have their centre
points at infinity, then it is safe to ignore the lines as they must by necessity have a value of σα = 0
or will be unusable.
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Line 2 2π 631 510 300 2.2̄ � 10−7 1.6̄ � 10−3 1.6̄ � 10−3

Line 3 π 645 520 250 3.84 � 10−7 2.0 � 10−3 2.0 � 10−3

Line 4 2π 671 530 200 7.5 � 10−7 2.5 � 10−3 2.5 � 10−3

Figure 4.13: Dataset used for Monte-Carlo simulations (cross-ratio).

This approach specifically calculates a solution based on the individual line’s vari-
ance σ2

αi
in the orientation αi, and it is therefore not surprising that it will generally

surpass the approach discussed before. Section 4.5.3 will, in fact, show that this
method gives results comparable to the ones in Section 4.5.1, and that the result’s
pdf can be approximated well using Equations (3.52) and (3.53). However, we will
see in the next section that the qualitative (and, near enough, quantitative) be-
haviour is the same for both the conservative, time consuming approach as well as
the fast approach presented in Section 4.5.2.2, and this shows impressively the power
of error propagation as a tool to devise both fast as well as accurate algorithms.

4.5.3 Comparison and Summary

In the following, a number of Monte Carlo simulations run on several different line-
configurations are used to illustrate the respective merits of the two approaches —
the refitting algorithm mentioned in Section 4.5.1.1 as an example of the group of al-
gorithms mentioned in Section 4.5.1, and the direct calculations from Section 4.5.2.
It can be seen that with a proper selection of `X , results for the fast algorithm are
about as good as for the canonical-frame algorithm if the error is small (compare
Figures 4.14 through 4.18), whereas the calculation is much faster. The individual
line-sets used have all been calculated from one set of four equally spaced, parallel
lines as given in Figure 4.13. These have been subjected to a projective transforma-
tion

P =




s cos(α) −s sin(α) stx
s sin(α) s cos(α) sty

px cos(α) + py sin(α) −px sin(α) + py cos(α) txpx + typy + 1


 . (4.53)
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This is equivalent to a rotation around the origin with angle α, translation by
(tx, ty)

T, projective distortion in x-direction with factor px — the horizontal vanish-
ing point (the intersection of the four lines) is projected to (1/px, 0, 1) — projective
distortion in y-direction with factor py — the point at infinity (0, 1, 0) is projected
to (0, 1/py, 1) — and a possible scaling of the entire set by s.

Note that the scaling operation is not equivalent to a change in resolution, as this
would influence σ2

α and σ2
x,y differently and in a nonlinear way (compare Figure 4.7

and Equations (4.21)–(4.23)). We can therefore additionally subject the variances
in the table in Figure 4.13 to the following transformation:

σ′
α

2 = σ2
α/k3

σ′
x
2 = σ2

x/k

σ′
y
2 = σ2

y/k

. (4.54)

Changing only the scale s describes the case where, with constant line-length, the
distance between the lines varies; varying only the factor k would correspondingly
describe a setup in which the line-length varies, but the distance between the lines
is kept constant. Alternatively this also describes the case where the image quality
degrades or improves respectively. Varying both s and k by the same amount finally
corresponds to a change in image resolution.

In order to create datasets for Monte-Carlo simulations, Gaussian noise of the ap-
propriate variance is then added to the (α, x, y) values in Figure 4.13. The sample
size is 10 000 unless otherwise stated. Each parameter of Equation (4.53) has been
changed in turn, and a histogram of the values computed for the crossratio has been
plotted together with the predicted distribution as given by the median of the cross-
ratio (the expected value is 4/3) and median predicted variance. Each experiment
will be discussed in turn below; it will be seen from Figures 4.14 through 4.18 that
the predicted and actual distributions agree nicely. In all experiments the left and
middle graphs refer to the two fast methods, while the right one refers to the tradi-
tional algorithm, compare e. g. Figure 4.14; the left one, labelled “Right angle” and
(a), refers to Section 4.5.2.1 where we tried to get a right-angle intersection, while
the middle one, labelled “Line fit” and (b), refers to Section 4.5.2.2 where `X was
chosen to pass as closely as possible through the centre points.

Figure 4.14 shows histograms of the measured distributions for the crossratio under
different angles of rotation α as well as the predicted distribution (median values)
using the three methods discussed above; Figures 4.14(a) and 4.14(b) show typical
results for the direct (fast) method using different lines `X calculated according to
Section 4.5.2.1 in Figure 4.14(a) and Section 4.5.2.2 in Figure 4.14(b) respectively;
Figure 4.14(c) shows typical results for the slower, but more exact conservative
approach described in Section 4.5.1.1. It can be seen that the distributions are
independent of the rotation α, as could have been expected. Also, the measured
distribution (histogram) obviously corresponds well with the predicted distribution
(solid curve). Finally, it can be seen that for the direct method the distribution of the
crossratio depends on the particular line `X chosen, and can be nearly as good as the
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α.
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(b) Line fit: rotation by α.
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(c) Refit: rotation by α.

Figure 4.14: Measured and predicted distribution of the crossratio for three
different algorithms and varying angle of rotation α.

much slower conventional method for a well-chosen `X — the corresponding values
for α = 0, e. g., are σ4.14(a) = 0.01973, σ4.14(b) = 0.00599, σ4.14(c) = 0.00582,

i. e. only a 3 % difference between the last two.

Most of these observations — the very good correspondence between predicted and
measured distribution, the high quality of the direct approach if the line `X is
chosen by an inversely weighted line fit according to Section 4.5.2.2, and the lower
accuracy when choosing the line `X according to Section 4.5.2.1 — will also be
valid for variations of any of the other parameters; the main difference is how the
distribution varies with variations of the individual parameters.
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(a) Right angle: projective
distortion py.
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(b) Line fit: projective dis-
tortion py.
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(c) Refit: projective distor-
tion py.

Figure 4.15: Measured and predicted distribution of the crossratio for three
different algorithms and varying projective skew in y-direction py.

Figure 4.15 shows the measured and predicted distribution for varying projective
distortions in y-direction, results are similar for distortions in x-direction. It can be
seen that results remain constant for a wide range of distortions 0 < px, py < 10−4

(which was not obvious from the problem itself) but degrade sharply between 10−4 <
px, py < 10−2. This is, however, not overly surprising, as we are then already dealing
with rather severe distortions which seriously influence both the actual as well as
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relative length of the individual lines, a behaviour not modelled by Equations (4.53)
and (4.54).
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(a) Right angle: scale s.
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(b) Line fit: scale s.
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(c) Refit: scale s.

Figure 4.16: Measured and predicted distribution of the crossratio for three
different algorithms and varying scale s.

Figure 4.16 shows the measured and predicted distributions for varying scales s,
varying the distance between the lines while keeping the line-length constant. As
was to be expected, the variance increases with decreasing scale (distance between
lines) and decreases with increasing scale. It is, however, quite interesting to note
that at least the latter is only the case within a relatively small interval around the
original setup (approx. 0.1 < s < 10).
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(a) Right angle: accuracy
k.

1.267
1.300

1.333
1.367

1.400
cr 0.0625

0.25

1

4

16

 0%

10%

20%

30%

40%

count

PSfrag replacements
k

(b) Line fit: accuracy k.
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(c) Refit: accuracy k.

Figure 4.17: Measured and predicted distribution of the crossratio for three
different algorithms and varying accuracy k.

Figure 4.17 shows the measured and predicted distributions for varying (relative)
accuracy k, corresponding to a fixed distance between the lines and either varying
line-length or varying quality of the original image (e. g., as is noticeable when
comparing images taken with a 3-chip RGB camera to those taken with a 1-chip
RGB camera). Here it is very clearly the case that the variance decreases with
increasing accuracy.

Figure 4.17 shows the measured and predicted distributions for varying (relative)
resolutions s = k, i. e. varying both s and k simultaneously. This corresponds
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(c) Refit: resolution s = k.

Figure 4.18: Measured and predicted distribution of the crossratio for three
different algorithms and varying resolution s = k.

directly to a change in resolution. Clearly the variance decreases with increasing
accuracy.
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Figure 4.19: Variance of the crossratio as a func-
tion of scale s (solid line), accuracy k (dashed line),
and resolution s = k (dotted line). Shown is the me-
dian predicted variance when using the fast method
described in Section 4.5.2.2 (line fit weighted by σ2

α).
It is interesting to note that the variance changes cubic
with the resolution (compare Equation (4.21)) and for
low accuracies, quadratic for low scales, linear for high
accuracies, and is constant for high scales.

Figure 4.19 shows the functional relation between the cross-ratio’s variance σ2
cr and

the scale s (solid line), accuracies k (dashed line), and resolution s = k (dotted line).
Variance changed cubic with resolution, showing that in this case the angle’s variance
σ2

α is the dominating factor (compare (4.21)); the same is true at low accuracies. For
high accuracies (small σ2 of the edgels) we have an approximately linear dependency,
which again is mirrored in (4.21) and (4.23). Finally, when varying the scale we see
an approximately quadratic relationship at low scales, which becomes constant for
higher scales — I’m not sure how to interpret this.

Collectively all these results show that for a reasonable choice of line `X — based
on error-propagation principles — it is possible to rival the best algorithms for the
computation of the crossratio in accuracy at a fraction of their runtime.
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4.6 Comparing Stochastic Entities

In comparing stochastic entities we are generally trying to answer the question
whether two observations x1,x2 ∈ IRn with covariance matrices Σx1 ,Σx2

∈ IRn×n

could both be valid observations of the unknown true value µx
∈ IRn. We assume

that the observations xi ∈ IRn are Gaussian distributed with pdf

pxi
(xi) =

1√
(2π)n|Σxi

|
exp

(
−1

2
(xi − µx)

T
Σ−1

xi
(xi − µx)

)
, (4.55)

where |Σxi
| is the determinant of Σxi

.

Assuming that the two observations x1 and x2 are independent of each other we can
simply multiply their probabilities; the joint probability that both observations are
valid observations of the same feature is then proportional to the sum

R = (x1 − µx)
T
Σ−1

x1
(x1 − µx) + (x2 − µx)

T
Σ−1

x2
(x2 − µx) . (4.56)

The residuum R in (4.56) above is a function of the unknown original feature vector
µx; it is straightforward to show that it is minimised by the feature

µx =
(
Σ−1

x1
+ Σ−1

x2

)−1 (
Σ−1

x1
x1 + Σ−1

x2
x2

)
(4.57)

which has a (calculated) accuracy (covariance) of

Σ =
(
Σ−1

x1
+ Σ−1

x2

)−1
. (4.58)

Once the residuum R has been found we can then use a simple χ2-test to test the
hypothesis that the two measurements x1 and x2 are observations of the same entity
µx:

R
!
< χ2

p,2 . (4.59)

This basic approach is valid for all the examples given below. If the uncertainty of
the model is explicitly given (by a covariance matrix Σµx

) then it is straightforward
to add this matrix to all occurrences of Σxi

, it is always Σ > Σµx
in (4.58).

In cases where the intrinsic dimensionality of the problem m is smaller than its
algebraic dimension n — this is always the case when dealing with homogeneous
coordinates, and in particular projectively transformed data — we would need to
replace the inverse Σ−1

xi
by the pseudoinverse (Σxi

)−m, and if necessary replace the
determinant in (4.55) by the product of its m nonzero eigenvalues. Usually we
will also need to normalise the measurements or otherwise make them comparable,
examples of this are given below. This is also one of the reasons why the otherwise
very elegant approach presented by Irani and Anandan in [64] can not be generalised
beyond affine transformations. Their approach is based on transforming the raw-
data into a covariance-weighted data space, where the components of noise are
uncorrelated and identically distributed; however, so far the proof that the optimal
solution in this space will also be optimal in the original space is missing. Still, the
reader who is only dealing with affinely transformed data is urged to have a look at
their work.
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Figure 4.20: The uncertainty in the distance from the origin c depends on the
location of the line segment.

4.6.1 Edgels

Edgels are the output of an edge-finder like Canny [24]. No scenario exists where it
would be required to compare two edgels. The simplest comparison would already
be between derived features like lines or points as described in the next section.

4.6.2 Lines

When comparing “lines” it is important to realise that in images we are never really
dealing with (infinite) lines, but always with line segments only. When comparing
“lines” we are therefore in reality trying to answer the question whether two line
segments `1 and `2 could be considered independent observations of the same line
`. This is the same as answering the question whether two line segments could be
considered collinear, a question posed in Section 6.

As mentioned in Section 4.3 there exists a multitude of different line-parameterisa-
tions. Particularly prevalent is the normal form (a, b, c)T with a2 + b2 = 1; this is
however not well suited to comparisons as the uncertainty in c can be considerable,
depending on the position of the line segment, compare Figure 4.20. This effect is
greatly mitigated by the use of spherically normalised parameters a2 + b2 + c2 = 1
and in particular Kanatani’s N -vectors; I would however like to advocate the use
of a new (α, x̄, ȳ)T parameterisation, which I believe to be the most convenient
for this particular application. We are then dealing with the two measurements
`1 = (α1, x1, y1)

T and `2 = (α2, x2, y2)
T with covariances Σ`1 and Σ`2. Similar to

Section 4.6 we then have to find the ideal line ` = (α, x, y)T with minimum weighted
distance to the two lines.

It is however clear that the point (x, y)T can be chosen arbitrarily along the lines, a
direct comparison with (x1, y1)

T and (x2, y2)
T would not be meaningful. Instead we

use the distance between the points (xi, yi)
T and their projection onto the ideal line,
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i. e. (xi−di sin(α), yi+di cos(α))T with di = xi sin(α)−yi cos(α)−x sin(α)+y cos(α),
which is the distance from the point (xi, yi)

T to the ideal line11. We therefore evaluate

minα,x,y


(α1 	 α,−d1 sin(α), d1 cos(α))Σ`1




α1 	 α
−d1 sin(α)
d1 cos(α)




+ (α2 	 α,−d2 sin(α), d2 cos(α))Σ`2




α2 	 α
−d2 sin(α)
d2 cos(α)







 ≤ χ2
p,2(4.60)

in order to decide whether the two line segments should be considered collinear. The
symbol 	 denotes a cyclic subtraction such that −π ≤ α	 β < π. We find that the
line ` which minimises Equation (4.60) is given by

` =
(
Σ−1

`1
+ Σ−1

`2

)−1 (
Σ−1

`1
`1 + Σ−1

`2
`2

)
(4.61)

Σ` =
(
Σ−1

`1
+ Σ−1

`2

)−1
(4.62)

and the minimum in Equation (4.60) is given by

R = (`1 − `2)
TJTΣ−1

`1
Σ`Σ

−1
`2

J (`1 − `2) (4.63)

with the Jacobian

J =




1 0 0
0 sin2(α) − sin(α) cos(α)
0 − sin(α) cos(α) cos2(α)


 . (4.64)

Equations (4.61) and (4.62) can also be interpreted as the combination of two line
segments `1 and `1 into a new line segment `3 = ` with covariance matrix Σ`3 = Σ`,
and it is possible to substitute the two original line segments by the new segment
formed this way in all future comparisons.

4.6.3 Points

In contrast to edgels, which are measurements directly on the image plane, points
are features calculated directly or indirectly from edgels, e. g. as the intersection of
two or more lines as described in Section 4.4 and used in Section 6. Points can be
parameterised using any of the approaches described for edgels in Section 4.2. Com-
mon are an Euclidean parameterisation (x, y)T, to which (4.57)–(4.59) are directly
applicable, and a parameterisation in homogeneous coordinates, k(x, y, w)T. The
latter parameterisation does not usually allow a direct application of (4.57)–(4.59),

11Of course I could just as well have defined a measure which is directly based on this distance,
but the advantage of my approach is that the coordinates of the ideal line naturally come out in
(α, x, y)T format too.
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as the difference of two measurements can be nonzero even if the two measurements
are exactly identical, it is in general

k1x = k2x (4.65)

k1x− k2x 6= 0 (4.66)

In order for (4.57)–(4.59) to be comparable we first need to normalise the measure-
ments to assure the equal-sign in (4.66). A normalisation w = 1 is essentially an
Euclidean parameterisation and shares with it the problem that points at infinity
can not be represented; also very common is a spherical normalisation which en-
forces xTx = 1. This is essentially the Gaussian sphere or N-vector representation
described in Section 2.9.2. Not only does this normalisation enforce the equal-sign
in (4.66), but the covariance-region on a sphere is indeed a much more adequate
model for points as intersections of lines than is the covariance-region on the plane
(as we have seen in Section 4.4.3 — and will again see in Section 7). After nor-
malisation, (4.57)–(4.59) can be applied if the pseudoinverse is used instead of the
inverse.

4.6.4 Crossratios

The comparison of cross-ratios is straightforward; one can simply use (4.56)– (4.59)
with n = 1 so that the covariance matrices become simple variances. We can then
calculate the most likely true crossratio as

cr =
cr1σ

2
cr2 + cr2σ

2
cr1

σ2
cr1 + σ2

cr2

(4.67)

which it was possible to calculate with accuracy (variance)

σ2 =
σ2

cr1
σ2

cr2

σ2
cr1

+ σ2
cr2

. (4.68)

The hypothesis that the two measurements cr1 and cr2 are observations of the same
entity cr can then be tested using:

R =
(cr1 − cr2)

2

σ2
cr1 + σ2

cr2

!
< χ2

p,1 . (4.69)
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Chapter 5

Detecting Repeated Parallel Structure

. . . Stripe for Stripe.

The Bible: Hebrew Exodus 21:23
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Figure 5.1: Examples of repeated parallel structure in images.

5.1 Introduction

This chapter, as well as Chapters 6 and 7, demonstrates the application of the
theories discussed in Chapter 4 to a real-world example.

The algorithm described here deals with the detection of repetitive structures con-
sisting of parallel line segments with a given crossratio. Some of the more obvi-
ous examples for this are railway-sleepers, fences, and windows (particularly in big
office-buildings). Figure 5.1 shows some examples. The structure used throughout
most of this chapter is that of a pedestrian or zebra crossing . This was originally
implemented as part of the project MOVIS1 — Mobile Optoelectronic Visual Inter-
pretative System for the Blind and Visually Impaired — which took place from 1995
to 1997 [1, 6]. Within this project, a first prototype of a portable device for blind and
visually impaired persons was created which was able to recognise a small number of
useful objects and signs customarily found in street scenes. This prototype consisted
of a spectacle-like device connected to an (at the time stationary) computer doing
the image processing. Figure 5.17 on Page 130 shows images of the actual device
used. The theory is, however, independent of this particular application and equally
applicable to any other repeated structure of parallel line segments.

Detecting zebra crossings may sound like an easy task. After all, they’re big, and
they’re designed to be fairly obvious. However, it isn’t. Reasons include:

� The general amount of occlusion connected with street scenes, namely fel-
low pedestrians who get in the way, lamp and sign posts, cars, and basically
everything that moves. Moreover, zebra crossings are particularly prone to
occlusion, since they are designed for people to walk on and for cars to drive
across.

� Zebra crossings are often in bad repair, patches are missing, they have spots
or holes.

1
MOVIS was funded by the BMBF, the German Ministry for Education and Research.
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Figure 5.2: Different views of a zebra crossing as seen from a car (left) and a
pedestrian (middle and right).

� Due to varying viewing geometries the width of stripes in an image may vary
from dozens of pixels to only 2 to 4 pixels — even within one stripe.

The recognition of repeated parallel structures under perspectivity has traditionally
been dealt with in the context of texture analyses. In [84] an algorithm for the
recognition of arbitrary repeated structures is presented. However, this approach
requires a minimum amount of texture within each element of the structure and is
therefore unsuitable or at best problematic for structures with little or no texture as
they are presented here. Only after the work described here was first published [6]
did a small number of papers appear based on this work [134, 135, 137].

The work specific to zebra crossings on the other hand has nearly exclusively assumed
an autonomous vehicle’s (car’s) point of view [85, 108]. This way, the camera’s
orientation relative to the ground can be assumed known. Also, the street’s left
and right boundaries are generally well known, and these can be used to identify
the road’s (virtual) vanishing point [90], through which all lines bounding a zebra
crossing have to pass [108]. Finally, from the viewpoint of a car a zebra crossing is
always encountered head on, which means that all stripes will have approximately
the same width on any row of the image, and that the zebra crossing will at most
be occluded by objects directly on the road. Figure 5.2 (left) shows an example of a
zebra crossing as seen from a car.

None of the constraints mentioned above apply when dealing with a camera carried
by a pedestrian, as within MOVIS. Here, the camera’s orientation relative to the
ground is at best only approximately known (e. g. from motion sensors affixed to the
camera), and no other constraints exist. Also, the zebra crossing will often be heavily
occluded, fracturing the individual stripes into several “stubs”. Figure 5.2 (middle,
right) shows two examples of a zebra crossing as seen from a pedestrian’s point of
view. This means that it is generally necessary to group several separate patches
into one zebra crossing. It is my experience that this is best achieved using a line-
based approach, which will be described in Section 5.3. Error propagation plays a
particularly important role here since a zebra-crossing’s size and quality in the image
can vary considerably from image to image — so much in fact that a first prototype
based on static thresholds never worked on more than at most two images at the
same time, while the approach presented here has proven it’s stability on literally
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thousands of images. Work on the recognition of pedestrian crossings from the
viewpoint of a pedestrian only appeared after the original publication of this work
in [6], and building on it [135].

The remainder of this chapter is organised as follows: Section 5.2 describes the
underlying model used to group and recognise repeated parallel structures. The ex-
ample of a zebra crossing used is easily modified for other structures, possibly simply
replacing “horizontal” with “vertical” where appropriate. Section 5.3 describes the
actual process of grouping and recognition based on the theory and principles dis-
cussed in Chapter 4. This makes use of my new formulation for the calculation of
the cross-ratio described in Section 4.5.2. In addition I present a new method for the
transformation of lines into an only partly specified canonical frame, i. e. one where
only some structural information is given, in Section 5.3.3. To my knowledge this
was also the first application where the horizon was calculated from image struc-
ture alone (now a staple of projective geometry). A heuristic, but in my experience
rather efficient method for merging hypotheses in the presence of unquantified errors
in the object’s geometry is given in Section 5.3.4. Although all sections discuss the
relative merits of different camera models, I have found that it is the assumption of
a quasi-calibrated (“sensible”) camera which allowed me to implement an algorithm
that is both fast and robust. Based on this camera model, Section 5.4 describes a
simple but at the time of implementation new approach used for verification, which
stands in the tradition of [97] and could well be seen as the forerunner of algorithms
such as [33, 34, 87]. Finally, Section 5.5 presents some examples of successfully
recognised zebra crossings and discusses the results.

5.2 Model

I will first discuss the underlying 3D-model in Section 5.2.1, followed by a discussion
of the different camera models in Sections 5.2.2 ff.

5.2.1 3D Model

Zebra crossings can be found throughout Western Europe as well as in many other
parts of the world. In most countries, the following would be considered a reasonable
3D-model of a zebra crossing:

1. Zebra crossings are planar.

2. They are located on the ground-plane.

3. They consist of light stripes on a darker surface.

4. All stripes are parallel.
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5. All stripes are of equal width.

6. All gaps between stripes are of equal width2.

7. The ratio of the width of the stripes to the width of the gaps is known in
advance.

The main problem with the above description is that it is not, strictly speaking, true.
Streets are not entirely plane, but will generally slope to the sides to enable rainwater
to drain. Neither are the stripes entirely plane themselves (but will generally extend
somewhat above the street-surface) nor are they exactly parallel nor exactly the
same width or distance from each other3. Experiments show, however, that these
deviations are small for most images compared with resolution related artifacts, and
are well accounted for by simple error models and a stepwise refinement approach
used for grouping (described in Section 5.3) that requires only three consecutive
stripes at a time to conform to the above model.

The following sections describe how this 3D-model will be projected onto a 2D-plane
under the assumption of different camera models.

5.2.2 Projective Camera Model

This model was discussed in Section 2.3.4. It is the most general linear camera model
available, and can be parameterised by a general 8 DOF projective transformation4.
Using this model, only very little can be said about a zebra-crossing’s appearance
after projection:

� All lines bounding the stripes are coincident (this follows from Items 1 and 4).

� The crossratio is known in advance (from Items 1, 5, 6, and 7).

� The lines bounding the stripes have alternating directions, i. e. cutting across
all lines we see a change in luminance from darker to lighter to darker5 (and
so forth — this follows from 3).

That the crossratio is known means in particular that from two stripes (four line
segments6) it is possible to predict the location of additional stripes within the
image, as will be done in Section 5.3.3.

2They are usually also approximately the same width as the stripes, but this is not a sine qua
non, but see also Item 7.

3Although German standards[23], for example, only allow for deviations in width or position of
a maximum of ±10mm or 2 % on new zebra crossings.

4Since we are only dealing with a transformation from one plane onto another, a homography.
5For many images both the street’s surface as well as the zebra crossing’s have luminance values

lighter than the image’s mean luminance.
6Strictly speaking three line segments would be sufficient.
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Figure 5.3: Example of an impossible
Geometry. The vanishing point in this
street-sign from Uruguay is below the
zebra crossing, corresponding to a scene
viewed from below ground, which does
not agree with the pedestrian’s
position. Clearly this would not be
recognised as a valid representation of a
zebra crossing under the assumption of
a constrained perspective or
quasi-calibrated camera model.

5.2.3 Constrained Perspective Camera Model

This model is based on the model of a perspective camera described in Section 2.3.3,
but with the added constraint that the horizontal and vertical direction are approx-
imately known within the image.

Assuming a level zebra crossing (i. e. the street does not go uphill), the stripes’
vanishing line coincides directly with the horizon. Although the location of the
horizon is of course arbitrary under a general projective transformations, it will none
the less be close to horizontal in virtually all images taken by human operators. It
is therefore possible to formulate some additional constraints on the appearance of
the zebra crossing within the image, in particular:

� The vanishing line is located completely above the zebra crossing (from 2).

� The vanishing line is approximately horizontal (compare Items 1 and 2).

� It is approximately within the image.

If, on the other hand, the image was taken by a robot, UGV or similar, additional
knowledge about the image’s orientation will often be available (as is, at least to
some extent, the case within MOVIS). The above conditions would then reduce to

� The vanishing line approximately coincides with the (known) location of the
horizon.

Figure 5.3 shows an example of a drawing where this condition is violated; the
drawing does not represent a valid representation of a zebra crossing.
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Figure 5.4: Grouping zebra crossings. Starting with a set of 4 coincident
line segments (continuous lines), a vanishing line (dot-dashed line) is calculated
and additional lines corresponding to adjacent stripes are hypothesised (dashed
lines).

5.2.4 Quasi-Calibrated Camera Model

This model, which is based on the constrained perspective model described above,
further assumes that some approximate information about the imaging process is
available, such as the camera’s focal length and aspect ratio, and the camera’s
approximate height over ground. I will show in Section 5.4 that in conjunction with
Item 2 this information can be used for verification purposes.

5.3 Grouping

The following describes a bottom-up approach for the grouping and recognition of
partly occluded zebra crossings in natural images. The approach is completely line-
based and assumes that suitable line segments and their covariance matrices have
already been found using a sub-pixel accurate edge-finder [24] in connection with
the approach for line fitting described in Section 4.3.

Starting with the individual line segments, sets of four line segments are identified
(using perceptual grouping, two possible approaches are described in Section 5.3.1)
and tested for coincidence and crossratio (Section 5.3.2). These line segments
are then backprojected into the images, and additional stripes are identified (Sec-
tion 5.3.3), creating several hypotheses (see also Figure 5.4). Finally, overlapping
hypotheses are merged into a single hypothesis (Section 5.3.4).

Most of this approach is directly based on the ideas and principles described in
Chapter 4, in which case only a short reference to the corresponding section is
given. Only where additional strategies were used is this explained in detail in the
text below.
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Figure 5.5: A grey level image and the line segments fitted to grey-level dis-
continuities. Each line segment is displayed as a black and white double line, the
black side corresponding to the darker side of the discontinuity, and the white
side to the lighter one.

5.3.1 Sets of 4 Lines

To take advantage of the constraint of a fixed crossratio — the only constraint on the
appearance of a zebra crossing after general projection — one first has to identify
4 coincident lines. A very simple approach would be to directly test all possible
groups of 4 line segments for coincidence and crossratio. This has the advantage
that no additional knowledge is needed to identify possible sets of lines, and is easily
implemented. It will, however, lead to an algorithm of complexity O(N 4), where
N is the number of line segments in the image. For cluttered images of real street
scenes, which can easily contain several hundred line segments, this may lead to
execution times of several hours or more even on today’s computers.

It is therefore advisable to employ a scheme for the identification of sets of lines which
makes use of structural information within the image. This kind of approach is called
perceptual grouping and enjoyed growing popularity throughout the computer-vision
community during the 90s, in particular where the evaluation of aerial images is
concerned. We differentiate between a top-down approach, whereby a bigger set of
lines is reduced to four line segments, and a bottom-up approach, which starts with
the individual line segments. Both are described in the following.

5.3.1.1 Top-Down Approach

Finding sets of coincident line segments is equivalent to vanishing-point detection,
i. e. identifying the common intersection of a set of lines as well as the corresponding
set of lines. Once the vanishing point has been identified it is then possible to
parameterise these lines solely by their angle of orientation −π/2 ≤ αo < π/2 or
direction −π ≤ αd < π (refer to Section 3.5.1 for the definition of orientation and
direction). Finding all possible sets of lines that could form a zebra crossing is then
equivalent to finding all paths from any line to at least 3 other lines such that the
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lines’ orientations increase monotonically, while their directions alternate. Figure 5.5
shows an actual image and all line segments, displayed as black and white double
lines, the black side corresponding to the darker side of the discontinuity, and the
white side to the lighter one.

The success of this approach does entirely rely on the output of the algorithm used
to identify the vanishing point and corresponding set of line segments. It has,
however, been pointed out in the literature [149] that this is not a particularly
reliable process if only a small percentage of the overall number of line segments in
the image actually converges to this particular vanishing point7, and especially in
the presence of clutter. For this reason a bottom-up approach was used within the
project MOVIS, which will be described in the following section.

5.3.1.2 Bottom-Up Approach

This approach tries to group two line segments into a stripe based on structural
information within the image, or additional constraints known about the imaging
process. It then proceeds to group two stripes into a set of four line segments, which
can subsequently be tested for coincidence and crossratio (compare Section 5.3.2).
Several such approaches are conceivable, and in the following a few of them are
presented, together with their relative merits. Only the last one has been found
suitable within MOVIS, but several might be useful when dealing with structures
other than zebra crossings..

One approach is to identify all quadrangles that are lighter on the inside than on
the outside. Although this approach is the only one of the perceptual grouping
algorithms presented here that could work with arbitrary projections, it does have
some serious downsides. The main problem is occlusion. Since these can be of an
arbitrary shape, they can easily lead to nonlinear boundaries of a stripe. They might
even be of a lighter colour than the stripe, in which case any algorithm looking for
a light quadrangle on dark background will fail, as can be seen in Figure 5.6(a).
Finally, the two line segments corresponding to the long sides of a stripe might only
be separated by a few (e. g. 3) pixels, in which case no lines could conceivably be
fitted to the two smaller sides, making the search for a quadrilateral rather pointless,
see Figure 5.6(b) — note that the edgels, although drawn at pixel-position, have in
fact been calculated with sub-pixel accuracy.

A second approach could be trying to identify a t-like structure instead, where two
longer line segments are joined by one smaller one. This approach would only work
reasonably with at least the constrained perspective model, which would allow us to
constrain the possible angle between the two longer line segments. It would then be
able to cope with occlusions by nonlinear or lightly coloured objects on at most one
side of the stripe, but would otherwise share all the disadvantages discussed above.

7Vanishing point detection is used in Section 6, where the aim is to identify the main directions
within an image rather than to identify a possible small (sub-) set of lines.
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(a) Stripe occluded by a
light object.

(b) Stripe is to small to fit
a line to the narrow side.

(c) Stripe in bad repair
(and badly illuminated),
the connection between the
two sides is lost.

Figure 5.6: Some typical problems when recognising pedestrian crossings.

In particular this approach too would not work for stripes which are too narrow to
fit a line to one of the short sides, Figure 5.6(b) again shows an example.

Dropping the constraint that the two longer line segments should be connected by
a shorter line segment, we reach a model where it would be sufficient that the two
line segments are connected by any kind of edge. This model has actually proven
quite reasonable and will only fail in the case of badly preserved zebra crossings or
in cases where both ends of a stripe are occluded by an object similar in luminance
to the stripe. Badly preserved zebra crossings will often contain holes or spots and
might not allow fitting any consecutive edge from one side of the stripe to the other,
Figure 5.6(c) shows an example. It is only to accommodate these kinds of zebra
crossings that instead the approach below was used within MOVIS.

This approach does not rely in any way on connectivity between the two sides of a
zebra crossing. While this initially results in many more false positives, it also avoids
some of the false negatives which would otherwise be inevitable. The approach is
based on a constrained perspective model. This allows us to limit the possible
directions under which a zebra crossing can be seen, and as a consequence limit
how it would appear in the image. In particular, it is now possible to calculate a
maximum angle between the two line segments bounding a stripe, say ∆αo < 30◦.
For each line, only lines are considered as a match which

1. are entirely on the first line’s lighter side,

2. face that line (corresponding to a transition from dark to light to dark),
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Figure 5.7: Overlap between two line segments.

3. have a difference in orientation of at most ∆αo,

4. overlap each other to at least p %.

Where overlap, in this context, is defined as follows (compare Figure 5.7):
Project one line segment onto the other. The line segments are said to overlap to p
percent if the shorter line segment shares p % of its length with the longer one. The
overlap between the two line segments is the maximum overlap of projecting each
line segment onto the other.

Finally, stripes are grouped according to rules similar to the ones used above for
grouping line segments, but without taking the overlap into consideration, forming
the required sets of four line segments (two stripes).

5.3.2 Crossratio

Once four line segments have been identified, the first and only hard test of whether
the line segments might actually be part of a zebra crossing (or any other repeated
structure of given geometry) can be performed by calculating their crossratio and
comparing it to the original structure’s crossratio using Equation (4.69) from Sec-
tion 4.6.4. This is straightforward if the four line segments were found by a top-down
approach. In this case it is already known that the four lines share a common inter-
section, as well as the intersection’s coordinates, and the crossratio can efficiently
be calculated using any of the methods described in Section 4.5.1.

Things are slightly more complicated if the four lines were found by a bottom-up
approach, as I will assume was done here. It is, in this case, not yet known whether
the four lines will indeed share a common intersection, nor where this intersection
could be found. Calculating the intersection using any of the methods described
in Section 4.4 is, however, expensive, especially since the overwhelming majority of
line-sets will not belong to any interesting structure, so that this computation would
ultimately be in vain.

It is therefore advisable to use a two-stage approach instead, as described in Sec-
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Figure 5.8: Different crossratios for
white stripes (mostly cr > 4/3) as
opposed to black ones (mostly cr <
4/3). The effect is due to a difference
in height between the white stripes
and the surface of the road.

Figure 5.9: Distribution of 900
crossratios (white stripes only) cal-
culated from 10 images of real zebra
crossings (median cr = 1.39, scr =
0.136, visual σcr ≈ 0.085).

tion 4.5.2, whereby in a first stage the fast algorithm described there is used to cal-
culate the crossratio. Only if this initial result passes the χ2-test in Equation (4.69)
— possibly using a low value for p — is the lines’ intersection calculated and a sec-
ond χ2-test used to evaluate whether the lines are actually coincident. Only if this
test too is passed successfully will a more accurate algorithm be used to recalculate
the crossratio and once more apply the χ2-test in Equation (4.69). Only very few
sets of line segments will remain after these three tests.

When used on images of real-world zebra crossings, an interesting effect can be
observed comparing the crossratio of two of the “white” stripes with the crossratio
of two of the “black” gaps between the stripes. These both have the same width
and should therefore result in a uniform crossratio of 4/3. In practice, however, this
is not the case. Figure 5.8 shows this for the zebra crossing depicted in Figures 5.4,
5.5 and 5.15, second row, right. For this zebra crossing, each line bounding a stripe
is naturally divided into two line segments by an occluding object. Calculating all
possible crossratios of 4 consecutive line segments therefore results in a sequence
of 16 crossratios for the first two stripes, 16 crossratios for the first two gaps, 16
crossratios for stripe two and three and so forth. It can be seen that instead of a
common crossratio of cr = 4/3 we get crossratios around cr ≈ 1.4 (and growing) and
cr ≈ 1.28 (and falling) respectively. For an observer at a distance of approximately
15 m and a height of approximately 1.8 m this is consistent with stripes that extend
approximately 4 mm above the surface of the street (compare [23]).

It is not possible to account for this effect geometrically, since the effect can only be
corrected if a calibrated camera is used, and since the height of the stripes above the
surface of the street can vary considerably (the stripe can even be slightly below the
surface) and will generally be unknown. The effect has therefore to be accounted for
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Figure 5.10: Finding additional line segments by backprojection.

by some other means, and the factor σ2
cr2 in Equation (4.69) presents one possible

approach, although the use of this term implies that the expected values for the
crossratio will be Gaussian distributed, which is of course not the case. Figure 5.9,
which shows a histogram of the distribution of 900 different crossratios calculated
from 10 images of real zebra crossings as well as two fitted (both numerically and
visually) Gaussian distribution, does however show that the actual distribution is
sufficiently “Gauss-like” to expect reasonable results, and this is born out by the
results described in Section 5.5.

5.3.3 Additional Lines

The condition on the crossratio used in the above section is only a necessary con-
dition to identify the structure we are looking for. Usually a number of additional
line-sets with similar crossratios exist in any given image. In MOVIS, I therefore
decided that finding two stripes (four lines) with given crossratio is not sufficient
evidence for a zebra crossing (the same argument could be made for any other re-
peating structure). Instead, a minimum of three stripes (six lines) is required.

Luckily it is relatively easy to identify additional line segments by using an adaption
of the canonical-frame approach described in Section 4.5.1.2. Within the canoni-
cal frame, the locations of all other lines potentially belonging to the structure in
question are known. These can then be backprojected into the image to get the
approximate position of additional stripes in the image. If corresponding stripes
are found, these are then added to the set of four lines to form a hypothesis. In
addition, this also means that the location of the stripes’ vanishing line is known
(the backprojection of a line at infinity), in Section 5.4 this will be used for verifi-
cation — the backprojected vanishing line should coincide with the horizon of the
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Figure 5.11: Decomposition of T into two transformations T = T2T1, using
an intermediate canonical frame representation.

image. Figure 5.10 shows an example where the position of a minimum of three
lines within the image is sufficient to predict the position of an infinite number of
additional lines. In the following an alternative approach to the ones described in
Section 4.5.1.2 is given.

The most accurate way to achieve the backprojection is to find a (5 degrees of
freedom) transformation TT from a canonical frame (of, say, horizontal lines of
known position) into the image that minimises the distance between the proposed
and the measured lines. Once this transformation is found, it is then easy to predict
other lines by calculating TT`′′i , where `′′i = (0, 1, c′′i )

T is one of the lines in the
canonical frame (see Figure 5.11). By the same idea, the vanishing line can be found
by calculating TT(0, 0, 1)T. As for many of the problems which we encountered in
Section 4 there is again no closed-form solution to the problem of finding TT.

A somewhat similar but much faster approach finds the inverse transformation T−T

such that the distance between the proposed and measured lines becomes minimal
within the canonical frame (instead of the image). A very efficient approximation for
this transformation exists under the assumption of small errors. It is then possible
to decompose T into two matrices T1 and T2 for which we can solve separately. T−T

1

transforms the lines into an intermediate canonical frame in which all lines are (as
near as possible) horizontal. T−T

2 is the transformation into the final canonical frame,
in which the individual lines will end up in definite positions (compare Figure 5.11).
It is immediately clear from the above that the matrix in Equation (4.28) could be
used as T1, as could be any other transformation uniquely defined by the vanishing
point; a nicer example is the matrix

T1 =




x y 0
−y x 0
−xz√
x2+y2

−yz√
x2+y2

√
x2 + y2


 (5.1)
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Figure 5.12: Monte-Carlo simulation of vanishing-line calculation using the
canonical-frame algorithm for three typical constellations. Notice that small
errors in the vanishing-point coincide with big errors in the orientation of the
vanishing-line and vice-versa; compare also Figure 4.9, where the same lines
were used to calculate the vanishing-point.

if the vanishing point is given as (x, y, z)T and x2 + y2 6= 0, or the matrix

T1 =




0 0 1
0 1 0
1 0 0


 (5.2)

if x = y = 0. All that remains is to find the 3 degrees of freedom transformation

T2 =




1 0 0
0 1 ty
0 py s


 (5.3)

for which a closed form solution exists.

The decomposition of T into T1 and T2 is strictly speaking only possible if either
all lines `′i in the intermediate canonical frame are exactly horizontal, or if py ≡ 0,
since T2 with py 6= 0 will change the angle of all non-horizontal lines. However, if
the assumption that all lines were originally parallel is true, and if the vanishing
point used to determine T1 was calculated using one of the methods described in
Section 4.4, then we can also guarantee that the lines in the intermediate frame are
as horizontal as possible — any deviation must be an error in the measurements,
which should be corrected — and the change in the angle will be small (and can in
fact be ignored). The results of a Monte-Carlo simulation in Figure 5.12 show that
the above approximation works quite well, although it is clear that the small-error
assumption is not valid anymore for the resulting lines.

It is quite instructive to have a closer look at the matrix T = T2T1. It was already
mentioned that it has 5 degrees of freedom. These determine uniquely (up to scale)
the last two rows — the first row can be chosen arbitrarily as long as the matrix
does not become singular. We also see, when backprojecting the line at infinity
TT(0, 0, 1)T, that the third row is nothing but the vanishing line in the image, fixing
2 degrees of freedom. By the same argument we see that the second row is the
backprojection of the horizontal line through the origin (0, 1, 0)T, leaving 1 degree
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of freedom to be fixed. What is the remaining degree of freedom used for? It is easy
to see that any line passing through the vanishing point in the image (and therefore
horizontal in the canonical frame) can be constructed as a linear combination of the
second and third row by calculating TT(0, b, 1 − b)T. The last degree of freedom
fixes where in the image a line with given b will be located; it corresponds to a
relative scale-factor or weight between the two lines. It should be mentioned for
completeness that the first row of T determines where the vertical line through the
origin (1, 0, 0) will be projected and its relative scale compared with the third row
gives the position of all other vertical lines after backprojection.

An alternative method for the calculation of additional lines should be mentioned
for completeness. This method uses three of the four lines as a projective base and
calculates the fourth line `i with given cross-ratio, compare [72, 138]. However, this
method has the two problems that it only uses three out of four lines (and therefore
discards one-fourth of the information) and in addition has to choose an auxiliary
vector `X as described in Section 4.5.2. Tests have shown that the results are too
unstable to be used under any but the most restrictive circumstances.

5.3.4 Merging Hypotheses

The preceding steps usually generate a high number of possible hypotheses. In
particular, for a completely flat zebra crossing with N uninterrupted stripes, (N −
1) identical hypotheses will ideally have been created, one for each pair of two
consecutive stripes. For real-world zebra crossings, this will not usually happen due
to the street’s slightly nonplanar surface, which usually only allows to group between
3 and 5 stripes into one hypothesis. But even these hypotheses will not all be unique
and will, as a rule, overlap to a considerable extent.

Also, if the zebra crossing was partly occluded, a single stripe will often fracture into
several smaller stripes, all of which will as a rule be part of some hypothesis sharing
stripes with other hypotheses. Merging hypotheses not only reduces the number
of hypotheses under consideration, but also connects the different parts of a partly
occluded stripe, as seen in Figures 5.4 (on Page 113), 5.5 (on Page 114) and 5.15,
second row, right image (on Page 128).

When merging hypotheses, it is in my experience advantageous to sort the individ-
ual hypotheses by number of stripes, to start with the hypothesis with the highest
number of stripes, and cycle through all the other hypotheses (in order), adding hy-
potheses where appropriate, until no additional hypothesis can be added. The same
step is repeated for the remaining hypotheses (using the second biggest hypothesis)
and so forth, until all hypotheses have been merged where possible. Figure 5.13
show the individual steps and their results for the zebra crossing from Figure 5.4
on Page 113. This removes all duplicates and typically leaves only a small set of
hypotheses. Which of these actually form zebra crossings, and which just share a
similar structure, cannot be decided using the projective model described in Sec-
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Figure 5.13: Merging the four hypotheses H1–H4. The hypotheses are ordered
by number of stripes within the hypotheses.

tion 5.2.2. Only if one of the more constrained models is used are additional test
possible, and these are described in Section 5.4.

The decision on whether a new hypothesis will be added to an existing one should
in theory be based on a χ2-test on the location of vanishing point, vanishing line,
a reference line and the crossratio. This approach is, however, handicapped by the
fact that the street’s surface is generally nonplanar and of a three-dimensional form
not easily modelled for error propagation. Within MOVIS I therefore used the much
simpler criterion that two hypotheses have to share at least a certain number of
stripes in order to be merged. A minimum of two stripes would be required for a
theoretically sound solution; I have, however, found that at least for the detection
of zebra crossings it is usually sufficient if the two hypotheses to be merged share
just one stripe. This can fail in the rare case (only observed once so far) that due to
an accidental constellation of additional line segments within the image, one stripe
belongs to two different hypotheses, which differ only in the location of the vanishing
line — the vanishing point should already be reasonably fixed by the common stripe’s
two line segments, one of which can double as a reference line. Figure 5.14 shows
an example for such a constellation; Figure 5.15, bottom right (on Page 128), shows
the only example of such a mismatch encountered so far. Here, the last stripe of
the zebra crossing forms a hypothesis with some of the slabs on the pavement which
does not match the other hypothesis generated.

Complementing the condition of at least one common stripe by a χ2-test on the
vanishing line reduces the number of false positives (one stripe and the vanishing
line uniquely define the hypothesis’ geometry) but at the same time increases the
number of false negatives due to the street’s usually convex surface. The χ2-test itself
is considerably simpler than the one described in Section 4.6.2; the two vanishing
lines must, by necessity, not only share the angle and distance from the origin, but
also the centre point — the vanishing point (assuming a representation by angle and
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Figure 5.14: Example of one stripe belonging to two unconnected hypotheses.
H1 has correctly been formed by two stripes, while H2 has been formed by
one stripe and one row of tiles from the pavement. Both hypotheses have the
correct crossratio, but different vanishing lines (hypothesis H2 would normally
have been filtered out during verification due to its necessarily non-horizontal
vanishing line).

centre, ` = (α, x, y)T). We can therefore test
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α would allow for some variability in the

vanishing-line’s orientation; this is in accord with a street’s cylindrical surface, with
the cylinder’s axis parallel to the stripes, but of otherwise unknown shape, which
would affect only the vanishing-line’s orientation8.

5.4 Verification

Not many verifications can be done using the projective camera model described in
Section 5.2.2, and these have already been incorporated into the grouping algorithm
described above. However, the situation drastically improves once the constrained
perspective camera model or the quasi calibrated camera model are used. The
additional constraints these introduce are described below. While these tests could
be applied to the final hypotheses, it should be noted that it is generally much more
efficient to incorporate these constraints directly into the algorithm. It is only for
the sake of discussion that here they are listed separately.

8Assuming a convex surface, more detailed predictions are in fact possible. So should α increase
monotonically with increasing distance of the stripes from the observer.
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5.4.1 Constrained Perspective Camera Model

The verifications possible when using the constrained perspective camera model
are a direct application of the constraints given in Section 5.2.3. We have seen in
Section 5.3.3 that, based on a set of four line segments with given crossratio, it is
possible to calculate the location of the horizon if the four lines were indeed part of
a zebra crossing. Under the constrained perspective camera model the horizon has
to be completely above the line segments, approximately horizontal and in or near
the image; and these constraints on the position of the horizon will conversely also
constrain the stripes themselves to plausible image positions. Within MOVIS, hard
but very accommodating thresholds are used on the latter two conditions.

As mentioned above, it is prudent to include these checks directly into the above
algorithm, just after the calculation of the horizon, and before additional lines are
predicted. This will considerably reduce the number of hypotheses to be considered
in later steps.

5.4.2 Quasi-Calibrated Camera Model

Using a quasi calibrated camera means that rough approximations exist for the
camera’s intrinsic parameters (compare Section 2.3.6): the focal length as printed
on the lens (or simply an educated guess), the scale factors as found in the camera’s
manual, the image centre as principal point. In addition, it is very often possible
to give a good guess for an external parameter — the height from which the image
was taken. Based on these values, further verifications are possible as follows:

If we define the camera-position to be at the origin and use the coordinate system
from Figure 2.1 on page 19, we can calculate the camera’s orientation using the
vanishing-line’s position within the image and the internal camera parameters. If
we define the three angles (ϕx, ϕy, ϕz), where ϕx is a rotation around the x-axis and
Rx the corresponding matrix of rotation, we can combine these matrices into a single
matrix of projection P = PcameraRxRyRz such that the correspondence between the
vanishing line ` = (a, b, c)T measured in the image and the horizon `′′′ = (0, 1, 0)T

becomes

` = P−T

cameraRxRyRz`
′′′ (5.5)

`′ = PT

camera` = (a′, b′, c′)T (5.6)

`′′ = RT

xPT

camera` = (a′′, b′′, 0)T (5.7)
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It is then easy to calculate the angles of rotations as

ϕx = arctan(c′/b′) = arctan

(
atx + bty + c/f

bsy

)
(5.8)

ϕy = ϕy (5.9)

ϕz = arctan(−a′′/b′′)

= arctan

(
− asx

bsy cos(ϕx) + (atx + bty + c/f) sin(ϕx)

)
(5.10)

Note that ϕy can not be determined from the above, but could be arbitrarily set
to 0. Alternatively, a value could be calculated from the direction of the vanishing
point.

Once the matrix P is completely known we can calculate, for each pixel (x, y, 1)T in
the image, the corresponding ray of possible positions in 3D

λ




X
Y
Z


 = P−1




x
y
1


 . (5.11)

If we further assume that the camera is located at a distance h above the ground
(i. e. the ground is parallel to the X-Y -plane at −h), the ray’s intersection with the
ground will be at (

−h
X

Z
,−h

Y

Z

)T

(5.12)

From there it is easy to calculate the hypothetical zebra-crossing’s position on the
ground.

The above can easily be used for validation purposes. If the height above ground h
is assumed known we can check for the individual stripe’s widths (these will all be
identical due to the particular construction chosen to compute the backprojection)
and see how good this conforms to a given width. If we assume h unknown we can
calculate the h that results in a given width of the stripes (50 cm for a German
zebra crossing) and check whether this height is within sensible bounds. The latter
corresponds to a particular canonical frame (compare Section 4.4.2.2) which can be
parameterised by the location of the vanishing line and the height.

If instead of a quasi-calibrated camera we use a fully calibrated camera (all internal
parameters and possibly the height above ground) as would have been the case
within a commercially available system (and within MOVIS we would also know the
pitch-angle), this simply allows the use of tighter bounds and could ultimately lead
to the application of additional (or a single, combined) χ2-test on, e. g., the position
of the horizon and reconstructed height of camera.
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5.5 Results and Discussion

Figures 5.15 and 5.16 show several examples of hypotheses for zebra crossings that
were generated using the model of a quasi-calibrated camera as described above.
Although both the grouping as well as the verification are based on geometric con-
straints alone, the recognition has nonetheless proven extremely reliable.

Extensive tests of the algorithm were performed as part of MOVIS. These included
184 randomly taken images of street scenes, with image sizes varying from 439 pxl×
299 pxl up to 1024 pxl × 682 pxl and of varying quality. Figure 5.15 alone contains
images taken by three different operators with four different cameras (three SLR-
cameras, scanned in using two different scanners, and one digital camera) in three
different resolutions (1024 pxl× 682 pxl, 800 pxl× 600 pxl, 439 pxl× 299 pxl), but all
recognised using the same set of parameters9. In addition, the algorithm was tested
within an indoor-environment using the actual MOVIS-hardware which consisted of
a portable spectacle-like device containing two miniature colour cameras, connected
to a stationary computer by a 30 m cable. This hardware was capable of producing
an image size of 512 pxl× 286 pxl (using only half-frames). More than 300 of these
images were tested off-line, and several thousand online, as part of demonstrations
given to interested visitors. Figure 5.17 gives an idea of the indoor-environment and
actual hardware used, Figure 5.18 shows a number of sample-views taken with the
MOVIS-Equipment.

All these tests impressively demonstrated that even with a haphazardly chosen set
of parameters constant over all images10 more than 70% of all zebra crossings with
at least 3 visible stripes are correctly identified; and many of the approximately
30% false negatives already failed due to problems during edge detection (usually
insufficient contrast or extremely narrow stripes). The only other noteworthy source
of false negatives was the perceptual-grouping approach introduced in Section 5.3.1.2
for reasons of efficiency. The grouping itself, once a suitable set of 4 lines had been
found, performed extremely reliably.

What is more, so far not a single false positive has ever been observed, although it
is of course clear from the algorithm described above that false positives can occur.
It should, however, be noted that with the model of a quasi calibrated camera, false
positives are limited to two cases. In the first one, a structure will result in a false
positive only from a single position — slightly changing the position of the observer
will eliminate the false positive. This is therefore not a problem for an application
like MOVIS, where the observer is constantly moving. The other case is that of
markings on the ground that do have the geometry of a zebra crossing. It is unclear
how this could ever be distinguished from a real zebra crossing based on geometry

9It would in fact be advisable to use a different set of parameters for the digital camera for
maximum performance, as it has a higher variance in the edgel positions due to the fact that it is
a 1-chip colour camera.

10Due to the differences in image geometry and optical resolution two sets of parameters were
used, one for the outdoor images, and one for the indoor ones.
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Figure 5.15: Examples of recognised zebra crossings in outdoor-scenes.
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Figure 5.16: Examples of recognised zebra crossings in indoor-scenes. To the
left of each image you can see a simulated birds-eye view.
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Figure 5.17: The indoor-environment and hardware-prototype used for testing
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Figure 5.18: Sample views taken using the original MOVIS hardware.
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alone, as its geometry is effectively that of a zebra crossing.

The high reliability of the algorithm would not have been possible without the com-
bination of projective geometry with statistical methods as described in Chapter 4.
A first implementation of the above algorithm, based only on the usual methods
of projective geometry, never recognised more than at most two zebra crossings
even with a finely tuned set of parameters. What is more, the current algorithm
is extremely stable with regards to variations in the parameters, as all parameters
basically only specify a probability, usually used in a χ2 test. And it is this use of
the χ2 test as the main decision instrument (rather than finely tuned thresholds on
direct measurements) which would allow us to easily incorporate additional infor-
mation or additional constraints — at least as long as those data can be modelled
by variance alone. The next chapter gives some more examples.
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Chapter 6

Detecting Orthogonal Structures

[The universe] cannot be read until we have learnt the language and
become familiar with the characters in which it is written. It is written in
mathematical language, and the letters are triangles, circles and other
geometrical figures, without which means it is humanly impossible to
comprehend a single word.

Galileo Galilei, Opere Il Saggiatore, 1564–1642
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6.1 Introduction

When moving within a man-made environment we are surrounded by orthogonal
structures. This is particularly true for buildings, and a number of publications [36,
87, 97, 143] describe the reconstruction of such orthogonal structure from single
images rather than — or at least in addition to — the now customary multi-view
approaches. However, all these reconstruction methods need as input essentially
manually grouped regions or features. This chapter outlines an approach for the
detection and grouping of orthogonal structures in images which could eventually
serve as input to these algorithms and thereby as a step towards a fully automated
single-view system. This particular application was chosen as the diverse scales
(vanishing points versus line-continuation) and accuracies (long line segments versus
short line segments, but also different accuracies for the 3D-model) allow me to
showcase a number of different ideas and approaches.

The appearance based grouping was inspired by work done by Brillault-O’Mahony
in the late 80s and early 90s [20, 21], where she presented an approach for the un-
supervised qualitative reconstruction of a scene from edges alone (to be matched
against a CAD-model) based on the assumption of a Legoland world, and where she
introduced the notion of subjective structure as well as some first attempts to take
errors into consideration. The use of orthogonality and vanishing points also owes
much to work done at the Departimento di Fisica dell’Università di Genova, e. g. by
Coelho, Straforini, Campani, Parodi, Piccioli, and Torre [15, 30, 108, 109, 111, 148].
The main difference here is that their work was based on the complete interpretation
of the graph of all edges, identifying realisable solutions using traditional tools of
consistent labelling. This approach of course only works well if a complete (and
consistent) graph is given; in contrast the algorithms outlined in this chapter ex-
pect wrong and missing information and their performance therefore degrades more
gracefully. An additional difference is the assumption of an essentially Legoland
world (exactly 3 orthogonal directions) by Coelho et al., while most of the algo-
rithms presented here can not only deal with 2n + 1 directions (in n orthogonal
sets), but in fact benefit from the presence of more than 3 directions (this is in
particular true for the calibration described in Section 6.3.2).

The remainder of this chapter is organised as follows: Section 6.2 describes the 3D
and the camera models. Section 6.3 describes the different stages of grouping in or-
der, starting with the grouping of line segments by vanishing points in Section 6.3.1.
There I present a new algorithm for the iterative improvement of vanishing-point
positions in Section 6.3.1.1 and one for the automatic grouping of vanishing points
in Section 6.3.1.2. It is well known that a partial camera-calibration is possible
based on vanishing points, and in Section 6.3.2 I present a new objective function
which takes the different uncertainties in the positions of the vanishing points into
account and naturally extends the usual Legoland assumption to more general se-
tups. Section 6.3.3 discusses how best to merge collinear line segments, extending
our work from [54] to make use of vanishing-point information, and presenting a
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new algorithm which in the general case lowers the complexity of merging line seg-
ments from O(N ∈) to O(N log(N )). Section 6.3.4 finally combines the previous
information, sketching a possible approach for grouping, again extending our work
from [54] with vanishing-point information. Section 6.4 then allows a closer look
at the performance of some of the algorithms outlined before, and with a particu-
lar focus on the integration of error models for 2D and 3D: Section 6.4.1 compares
the relative performance of several 2D-error models, both new ones first introduced
in this thesis as well as established ones from the literature, for the identification
of collinear line segments; we will see how many of the established error measures
perform rather poorly, but also how a computationally very simple measure per-
forms much better than could have been expected. Following this look at 2D-error
models, Section 6.4.2 introduces a simple 3D-error model and its application to the
grouping of line segments by vanishing points in Section 6.4.2.1 and the merging of
collinear line segments in Section 6.4.2.2. Section 6.5 finally presents and discusses
some results.

6.2 Model

The model is further subdivided into the underlying 3D-model (Section 6.2.1) and
the camera models in Sections 6.2.2ff — the same as used in Sections 5.2.2ff on the
detection of repeated parallel structures with known cross-ratio.

6.2.1 3D Model

In order to model generic views of buildings and clusters of buildings, as well as
similar box-like structures, we will make the following abstractions:

1. All objects consist of planar faces only, mainly the walls.

2. All walls are vertical.

3. All intersections between walls are right-angles.

4. All walls contain mostly vertical and horizontal texture (e. g. the lines delim-
iting windows or doors).

5. For each individual wall the vertical and horizontal line segments delimiting
windows and doors are mostly aligned with each other.

6. All remaining objects are essentially untextured or randomly textured.

Note that this model does not require individual buildings to be aligned in any
particular way, except for sharing a common vertical orientation. We will therefore
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as a rule get one vertical direction and 2n horizontal directions (grouped into n
pairs of orthogonal directions, corresponding to one house-corner each), not all of
which are necessarily visible in any one image. Very often we will indeed only have 3
dominant directions (n = 1), corresponding to three mutually orthogonal directions
in reality.

As was the case with the model of a zebra crossing in Section 5.2.1, the above is only
an approximation of the truth. Anybody who owns a house, and in particular an
older one, knows that walls are rarely absolutely vertical, corners never completely
orthogonal, window sills are never absolutely accurately aligned, and edges never
completely parallel. And although these deviations are usually small when compared
to resolution related artifacts, it is none the less necessary to account for them by
an adequate error model, as we will see below. In keeping with the tenor of this
thesis this error model will however only model slight (accidental) deviations from
the above 3D-model, such as can reasonably be described by Gaussians.

It is easily possible to incorporate saddle roofs into this model as the intersection of
two rectangular areas with corresponding angles with the ground-plane α and π−α.
It is, however, my experience that there is generally not enough evidence for roofs in
any given image (except for aerial images) to afford the automatic segmentation of
roofs from edges alone; this is only reasonably possible within a supervised system
(and even then evidence if often too scarce).

6.2.2 Projective Camera Model

This is the model discussed in Section 2.3.4, which is the most general linear cam-
era model available, and can be parameterised by the concatenation of a 3D–2D
projection and a general 8 DOF projective transformation. This model is used here
together with a Gaussian sphere parameterisation as described in Section 2.9, which
projects straight lines into great circles on the sphere and points onto points.

Only very little can be said about the structure’s appearance after projection in the
case n = 1, i. e. a so-called Legoland world with only three mutually orthogonal
directions, namely

� For each image, we will observe at most 2n horizontal and one vertical vanish-
ing-point belonging to the observed structure, as well as an unknown number
m of additional vanishing points not belonging to the observed structure; this
follows from Items 1, 4, and 6.

� Line segments on parallel walls share the same two vanishing points; this
follows from Items 1 and 4

� Line segments that were collinear in 3D are also collinear in the image, compare
Item 5.
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The main reason that so little can be said about the structure’s appearance after
projection is due to the fact that for n = 1 and a projective camera it is impossible
to distinguish the vertical and horizontal directions (although it is possible to make
an educated guess based on the structure of Y-junctions). This changes, however,
as soon as n > 1 (or, more accurately, as soon as more than 2 horizontal directions
can be observed within the projection). We then get:

� The vanishing points of all sets of horizontal line segments lie on a great circle
on the Gaussian sphere corresponding to the horizon; this follows from 4.

� All vertical line segments on all walls intersect in one common vanishing point
on the Gaussian sphere which is not located on the great circle of horizontal
vanishing points; this follows from Items 2 and 4.

If saddle-roofs are taken into account it is also possible to state that all roofs with
the same gradient will produce vanishing points on a circle (not great circle) located
between the horizontal great circle and the vertical vanishing point. There will,
however, be generally insufficient data to observe this circle in actual images.

It is clear from the above that the grouping and recognition of orthogonal structures
is difficult from arbitrary projective transformations, in particular as no information
about the possible viewpoint is given. This changes considerably once a constrained
perspective camera model is used as in the next section.

6.2.3 Constrained Perspective Camera Model

This camera model constrains the transformation from the 3D-world into the 2D-
image to be a perspective transformation as described in Section 2.3.3, and adds
the knowledge about an approximate horizontal and vertical direction within the
image, as well as the assumption that the underlying image was taken by a human
or otherwise known operator, i. e. from approximately head-height. This additional
knowledge allows us to differentiate between the two horizontal and the one vertical
direction even for a Legoland world, giving us access to the full set of conditions for
the projective case above. In addition, we can also state that:

� The horizon’s position is approximately known.

� The horizon cuts across the individual walls, i. e. each wall will have corners
above as well as below the horizon.

The above allows us to distinguish between up and down in addition to horizontal
and vertical. This distinction can significantly aid the verification or reconstruction,
as can a comparison of the horizon’s calculated position with its assumed position.
This is similar to the approach used in Section 5.4.1.
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6.2.4 Quasi-Calibrated Camera Model

The quasi-calibrated camera model adds approximate knowledge about the camera’s
internal parameters — focal length f , aspect-ratio a, principal-point (x0, y0)

T, and,
for non-CCD cameras, skew s — as well as approximate knowledge about the height
h from which the image was taken. This is for example the case when an image was
taken with a known camera. This knowledge allows for a qualitative (and nearly
quantitative) reconstruction. In particular, we get:

� vanishing points which are orthogonal in 3D will be nearly orthogonal on the
Gaussian sphere.

This allows for the automatic selection of three mutually orthogonal directions (not
possible under a less restrictive model), which can then be used for calibration of
the internal camera-parameters [26, 28, 41, 155, 157] described in Section 6.3.2,
which in turn allows for a possible reconstruction of the scene up to scale, which is
determined by the only approximately known height h from which the image was
taken.

6.3 Grouping

Based on the models described above it is possible to outline a scheme for the
grouping and segmentation of orthogonal structures. In a first step a new algorithm
for the iterative refinement and automatic grouping of vanishing points is used to
identify the main directions within the image, this is described in Section 6.3.1.
These vanishing points can then be used for a partial camera-calibration as de-
scribed in Section 6.3.2, where I present a new objective function which takes the
different uncertainties in the positions of the vanishing points into account and nat-
urally extends the usual Legoland assumption to more general setups. Based on
the identification of the individual directions collinear line segments can be merged
(Section 6.3.3, which presents an extension from our work in [54] as well as a new
algorithm which in the general case lowers the complexity of merging line segments
from O(N ∈) to O(N log(N ))); this information can then be used to identify areas
corresponding to individual walls (Section 6.3.4, which again extends [54] to make
use of vanishing-point information).

6.3.1 Vanishing Point Detection

Vanishing points or vanishing-directions1 are easily the single most important feature
used here for the grouping and segmentation of orthogonal (block-like) structure —

1Using the ray-space or Gaussian-sphere model there is indeed no difference between a direction
and its vanishing point, compare Section 2.9.
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Parodi and Torre [110] showed in 1993 that using vanishing-point information it
is possible to reduce the algorithmic complexity of scene interpretation from an
NP-problem to linear time in the number of line segments, see also [109].

Traditionally, two different approaches for vanishing-point extraction exist and have
remained mainly unchanged ever since Barnard [13] and Magee and Aggarwal [94]
published their algorithms in 1983 and 1984 respectively2. Both suggested the use
of the Gaussian sphere as an accumulator array for a Hough-transform. Barnard
suggested a Hough-transform on lines, while Magee and Aggarwal used a Hough-
transform on line-intersections, which avoids many of the pitfalls of Barnard’s ap-
proach but is essentially an O(N 2) procedure, as opposed to Barnard’s O(N) ap-
proach, where N is the number of line segments.

A plethora of algorithms for the detection of vanishing points have since been sug-
gested. Most of these are incremental improvements to Barnard’s [93, 107, 125, 142]
or Magee’s and Aggarwal’s [15, 26] algorithms, although some interesting new ap-
proaches have also been tried [20, 31, 99, 149, 157]. Some of these are limited
to particular applications, usually assuming one or more vanishing points either
at infinity or at known positions [51, 90, 98, 105, 147], or requiring a calibrated
camera [98].

As with edge detection, for which a similar number of algorithms exist, it is not
particularly important which algorithm is finally chosen, as long as it gets the job
done. I will in the following describe how, based on an initial vanishing-point posi-
tion, that point’s position can be improved upon in a way which fits well into the
framework of this thesis due to its use of error propagation and statistical properties,
as the final calculation of the vanishing point’s position from all corresponding line
segments is based on one of the accurate approaches described in Section 4.4. For
the examples in this thesis I simply calculated an initial position as the intersection
of two handpicked line segments, however, any of the above-mentioned algorithms
should be able to generate appropriate initialisations.

6.3.1.1 Implementation

The algorithm for the iterative improvement of vanishing points presented in this
section has, to my knowledge, not been presented before. It is both efficient as well
as highly accurate, taking into account the line-segments’ individual distributions
(which no other algorithm for the calculation of vanishing points does to this extent,
as far as I know). Its iterative nature is comparable to [31, 136, 150].

Starting with a number i = 1 . . .N of initial positions pi, possibly with covariance
matrix Σpi

2What is now known as the Barnard algorithm was already published in 1982 by Fischler,
Barnard, Bolles, and Lowry[45].
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1. For each i = 1 . . .N , repeat until convergence3:

(a) Calculate an updated vanishing point pi and covariance matrix Σpi
us-

ing all supporting line segments (i. e. that pass a χ2-test for a given
significance-level p0).

(b) Optionally: (temporarily) remove all supporting line segments, i. e. all
line segments consistent with the assumption that they could pass through
the given intersection pi (i. e. that pass a χ2-test for a given significance-
level p1 ≤ p0).

As for Step 1a it can not be stressed enough how important it is to use an ad-
equate model capable of handling intersections at infinity. The Gaussian sphere
(Section 2.9) is well suited for this purpose, as is the scaled version of a Gaussian
sphere proposed by Kanatani, the N -vectors. Any Euclidean model is unsuitable, as
intersections far away from the image centre will result in greatly overestimated and
biased error-regions, as we have seen in Section 4.4. And as the potential vanishing
point could be anywhere, from the image centre to infinity, and the line segments
vary greatly in length and therefore accuraccy, it is also necessary to use an apro-
priate error model and χ2 value instead of a fixed threshold. In the following I
essentially use the same error measure which I also used when finding the intersec-
tion of n lines in Section 4.4 — I will consider a line segment `′ as supporting a
possible vanishing point p (both given as homogeneous N -vectors) if

pT`′`′
T
p

pTΣ′
`p + `′

T
Σp`′

≤ χ2
p,1 (6.1)

where p is a suitably chosen required minimum probability (significance level). Usu-
ally, p can be chosen rather small (around p = 5 %) when looking for lines `′ passing
through the vanishing point p, since most outliers are clearly recognisable as such;
it might, however, be advisable to use a higher value (say p = 50 %) when selecting
the line segments from which to calculate an updated position in Step 1a or when
removing line segments from the set of available line segments in Step 1b, in order
to avoid the use / removal of ambiguous line segments.

The covariance matrix Σ′
` can be calculated from the true covariance matrix Σ` of

a line segment ` in (α, x, y)T format as follows:

Σ′
` = J`′`




σ2
α + σ′

α
2 0 0

0 σ2
x + σ′

x
2 σxy

0 σxy σ2
y + σ′

y
2


 JT

`′` (6.2)

with J`′` =




cos(α) 0 0
sin(α) 0 0

−x cos(α)− y sin(α) − sin(α) cos(α)


 . (6.3)

3There is actually no guarantee that this iteration will converge at all, but experience shows
that a couple of iterations is usually all it takes, so you can simply iterate 10 times or until the
residuum (or the number of line segments) converges.
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Note the additional terms σ′
α

2, σ′
x
2 and σ′

y
2, which model the error in the 3D-model,

where even for new buildings not all line segments might be exactly horizontal or
vertical, and may not be exactly aligned either — and certainly they won’t be for
older buildings. Section 6.4.2.1 discusses the effect of these additional model-errors
in more detail.

6.3.1.2 Identification of Vanishing Points

In order to allow automatic grouping it is important to be able to distinguish be-
tween vertical and horizontal vanishing points, and also to be able to group the
corresponding horizontal vanishing points, i. e. such which in 3D are orthogonal. In
the following I will describe possible approaches to solve both problems.

Differentiating between horizontal and vertical vanishing points is easy if we know
that we are dealing with a constrained- or quasi-calibrated camera: the vertical
vanishing point will be close to (0, 1, 0)T with most of it’s uncertainty along the y-
position. All other vanishing points must by necessity be horizontal. For a projective
camera model we will in general need 4 or more vanishing points to decide which one
is the vertical (i. e. a model with 2n+1, n > 1 vanishing-directions); we can then fit
a great circle through all vanishing points and, removing them individually, find the
vanishing point whose removal decreases the fitting error the most (alternatively we
can start by fitting 2n + 1 great circles to 2n vanishing points each, and see which
one is the best fit — the numerical expense is comparable for any reasonably small
number n).

Grouping originally orthogonal pairs of vanishing points will be more complicated.
In the case of a quasi-calibrated camera we can simply group vanishing points which
are nearly orthogonal, but even for a constrained camera we will usually need to
get a better idea of the true focal length first. Different methods for the calibration
of a camera from vanishing points are described in the next Section, including an
algorithm which can calculate the focal length of an unknown camera even if the
correspondence between vanishing points is not yet known.

6.3.2 Focal Length Calculation

It is well known that vanishing points can be used to determine the internal camera-
parameters principal point and focal length, as well as the external rotation (or
rather a set of possible orientations, if the correlation between 2D vanishing points
and 3D orientations isn’t known) [26, 41, 164]. In the following I will concentrate
on the calculation of the internal parameters focal length and principal point, as the
skew and aspect-ratio are generally known for modern CCD-cameras. The underly-
ing idea here is that for a calibrated camera any two directions which are orthogonal
in 3D will also be orthogonal on the Gaussian sphere — as we have seen in Sec-
tion 2.9.3. And we have seen that condition 3 essentially results in 2n + 1 vanishing
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directions in the image which form n sets of orthogonal directions (where each set
shares the same vertical vanishing point). So all we need to do is to find the focal
length f and principal point (tx, ty)

T for which the 3 angles in a set will be closest
to a right-angle, i. e. we want to solve

min
f,tx,ty

n∑

k=1

2∑

i=1

3∑

j=i+1

(π

2
− α

(
pk,i,pk,j, f, tx, ty

))2

(6.4)

where pk,i is the ith vanishing point in the kth set; α
(
pk,i,pk,j, f, tx, ty

)
is the angle

between two such vanishing points as a function of the original vanishing points pk,i

and pk,j and the parameters f, tx, ty. Alternatively, if only the vertical vanishing-
direction is known, but no correlation between horizontal vanishing points, we get
the equation

min
f,tx,ty

2n+1∑

k=2

(π

2
− α (p1,pk, f, tx, ty)

)2

(6.5)

assuming that p1 is the vertical vanishing point. Note that the sum in (6.4) has
3n terms, while the sum in (6.5) has only 2n terms. This is of particular relevance
in the common case n = 1; in that case there exists an exact solution for f, tx, ty
using (6.4), while based on (6.5) we can only calculate an (exact) solution for f and
either tx or ty. In both cases no error propagation will be needed (or, indeed, can
be used), as the solution is unambiguous.

The interesting case for the purpose of this thesis is the case where either n > 1,
or where we are calculating only f — e. g. in the lucky case where we are using a
zoom-lens of unknown focal length, but have a principal point exactly in the middle
of the image and therefore unaffected by zoom (for practical applications the reader
would be well advised to consider [60], which generally discourages the calculation
of the focal length without simultaneous calculation of the principal point). Then
it becomes possible to take the different uncertainty-regions of the vanishing points
into account, which as we have seen in Section 4.4.3 can vary considerably: for
vanishing points near infinity (this is usually the case for the one vertical vanishing
point) it will be a narrow but long region, while for vanishing points closer to the
image we will get a small and nearly circular region.

So what does the hitherto unknown function α (p1,pk, f, tx, ty) look like? Assuming
we already knew the focal length f and principal point (tx, ty) we can give the
“corrected” position p′

i of the real vanishing point pi on a Gaussian-sphere by

p′
i =

1√
(xi − zitx)

2 + (yi − zity)
2 + z2

i f
2




xi − zitx
yi − zity

zif




T

. (6.6)

If the coordinates of the vanishing points are given by homogeneous coordinates we
can model this effect by multiplication with a matrix

T =




1 0 −tx
0 1 −ty
0 0 f


 (6.7)
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and subsequent normalisation; if the vanishing points were already given using
Kanatani’s N -vectors, that is in a format (xi, yi, zif̂) with an approximate focal
length f̂ (which I would personally recommend), we can instead multiply with the
matrix

T =




1 0 −tx/f̂

0 1 −ty/f̂

0 0 f/f̂


 (6.8)

and, again, normalise. Note that we are of course not restricted to a 3DOF matrix
T — setting tx = 0, ty = 0 would give a 1DOF matrix which solves only for f , and
we could also solve for additional parameters iff we have enough constraints at our
disposal.

The difference of angles in (6.4) and (6.5) is usually approximated by the cosine of
the angle, i. e.

π

2
− α

(
pk,i,pk,j, f, tx, ty

)
≈ cos

(
α
(
pk,i,pk,j, f, tx, ty

))
; (6.9)

this is done both to avoid the costly computation of the angle (which can be replaced
by a scalar product), but also since the cosine is an excellent approximation of the
angle near the correct solution α

(
pk,i,pk,j, f, tx, ty

)
= π/2. We can now replace the

error-term in Equations (6.4) and (6.5) by

dkij = p′
k,i

T
p′

k,j = cos
(
α
(
pk,ipk,j, f, tx, ty

))
. (6.10)

Taking into account the vanishing-points’ covariances we can therefore replace (6.4)
and (6.5) with

min
f,tx,ty

n∑

k=1

2∑

i=1

3∑

j=i+1

d2
kij(T)

σ2
dij

(T)
(6.4a)

min
f,tx,ty

2n+1∑

k=2

d2
1k(T)

σ2
d1k

(T)
(6.5a)

where the variance of the error measure (6.10) can be calculated using (3.53) as

dij = p′
i
T
p′

j =
pT

i TTTpj

‖Tpi‖ ‖Tpj‖
(6.11)

Jdijpi
=

pT

i

‖Tpi‖3‖Tpj‖
TTT

(
pip

T

j − pjp
T

i

)
TTT (6.12)

Jdijpj
=

pT

j

‖Tpi‖ ‖Tpj‖3
TTT

(
pjp

T

i − pip
T

j

)
TTT (6.13)

σdij
= Jdijpi

Σpi
JT

dijpi
+ Jdijpj

Σpj
JT

dijpj

=
pT

i TTT
(
pip

T

j − pjp
T

i

)
TTTΣpi

TTT
(
pip

T

j − pjp
T

i

)
TTTpi

‖Tpi‖6‖Tpj‖2
(6.14)

+
pT

j TTT
(
pjp

T

i − pip
T

j

)
TTTΣpj

TTT
(
pjp

T

i − pip
T

j

)
TTTpj

‖Tpj‖6‖Tpi‖2
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Substituting (6.11) and (6.14) in (6.4a) we get a rather lengthy term, even though
‖Tpi‖2‖Tpj‖2 cancels out. However, this equation greatly simplifies if we assume

that we are already near the minimum, i. e. pT

i TTTpj ≈ 0, Equation (6.4a) can then
be written as

min
T

n∑

k=1

2∑

i=1

3∑

j=i+1

(
pT

k,iT
TTpk,j

)2

pT

k,jT
TTΣpk,i

TTTpk,j + pT

k,iT
TTΣpk,j

TTTpk,i

(6.4b)

6.3.3 Merging Line Segments

As stated in Constraint 5 on Page 135 I assumed that each face of a building is
essentially structured by horizontal and vertical line segments — the line segments
delimiting windows etc.— where several line segments align with each other. The
face itself could therefore be described by the lines passing through these line seg-
ments or, put another way, we could merge the individual small segments into longer
segments (and ultimately calculate the most likely line through these segments).

Joining collinear line segments into longer segments requires the comparison of each
line segment with all other line segments, this has a complexity of O(N 2). If we
sort the line segments by vanishing point first (as all collinear line segments must
by necessity share the same vanishing point) we still end up with a complexity
of O(

∑k
i=1 N2

i ) ≈ O(N2), where Ni is the number of line segments belonging to
the ith vanishing point and N = N0 + N1 + · · · + Nk, with N0 the number of
outliers not belonging to any vanishing point. However, sorting the line segments
by inclination allows us to compare each line segment with only a much smaller
number of other line segments. If σ̂α = max(σαi

) is the maximum standard-deviation
observed for any line segment, then comparing only line segments with an angle αi

to our original line segment with angle αj so that αj − nσ̂α < αi < αj + nσ̂ (using
< in a cyclic sense, obviously) ensures that we will only miss very few line segments
— e. g. 0.3% for n = 3 or 0.2 � 10−6 % for n = 6, which should be sufficient for
most applications. This reduces the average complexity to something nearer to
O(
∑k

i=1 Ni log(Ni)) ≈ O(N log(N)), the complexity of sorting the line segments by
angle. The worst case complexity will of course remain unchanged, the worst case
being represented by, e. g., N segments all belonging to only one line.

In addition to sorting the line segments by angle it can also be beneficial to limit
the maximum distance between either the segments’ centres or their endpoints. The
reason for this is simple: The further away we move from each line-segment’s centre,
the more tolerant the segment will become with regard to what other line segments
will be accepted as a match. Figure 6.1 shows such an erroneous match. The
distance from which on such erroneous matches are possible is largely a function of
σαi

, and although the exact limit is, of course, somewhat arbitrary, I found that a
value of

d ≤ 7

tan (3σαi
)

(6.15)
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Figure 6.1: Beyond a certain distance line segments will often match erro-
neously.
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Figure 6.2: Line segments should be ordered by distance (left column) prior
to comparison.
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Figure 6.3: Unclear assignment of a line segment to more than one vanishing
point. Note how segments on the same line might belong to either the right or
left vanishing point.

(i. e. as long as the 3-σ region does not deviate from the line for more than ap-
proximately 7 pxl) works reasonably well. It is, in fact, a good idea not only to
limit the maximum distance between segments, but to sort all segments by distance
(from the vanishing point, or some given segment), matching closest segments first
and only gradually expanding the distance over which we match. Such an approach
greatly reduces the risk of false positives, and in practice allows an approach where
two collinear line segments are immediately replaced by a single new line segment,
further reducing the number of comparisons required. Figure 6.2 shows an example
where segments belong to two close, parallel lines. If segments further away are
compared first, then there is a chance that segments from two different lines are
getting merged; all the segments in between would then not fit anymore. Fitting
neighbouring segments first greatly reduces this risk.

There is an additional problem with line segments near the horizon (or, indeed, any
line connecting two vanishing points), which can not usually be assigned to just one
vanishing point, compare Figure 6.3 on this point. In cases like the one described
in the next section, were it is assumed that the maximum extent of a merged line
segment is also the maximum extent of the underlying face, it is important to avoid
such wrong merges. The approach which I use is to only merge line segments which
can not be assigned to any other vanishing point (with a certain probability, com-
pare (6.1) — I would usually choose a significance level around or below p = 1 %).
In addition to Section 6.3.4 below, which uses merged line segments to define faces of
a building, I will revisit the merging-process in Section 6.4.2.2, where I will discuss
the effects of different error models in more detail.

6.3.4 Rectangular Areas

The information about the lines calculated in the previous section can be used to
identify rectangular areas. The approach presented here uses the maximum extent of
two crossing sets of collinear line segments belonging to different vanishing points and
was, in a similar form, but without the additional information about the vanishing
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Figure 6.4: Labelling line segments within a mesh can require recursive look-up
of labels.

points, first presented by us in [54]. This approach relies heavily on Features 4
and 5, i. e. collinear vertical and horizontal structure within a face, usually from
windows and doors. This structure will result in a high number of collinear short
line segments, which can be considered to be part of a set of imaginary longer lines.
Joining these segments, both in the vertical as well as horizontal direction, will lead
to a mesh of crossing lines. A face can then be defined as the maximum extent
of this mesh bounded by a quadrilateral corresponding to the two vanishing points
(called here the smallest bounding rectangle).

The algorithm itself is simple and consists of three steps, namely the identification
and assembly of collinear line segments into longer segments as described in Sec-
tion 6.3.3, the identification of intersecting line segments and their bounding box,
and finally a process which will merge overlapping bounding boxes with the same
set of vanishing points (if desired). Each step will be outlined below.

Once the individual line segments have been merged into longer segments, we can
calculate the intersections between any two line segments from two different vanish-
ing points in a straightforward manner, the algorithmic complexity is in the order of
O(
∑k−1

i=1

∑k
j=i+1 NiNj) ≈ O(k2N2), where k is the number of vanishing points, Ni

the number of line segments belonging to the ith vanishing point, and N the overall
number of line segments. One then needs to classify the intersections into internal
ones (i. e. the point of intersection is within both line segments) and external ones
(the point of intersection is only within at most 1 segment). This is the actual
approach used in the examples given in Section 6.5. It is however possible to reduce
the algorithmic complexity to something like O(

∑k−1
i=1

∑k
j=i+1 Ni +Nj) ≈ O(k2N) if

we instead plot the individual line segments into an image and only calculate inter-
sections if the new segment is passing through a pixel which is already occupied by
another segment. Some additional bookkeeping is needed to detect cases where more
than 2 line segments pass through the same pixel, but this is easily incorporated.

Once all internal intersections have been found, we need to identify all line segments
within a single mesh and the mesh’s bounding box. This can either be done fol-
lowing the calculation of the intersections, or concurrently with it. In both cases
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Figure 6.5: Calculating the bounding box as the maximum extent of angles.

165°

195°

15°

345°

Figure 6.6: Which of two angles is the minimum and which the maximum
depends on the position of the vanishing point relative to the segments.

the approach is as follows: Each line segment is assigned a unique number, and a
table mapping from the segment’s original to its current number is created, where
at the beginning original and current number are identical. Every time two line
segments, potentially belonging to two so far separate clusters, have been classified
as intersecting each other, we assign both clusters the lower of the two numbers —
note that this will usually require a recursive identification of current numbers, as
some previous intersection might have lowered the number of a cluster without, so
far, affecting the numbers stored for all of it’s segments. A very simple example
is given in Figure 6.4: merging Segments 1 and 2 in Step 2 implicitly also changes
the number of Segment 3, which was merged with Segment 2 in the previous step.
However, only when Segments 3 and 4 are merged in Step 3 is this change noticed.
In general it will be necessary to add a final resolution step once all intersections
have been processed, in this step all current numbers are getting updated, starting
from the lowest to the highest segment-number — this guarantees, together with the
rule that a new cluster is always assigned the lower number of the two intersecting
segments, that a unique and consistent result can be reached. The algorithmic com-
plexity of the entire process is linear in the number of intersections and therefore
usually quadratic in the number of segments.

The final resolution step mentioned above can also be combined with the calculation
of the final bounding boxes around each cluster. For each new cluster found when
consolidating the cluster-numbers we calculate the bounding box as the minimum
and maximum angle with respect to the two vanishing points each. As each cluster
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originally consists of only one line segment this is always a region with variations in
only one direction. As we identify additional segments belonging to the same cluster,
we can simply calculate the new bounding box as the minimum and maximum of
the delimiting angles of the two boxes being merged. This process is exemplarily
illustrated in Figure 6.5. The minimum and maximum must, of course, be calculated
in a fashion suitable for angles, the numerically bigger angle can in fact be the smaller
one for our purpose — but need not be — depending on where the vanishing point
is relative to the segments, compare Figure 6.6, where min◦(15◦, 345◦) = 345◦, but
min◦(165◦, 195◦) = 165◦.

Each bounding box, once found as described above, is then assumed to be com-
pletely inscribed into one face of, e. g., a building. The approach described above
has the advantage that it is relatively robust with respect to occlusions and missing
lines, as long as the face in question is sufficiently highly structured (and the occlu-
sion isn’t). It is therefore more applicable to high-rises or apartment blocks than to
suburban one-family houses. Additional disadvantages are the algorithm’s inability
to differentiate effectively between a long building and a row of identically struc-
tured and aligned single buildings (other than by an arbitrarily chosen parameter to
describe what constitutes a gap), and that the algorithm is only applicable to rect-
angular (convex) areas. It never the less performs quite well even in its very limited
form outlined above, and Section 6.5 shows some examples of detected buildings,
highlighting both its strengths as well as its weaknesses.

6.4 Verification

This section takes a closer look at how well some of the theoretically derived ap-
proaches described previously work for actual data. I start off with Section 6.4.1,
which takes a look at several different error models for the representation of line
segments in 2D. There I use the example of merging line segments as discussed in
Section 6.3.3, and we will see that the choice of error model critically influences the
accuracy with which we can detect collinear line segments. We then have a look
at two different variables which are meant as a (rough) model for errors in 3D in
Section 6.4.2, namely an additional positional or angular error-term as discussed in
Section 6.3.1.1. In Section 6.4.2.1 this is done for the task of assigning the indi-
vidual line segments to vanishing points, and we will see that for this application
an additional angular term is the most appropriate model, while for the detection
of collinear line segments discussed in Section 6.4.2.2 the additional term for the
positional error is the more influential one.

6.4.1 Error Models for 2D

In the following I will have a closer look at identifying collinear line segments. Since
I stated in constraint 4 on page 135 that most structure in the (modelled) world is
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either horizontal or vertical I can try to detect horizontal or vertical structure in the
image by first merging collinear line segments and later finding the area were line
segments from two different directions (vanishing points) intersect — I described
this in Section 6.3.4 and we used this in, e. g.,[54]. In order to use such an approach
I need to be able to find as many good line-continuation as possible without finding
too many bad ones. I therefore need an error measure with a particularly high
discriminative power. In Section 6.4.1.1 I will introduce a number of different error
measures known from the literature and compare their respective performance with
each other and the (α, x̄, ȳ)T parameterisation which I introduced in Section 4.6.2.
How this is done I will describe in Section 6.4.1.2, and I will discuss the outcome,
which clearly shows the superiority of the (α, x̄, ȳ)T parameterisation over all other
models, in Section 6.4.1.3.

6.4.1.1 Error Measures

Over the years a number of authors have discussed possible error measures for the
identification of line-continuation. Often this was done in the context of (erroneous)
edge-extraction, where gaps in the extracted contour — often due to junctions in
the original image — need to be bridged.4 The first such method which I will
use here was described by Coelho et al. in 1990 [30]. There he simply calculated
the maximum orthographic distance between each segment’s endpoints and the line
through the other segment, together with a limit on the maximum distance between
the two closest endpoints of the two segments. The orientation (angle) of the lines
is not considered at all. If by (xi,j, yi,j)

T we mean the jth endpoint of the ith line,
and by (ai, bi, ci)

T the normal form of the ith line, this can be written as in (6.16).

The next error measure described here was theoretically derived by Imiya in 1996,
originally for lines in 3D [63]. For lines in 2D his measure simplifies to the angular
distance between the two vectors x1 and x2, which can be calculated as α1,2 =

arccos
(

xT

1x2

‖x1‖ ‖x2‖

)
. As this is of course dependent on the particular parameterisation

chosen I use for the comparison both the customary (a, b, c)T parameterisation as
well as Kanatani’s N -vectors. As there is a one-to-one mapping between the angle
α1,2 and the cosine (at least for the range of angles in question, 0 ≤ α1,2 ≤ π/2) it is
of course possible to use the cosine or even the squared value of the cosine instead
of the angle with exactly the same results, and this is what I’ll do in the following.
I will calculate this value both with and without error propagation, resulting in 4
possible error measures based on the scalar-product of two vectors: I use directly the
scalar-product cos α, based on either the (a, b, c)T parameterisation or Kanatani’s
N -vectors, and do so with (6.18) or without (6.17) error propagation.

A seemingly similar measure could be based on the cross-product of the two (nor-

4The correct solution in such cases is of course to improve the underlying lower-level algorithms,
as was done by us [19] as well as other authors [80] — but here we are discussing the case where
the underlying structure might be purely logical and hence not visible within the image.

Error Propagation in Geometry-Based Grouping



6.4.1 Error Models for 2D 151
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(
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)
≤ T Coelho et al. [30] (6.16)
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T
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≤ T Imiya [63] (6.17)
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(
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1 x2 ≤ χ2
p,1 (6.18)

xT

2 S(x1)
TS(x1)x2

xT

1 x1x
T

2 x2

≤ T (6.19)

xT

2 S(x1)
T

(
S(x1)Σx2S(x1)

T

+S(x2)Σx1S(x2)
T

)−
S(x1)x2 ≤ χ2

p,2 Förstner [49] (6.20)

(x1 − x2)
T (x1 − x2) ≤ T (6.21)

(x1 − x2)
T (Σx1 + Σx2)

− (x1 − x2) ≤ χ2
p,2 Förstner [49] (6.22)

Figure 6.7: Error measures compared in this section.

malised) vectors, rather than on the scalar-product; the result would be a vector
whose length is a function sin α of the angular distance α between the two duals
— ideally the resulting vector should be the 0-vector. This measure can again be
calculated based on either the (a, b, c)T parameterisation or Kanatani’s N -vectors,
and with (6.20) or without (6.19) error propagation, resulting in another 4 possi-
ble measures. The version using error propagation has recently been proposed by
Förstner [49].

Finally, I can also directly compare the parameterisations of two lines based on the
two line segments. In the following I’ll do so for, again, the (a, b, c)T parameterisa-
tion and Kanatani’s N -vectors, and do so both with and without error propagation.
Of course we need to normalise both parameterisations for a direct comparison, as
both parameterisations use 3 parameters to describe a 2 degree of freedom object
(a line) — compare Section 4.6.3. I use either a2 + b2 = 1 or ‖x‖ = 1 as con-
straints. All in all I started off comparing the 145 partly redundant error measures
given in Figure 6.7, where `i is the line in (α, x̄, ȳ)T-parameterisation as described
in Section 4.6.2, (ai, bi, ci)

T is a line’s normal parameterisation with a2
i + b2

i = 1,
(xi,j, yi,j) is the jth endpoint of the ith line segment, xi is a line in either (ai, bi, ci)

T

parameterisation with a2
i + b2

i = 1 or one of Kanatani’s N -vectors with ‖xi‖ = 1,
Σxi

its covariance matrix, and S(xi) is the vector’s skew-symmetric matrix used to

5Equations (4.63) and (6.16) result in one error measure each, while the 6 Equations (6.17)–
(6.22) each produce two measures.
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Figure 6.8: Experimental setup containing collinear line segments (left) and
maximally distorted set (right). The inset detail shows how widely the smallest
line segments vary in both position and orientation; line segments that small
would not be used in practical applications but rather help to analyse border-
line conditions.

calculate the cross-product, it is:

S(xi) =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 . (6.23)

The next section describes the experimental setup on which these 14 different error
measures were tested.

6.4.1.2 Experimental Setup

The experimental setup consists of 4 lines split into 5 segments each, i. e. 20 segments
altogether, as can be seen in Figure 6.8 (left). These line segments are projectively
disturbed by 15 different projective transformations

P =




1 0 0
0 1 0
px py 1


 (6.24)

with px ∈ {0, 1/10000, 1/1000} and py ∈ {0, 1/10000, 1/1000, 1/300, 1/100} resulting in defor-
mations up to the one in Figure 6.8 (right). To each segments orientation and
position random Gaussian noise is then added according to the segment’s length
and Equations (4.21) and (4.23), and the distance between each segment and all
other segments is then calculated using each of the 14 error measures described in
Section 6.4.1.1 above. This was done 1000 times for each of the 15 projective de-
formations and each of the 40 known good and 150 known bad pairings, resulting
in 39900000 different computed values. For each error measure I have then plotted
the receiver-operator-characteristic curve (ROC), which is the percentage of true
positives over the percentage of false positives. These curves will be discussed in the
next section.
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Figure 6.9: ROC-curve for all 14 error measures and all 15 projective distor-
tions. The area above the curve (aac) in percent is given in parentheses, the
smaller the area, the better is the performance of the algorithm.

6.4.1.3 Results

Figure 6.9 shows receiver-operator-characteristic curves (ROC-curves) for all 14 error
measures when run on all 15 projectively distorted sets of line segments. Ideally these
curves would coincide with the left and top side of the box (i. e. going from (0, 0)
straight to (0, 100) and from there to (100, 100)). However, in almost all practical
applications the ROC-curves will deviate from this ideal form to a bigger or lesser
extent, and this deviation can be measured by the area above the curve (aac6) —
an aac of 50 % (a diagonal curve) would be due to pure chance.

So what can be seen from Figure 6.9? We would expect the methods which use error
propagation (the “alpha-xy” measure, and all “weighted” measures) to perform better
than the ones without error propagation — if error propagation really were linear,
we would in fact expect all methods which use error propagation to perform exactly
identical. The superior performance of methods which use error propagation is in
fact partly born out by Figure 6.9, with the exception of the two methods based on

6Often the inverse of the curve is plotted and the area under curve, auc, is used. However, I
find the direction used here more natural.
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the scalar-product (denoted “weighted cos(alpha)”) — this will be explained below.

The first thing I would like to discuss is, however, the fact that the 14 different
measures result in only 10 distinguishable curves in Figure 6.9. The first two curves
which nearly coincide are the “weighted sin(alpha)” ones, compare Equation (6.20).
Despite a considerable difference in the underlying parameterisation — (a, b, c)T

versus Kanatani’s N -vectors — there is virtually no difference in the measures’
performance, and this is clearly due to the proper use of error propagation, which
almost completely egalised the difference in scaling of the 3rd component.

The next set of curves with nearly identical performance are the ones labelled
“kanatani cos(alpha)” (6.17), “kanatani sin(alpha)” (6.19), and “kanatani” (6.21). This
might seem surprising at first, but is easily explained: the two N -vectors x1 and
x2 are points on the surface of a unit sphere which are quite close together — the
maximum distance between the two points for the undistorted set of line segments
was ‖x1 − x2‖ = 0.065, and for differences that small it is, up to a very good ap-
proximation, ‖x1 − x2‖ = α, which explains why all measures based on the angular
difference of two N -vectors as well as their direct distance would perform equally
well.

The last set of curves with nearly identical performance are the ones labelled “abc
cos(alpha)” (6.17) and “abc sin(alpha)” (6.19); the reason is once more that both are
functions of the same angular difference α. The interesting question here is why the
curve labelled “abc” (6.21) behaves differently; this is mostly due to the fact that
the calculation of the direct distance uses a different, non-spherical normalisation
(namely a2 + b2 = 1), but also that even for the undistorted set any angles up to
π/2 can be observed. The latter, together with the observation that the majority
of line segments will be normalised to approximately (0, 0, 1)T, also explains those
measures’ particularly bad discriminating power, which makes them perform poorest
out of this particular set.

In the following I will summarise the three groups as “weighted sin(alpha)”, “kanatani
alpha”, and “abc alpha” and talk of only 10 different groups.

So if error propagation is such a good thing — and it certainly is for this reason
that the first 4 out of 10 (5 out of 14) best-performing measures all use error prop-
agation — then how come that the “weighted kanat cos(alpha)” and “weighted abc
cos(alpha)” measures perform so poorly? The “kanatani cos(alpha)” version in fact
performs better than the version using error propagation! The reason is that for
these measures a scalar representation of what is essentially a 2DOF distance is cal-
culated first, and only then is error propagation applied. However, one of the reasons
error propagation is needed here is that the directional information (coded in the
first two elements of the vector x) has a variance completely different from the posi-
tional information (coded in the third element). The scaling underlying Kanatani’s
N -vectors accounts for some of this difference, but since the scaling needed is ulti-
mately a function of the line-segment’s length there is no one single scaling which
could completely balance out the different variances for all segments; any algorithm
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Figure 6.10: Enlarged detail of Figure 6.9

which calculates an error measure first and a scaling later is therefore doomed to
failure.

One other thing that strikes the eye is that all measures which use proper error
propagation exhibit an essentially concave curvature, while for all other error-mea-
sures the ROC-curves show two or more inflection points. The former suggests that
all error-conditions can indeed be caught equally well with just one threshold, while
the latter is du to an overlap of several curves with different thresholds for different
error-conditions.

The last point to note is the performance of the “max dist” (6.16) error measure,
the very simple one proposed by Coelho et al. [30] in 1990, which simply uses the
maximum orthographic distance between either line-segment’s endpoints and the
other line. At least for our test-set this measure performs nearly as well as the
direct distance using error propagation, and up to a true-positive rate of about 70 %
(and a false negative rate of only 0.15 %) actually performs better than any other
measure, see Figure 6.10. It should, however, be noted that this is to some extent at
least a feature of our test-set rather than the algorithm. But even for the set with
the strongest projective distortion the “max dist” algorithm still performs best up
to a true-positive rate of about 30 % (false negative rate 0.33 %), see Figure 6.11.

So which algorithm should one use? For most applications the answer really is quite
simple: only the (α, x̄, ȳ)T-measure proposed in Section 4.6.2 and the cross-ratio
based measure proposed by Förstner [49] perform consistently well over a wide range
of errors. In my tests the (α, x̄, ȳ)T-measure actually performs slightly better than
the cross-ratio based measures, but it should be noted that my test-setup actually
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Figure 6.11: ROC-curves and enlarged detail for the test-set with the strongest
projective distortion.

favours the (α, x̄, ȳ)T-measure, since in my opinion it captures the actual errors most
faithfully — virtually all line-fitting algorithms calculate a segment’s centre point
and angle, and this is where the errors are. The simple distance measure proposed
by Coelho et al. [30] can be an alternative only if speed is of the essence and it is
sufficient to find only a fraction of the true positives.

6.4.2 Error Models for 3D

In the previous section we have seen a comparison of different error models that all
describe errors in the image measurements themselves. However, when dealing with
real-life buildings objects there are also, as a rule, errors in 3D which we need to
deal with. This section outlines two possible ways to capture those errors and, for a
given image, demonstrates under which condition which model is most adequate. In
Section 6.4.2.1 I use the example of assigning line segments to vanishing points, and
we will see that errors in 3D are best modelled by an additional directional variance,
while Section 6.4.2.2 deals with line-continuation, where the influence of errors in
3D is dominated by an additional positional uncertainty.

6.4.2.1 Assigning Line Segments to Vanishing Points

Assigning individual line segments to vanishing points allows me to highlight the
effect of different approaches to model the uncertainty in the underlying 3D-model,
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Figure 6.12: Image of Leuven-Kasteel and straight line segments used in this
section, used with permission of Katholieke Universiteit Leuven, Robot Vision
Group (ESAT-PSI).

as mentioned in Sections 4 and 6.3.1. There exist essentially 3 different methods to
introduce the model’s uncertainty into the relevant equation, (6.1): we can add a
third term σmodel to the denominator, we can add additional terms to the individual
elements of the vanishing point’s covariance matrix Σp, or to the line’s covariance
matrix Σ`, as was suggested in Section 6.3.1.2. Here, I will only have a look at
the latter method, since in Section 6.4.2.2 I will then study the effect of the same
parameters on finding and merging collinear line segments. I will also simplify the
3D error-model somewhat and use σ′

y
2 = σ′

x
2. This models a circular uncertainty in

the position of the line-segment’s centre point, while what would really be needed
is an uncertainty only perpendicular to the line segment. However, since any small
uncertainty along the direction of the line is actually of little or no consequence this
will not change the outcome dramatically.

In order to see the effect of these parameters, I have taken an example image (Fig-
ure 6.12) and, by hand, identified the 3 vanishing points. This was done by selecting
a number of line segments for each direction and calculating the most likely inter-
section as described in Sections 4.4.1 and 6.3.1. I then used Equation (6.1) to find
all line segments belonging to any of these three vanishing points for different val-
ues of σ′

α
2 and σ′

x
2, where “belonging” was rather generously defined as an error

below χ2
5 %,1. Figure 6.13 gives the number of line segments classified to belong to

each of the 3 vanishing points for different values of σ ′
α

2. We see that for values
below approximately σ′

α
2 = 10−6, corresponding to an angle of about α = 0.06◦, the

number of line segments stays essentially constant. This is due to the fact that in
those cases σ′

α
2 � σ2

α and therefore has little influence — σ2
α is usually in the region

of 10−6 ≤ σ2
α ≤ 10−5 and σ2

x in the region σ2
x ≈ 10−3. We also see that for values

above approximately σ′
α

2 = 10−1, corresponding to an angle of about α = 18◦, the
number of line segments per vanishing point becomes stationary once again, this
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σ′
α

2 Nvp1 Nvp2 Nvp3

∑
Nvp

1 � 10−8≡ 0.006◦ 200 77 224 501
1 � 10−7≡ 0.018◦ 200 77 224 501
1 � 10−6≡ 0.057◦ 203 77 225 505
1 � 10−5≡ 0.18◦ 214 79 233 526
1 � 10−4≡ 0.57◦ 246 91 261 598
1 � 10−3≡ 1.81◦ 308 123 299 730
1 � 10−2≡ 5.73◦ 395 184 318 897
1 � 10−1≡ 18.1◦ 454 213 334 1001
1 � 10−0≡ 57.3◦ 459 219 341 1019
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Figure 6.13: Number of line segments classified as belonging to each of the
three vanishing points for different values of σ′

α
2.

σ′
x
2 Nvp1 Nvp2 Nvp3

∑
Nvp

1 � 10−2 200 77 224 501
1 � 10−1 200 77 224 501
1 201 77 224 502
1 � 101 203 77 224 504
1 � 102 220 83 224 527
1 � 103 254 107 227 588
1 � 104 321 156 240 717
1 � 105 397 234 271 902
1 � 106 444 279 296 1019
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Figure 6.14: Number of line segments classified as belonging to each of the
three vanishing points for different values of σ′

x
2.

is simply due to the fact that for bigger values of σ′
α

2 any line segment, be it as
random as it may, can be assigned to at least one vanishing point — and indeed, for
σ′

α
2 = 1, corresponding to an angle of about α = 57◦, all 1019 line segments have

been assigned to one of the three vanishing points.

The influence of σ′
x
2 is, in contrast, negligible. Figure 6.14 shows the analogous

plot for different values of σ′
x
2. And although the tendency is of course the same

— no influence of σ′
x
2 below a certain value, and from there an increase until all

line segments are assigned to one vanishing point — is the interpretation completely
different: while for σ′

α
2 an influence was observable as soon as σ′

α
2 ≈ σ2

α, we now
only see an increase once σ′

x
2 > 104σ2

x — using the same range of relative values as
before we would hardly observe any increase at all.

But not only does the effect start later, the result is also less useful. A reasonable
value for σ′

α
2 and this particular image, which shows a rather old and not very well
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(a) Unassigned segments, σ′
α

2
= 10−3. (b) Unassigned segments, σ′

x
2

= 104

(c) Second vanishing point, σ′
α

2
= 10−3. (d) Second vanishing point, σ′

x
2

= 104

Figure 6.15: Assigning line segments to vanishing points.
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σ′
α

2 Norig. Nmerged

1 � 10−9≡ 0.002◦ 160 71
1 � 10−8≡ 0.006◦ 160 71
1 � 10−7≡ 0.018◦ 160 71
1 � 10−6≡ 0.057◦ 161 72
1 � 10−5≡ 0.18◦ 161 72
1 � 10−4≡ 0.57◦ 157 72
1 � 10−3≡ 1.81◦ 110 51
1 � 10−2≡ 5.73◦ 0 0
1 � 10−1≡ 18.1◦ 0 0
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Figure 6.16: Number of line segments that got merged, and number of line
segments they got merged into, for different values of σ ′

α
2.

aligned building, is σ′
α

2 = 10−3, corresponding to a variance of 1.8◦ and resulting
in 730 assigned line segments — approximately the same number of line segments
also get assigned to a vanishing point if we choose σ ′

x
2 = 104, corresponding to a

variance of 100 pxl. Figure 6.15 shows, in its top-row, the unassigned line segments.
We notice from Figure 6.15(b) that using σ′

x
2 = 104 missed more of the vertical line

segments than using σ′
α

2 = 10−3 (see Figure 6.15(a)), while at the same time more
of the segments belonging to the arcs above the doors and windows, which come
with random orientations, were assigned to one of the vanishing points. The latter is
corroborated by Figures 6.15(c) and 6.15(d) which show the line segments belonging
to the second vanishing point, which in the case σ′

x
2 = 104 clearly contains a number

of false classifications.

6.4.2.2 Merging Line Segments

The same tests just run for vanishing points can of course also be run when it comes
to merging line segments. Here we would expect σ′

x
2 to be the important contributing

factor, and σ′
α

2 to be mostly irrelevant. A casual glance at Figures 6.16 and 6.17
seems to corroborate this expectation: From Figure 6.17 we see that the influence of
σ′

x
2, which only started at around σ′

x
2 ≈ 104σ2

x ≈ 10 in the last section, now starts
at σ′

x
2 ≈ σ2

x ≈ 10−3, and it already levels of at around σ′
x
2 ≈ 102 for the number of

final line segments, and σ′
x
2 ≈ 105 for the number of segments getting merged. The

influence of σ′
α

2, by comparison, seems negligible — the number of segments merged
is essentially constant for values around σ′

α
2 ≈ σ2

α, and then actually levels off to 0.

This latter observation requires some explanation — it is, of course, unreasonable
to expect that with increasing σ′

α
2 fewer segments should get matched. The reason

for this behaviour is the limitation placed on the maximum distance discussed in
Section 6.3.3 and embodied in Equation (6.15), which is a function of the lines
effective σ2

α, which is in turn the sum of the segments true directional variance and
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σ′
x
2 Norig. Nmerged

1 � 10−5 160 71
1 � 10−4 160 71
1 � 10−3 162 72
1 � 10−2 195 88
1 � 10−1 294 122
1 411 155
1 � 101 545 180
1 � 102 707 175
1 � 103 844 155
1 � 104 903 113
1 � 105 934 80
1 � 106 938 76
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Figure 6.17: Number of line segments that got merged, and number of line
segments they got merged into, for different values of σ ′

x
2.

σ′
α

2 Norig. Nmerged

1 � 10−7≡ 0.018◦ 178 79
1 � 10−6≡ 0.057◦ 179 80
1 � 10−5≡ 0.18◦ 182 81
1 � 10−4≡ 0.57◦ 183 82
1 � 10−3≡ 1.81◦ 225 97
1 � 10−2≡ 5.73◦ 263 116
1 � 10−1≡ 18.1◦ 294 131
1 � 100 ≡ 57.3◦ 461 190
1 � 101 ≡ 181.◦ 517 207

 0

 200

 400

 600

 800

 1000

 1e-07  1e-06  1e-05  1e-04  0.001  0.01  0.1  1  10

N
um

be
r 

of
 li

ne
-s

eg
m

en
ts

seg. merged...
...into seg.

PSfrag replacements

σ′

α

2

Figure 6.18: Number of line segments that got merged, and number of line
segments they got merged into, for different values of σ ′

α
2 and a fixed maximum

distance between segments of 500 pxl.

the added error-term, σ′
α

2 +σ2
α. For values of σ′

α
2 > 10−4 this term is clearly getting

dominated by σ′
α

2; for σ′
α

2 = 10−4 the maximum distance is still 233 pxl, but for
σ′

α
2 = 10−3 this already gets reduced to 74 pxl and then to 23 pxl for σ ′

α
2 = 10−2 —

it is clear, that this constraint considerably limits the potential number of segments
to merge.

I have therefore run the same tests with a fixed maximum distance of 500 pxl. For
variations of σ′

x
2 the results are virtually the same (slightly more segments get

merged, most of them erroneously, due to the longer reach in particular when dealing
with smaller, more uncertain, segments), but for σ′

α
2 the results are quite different.
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(a) σ′
x
2

= 10−1, 294 segments merged into
122

(b) σ′
α

2
= 10−2, 263 segments merged into

116

Figure 6.19: Merged line segments generated for σ′
x
2 = 10−1 and σ′

α
2 = 10−2

respectively. The result for σ′
x
2 = 10−1 is clearly much better, although approx-

imately the same number of segments are being generated in both cases.

Looking at Figure 6.18, we see that again the number of line segments merged stays
essentially constant for values of σ′

α
2 ≤ σ2

α; for bigger values of σ′
α

2 the number
of line segments merged increases, but far below the increase which we noted for
variations in σ′

x
2, and levels off at much fewer line segments being merged into more

new line segments than happens for σ′
x
2.

It is also interesting to look at the results of both algorithms respectively. At
σ′

x
2 = 10−1 ≈ 100σ2

x and σ′
α

2 = 10−2 ≈ 104σ2
α we get approximately the same

number of merged segments (122 versus 116 new segments, generated from 294
versus 263 original segments). Since σ′

α
2 = 10−2 actually merges fewer segments

we would also expect it to make fewer errors, but looking at Figure 6.19 we see
that although some erroneous segments were created in both cases (the values for
σ′

x
2 and σ′

α
2 were on purpose chosen somewhat too big), the errors are much more

pronounced (and much more clearly wrong) for σ′
α

2 = 10−2 in Figure 6.19(b).

The next section shows some results of the combined algorithm.

6.5 Results and Discussion

In this section I show a number of results when running the algorithm described
above on a number of different datasets. None of the results are perfect, but many
are quite usable despite the algorithm’s extremely simple structure; it could (and,
in fact, has been) easily be improved by some simple modifications outside the
scope of this thesis. Using subjective structures as described by Brillault-O’Mahony
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Figure 6.20: Regions correctly identified in images from different datasets.

Error Propagation in Geometry-Based Grouping



164 Results and Discussion

(a) Accidental alignment of segments. (b) Spurious regions.

(c) Overlapping regions. (d) Overlapping regions.

Figure 6.21: Incorrectly identified regions in images from different datasets.

in [20, 21] or corner-information could be one such possible extension; in [54] we
successfully used the colour in a neighbourhood of the line segment; and one could
also combine this approach with colour or texture based region-merging — all this
will also be discussed in the outlook in Section 8.2.

Figure 6.20 shows a number of images with mostly correctly identified regions, i. e.
the regions found correspond to meaningful structures in the image, although faces
with little texture might not be represented correctly and most regions are generally
somewhat smaller than the actual face they are meant to represent, as they are
generated as the smallest rectangle containing all features. Additional reasoning (or
heuristics) would be needed to detect the entire face, but I will discuss in Section 8.2
why I think that this job would be better left to colour- or texture-based algorithms.
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Figure 6.22: Grouping applied to a house by Hundertwasser. The algorithm
reveals that despite its unconventional exterior much of the original structure of
the house was retained.

Figure 6.21 shows some typical errors. Accidental alignment of line segments as seen
in Figure 6.21(a) is maybe the most frequent error; in a town-setting, where usually
all lines along the side of the road share a common vanishing point, it is quite difficult
to prevent such unwanted accidental alignments of line segments based on geometry
alone. In [54] we used colour-information as an additional feature, which worked
quite well; other approaches could be based on precomputed region-information,
based on colour or texture. Figure 6.21(b) shows another, not quite so common
source for errors — here the accidental intersection of segments creates spurious
regions which do not correspond to actual faces on the house. In Figure 6.21(c)
we can observe the effect of occlusion, where a street-lamp in front of the building
is considered as part of the face, resulting in regions that extend far beyond the
actual border of the face. We also see that overlapping regions with two different
orientations are being found, this is partly correct (the top and bottom portion of the
building do have different, non-perpendicular orientations), but due to the occlusion
and another accidental alignment between a window-frame and the “A” in the shop-
sign both regions overlap. Such overlap can also be observed in Figure 6.21(d), where
here it is simply due to the fact that at different heights the faces have a different
extent. None of these problems can be solved by geometric constraints alone, as is
the topic of this thesis, but an additional region based approach and possibly region-
or corner based reasoning could well improve the situation, see Section 8.2.

Figure 6.22 shows the application of the same algorithm to an image of a house by
Hundertwasser. These houses are well known for their lack of structure; however
they are essentially remodelled “normal” houses from around 1900 and can not
totally deny their heritage — we see that in particular in the vertical alignment
of windows enough information is retained to group a considerable portion of the
facade — although the poor quality of the image (a scanned in postcard) and the
non-orthodoxy of the building made it necessary to hand-tune some parameters
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Figure 6.23: Monocular reconstruction with unknown camera.

(mostly concerned with line-extraction though).

Figure 6.23 finally shows what a purely region-based reconstruction could look like
for properly identified regions — the regions for Figure 6.23 were in fact identified by
hand (but based on the mechanisms described above, only their extent was slightly
altered, most notably to provide a correct ground-line). The reconstruction looks
quite reasonable even though no additional calibration of the camera was performed.
Note that this is only shown here as an example for what is theoretically possible
based on the individual building-blocks provided above; an actual implementation
would need additional modules based not just on geometry to be successful.
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Chapter 7

Detecting Surfaces of Revolution

Revolutions never occur in mathematics.

Michael Crowe, Historia Mathematica
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Figure 7.1: Some of the objects of revolution we encounter each day (as found
in the office at 46 Banburry Road, Oxford).

7.1 Introduction

This section mainly deals with the detection and grouping of surfaces of revolution or
SORs, and in particular with the calculation of the SOR’s axis. Objects of revolution
similar to the ones found in every household are shown in Figure 7.1. Additionally,
the algorithms for the calculation of the axis presented here are also suitable for the
detection and grouping of planar symmetric objects and even applicable to arbitrary
straight homogeneous generalised cylinders (SHGC). This will be pointed out were
applicable.

Planar symmetric objects, SORs and SHGCs in general, make up much of the man-
made environment which surrounds us, quite possibly surpassed only by orthogonal
structures as described in Section 6. It is therefore not surprising that the computer
vision community has, over the years, devoted some work towards the recognition
of such objects. Consequently, the work described here is based on earlier work not
only on the recognition of SORs, but also SHGCs, symmetry-detection and, to a
lesser extent, the detection of conics in images. All of these are discussed in more
detail below.

The expressiveness of the generalised cylinder representation, where a variable pla-
nar cross section is swept along a space curve, the cylinder’s axis or spine, and is
deformed according to a sweeping rule, has always been of interest to vision re-
searchers. I will however start this overview with the 1989 paper by Ponce et. al.,
which contains many references to previous work [121]. Prior to his publication,
researchers often assumed that the apparent contours on each side of an (SH)GC’s
axis were related by some sort of qualitative symmetry. Ponce et. al. were the first

Error Propagation in Geometry-Based Grouping



Introduction 169

to show that for a SHGC (and therefore also all more general GCs) no such re-
lation between the two contours exists. However, the same proof also shows that
for the more special case of an SOR the two contours are always symmetric with
respect to the image of the cylinder’s axis, or can be projectively transformed into
a frame where this is the case. His work was built on by Sato [131–133] and oth-
ers [58, 153, 163], however, they all assumed parallel projection; Abdallah [10] was
the first to present an extension to arbitrary projective views. His work in turn
was based on previous work on SORs [165][3–5, 9]. These too, either in their own
right [38, 50, 82, 91, 124, 160, 161][8], or as a subclass of SHGCs [57, 58, 104, 118,
121, 131–133, 153, 163], have seen considerable interest. Also of marginal relevance
in the context of this chapter is some of the work on symmetry under projection with
regard to polyhedral or planar objects [35, 53, 55, 56, 83, 92, 102, 128, 152, 162],
which is needed as a prerequisite to the axis calculation, and work on the detection
of conics in images [17, 42, 48, 76, 78, 122, 126], on which the reconstruction of
SORs (not described here, but e. g. in [8]) builds.

This chapter concentrates on the calculation of an SOR’s (projected) axis; knowl-
edge of the axis is central to grouping [4, 9] as well as recognition [50, 91][5] and
reconstruction [32, 161][8]. The need to perform many such calculations in group-
ing makes it advisable to preface the snake-like algorithm which I gave in [9] and
which gives excellent results with a faster algorithm which can be used to weed out
many unwanted contour-pairings and provide the initialisation for the snake-like
algorithm. I therefore compare the performance of a number of established algo-
rithms on a number of different features and demonstrate that the most popular
algorithm, total least squares of Euclidean distances, is also the most error-prone
and essentially unusable for this application. These comparisons are done on real
contour-data derived from real images which previously appeared in publications
about the grouping and recognition of SORs.

The remainder of this chapter is structured as follows: in Section 7.2 I describe both
the object and camera model used. In Section 7.3 I present my algorithm for the
grouping and recognition of SORs with the detection of the SOR’s axis of symmetry
as its main component. This is described in more detail in Section 7.4, where I
describe the different algorithms and feature-sets which can be used for the calcu-
lation of the axis. There a comparison of the algorithms’ absolute (Section 7.4.4.1)
and relative (Section 7.4.4.2) performance is given, and I will demonstrate that the
most widely used algorithm is at the same time the least reliable, and recommend
much better alternatives instead. Section 7.5 discusses some of the more noteworthy
observations made in the previous section, and Section 7.6 summarises the main ob-
servations from the previous sections. In Section 7.7 finally I give a short description
on how the results discussed so far are applicable to objects with a planar symmetric
contour generator and SHGCs.
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Figure 7.2: The sweeping-
rule or generating curve f(z).

Figure 7.3: Parallels and meridians.

7.2 Model

In Section 7.2.1 I will discuss the underlying 3D-model of an SOR, followed by
a discussion of the different camera models in Sections 7.2.2 ff. In how far the
comparisons given here are also applicable to SHGCs and planar symmetric objects
is discussed in Section 7.7.

7.2.1 3D Model

There are two traditional models for the construction of Surfaces of Revolution.
Most commonly used is that of a generating function f(z) being rotated around the
axis of revolution, resulting in a surface

~S = (f(z) cos(ϕ), f(z) sin(ϕ), z)T , (7.1)

compare Fig. 7.2. My intentions, however, are better served if we understand an
SOR as a special case of a Straight Homogeneous Generalised Cylinder. A SHGC
can be constructed by sweeping a cross section of arbitrary (planar) shape along
a straight axis and scaling it according to to a sweeping rule or scaling function
f(z); an SOR is therefore a SHGC with a circular cross section, where the axis goes
through the centre of the cross section, and the cross section is orthogonal to the
axis; the sweeping rule f(z) is nothing but the generating function described above.
Figure 7.3 illustrates this model, where each parallel corresponds to a scaled and
translated version of the reference cross section; curves which are in a plane with the
axis are called meridians and are projections of the scaling-function. It is customary
to assume that the sweeping rule is a proper function of the position along the
axis z, but this is not required for grouping. Due to self-occlusion it is, however,
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contour
generator
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object
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PSfrag replacements

contour

Figure 7.4: Contour and contour-generator of an SOR. Note that the contour
generator is a space curve on the surface of the SOR.

impossible to reconstruct any part of the sweeping rule which is not a function of
the axis position z from image contours alone.

7.2.1.1 The Contour Generator

In contrast to objects with a planar outline there is, unfortunately, no straightfor-
ward invariant relation between an SOR’s contour in an image, when viewed from
an arbitrary direction, and the planar generating function. What is more, even un-
der weak perspective or orthographic projection there is no straightforward relation
between views of the same object taken under different angles, and 2D invariants
such as Arbter’s affine-invariant Fourier descriptors [12] can not be used. The con-
cept of the contour-generator is the main difference between SORs and the cases
discussed in Sections 5 and 6, where a contour in the image generally corresponded
to a surface discontinuity in 3D, a so called edge or crease. For SHGCs, however, the
contour in the image is most often formed by the intersections between the image
plane and rays through the image centre that are tangent to the object; the curve on
the object-surface where these rays touch is called the contour-generator, and is due
to so called limbs, rims, or occluding contours, whose 3D position on the object is a
function of the viewing position rather than the object itself (see also Figure 7.4).
It can be shown that the contour generator of an SOR, is in general a space curve
even under parallel projection and is in general different for each individual viewing
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position.

7.2.2 Projective Camera Model

It is apparent from the above that very little of general validity can be said about
the appearance in an image of a group of objects as varied as SORs (or, in the more
general case, SHGCs):

1. For any two contour points on the same parallel (cross section), the tangents
to the contours (and, of course, also the cross section) at these points intersect
on the projection of the axis [121]. The location of the corresponding point
on the 3D-axis is viewpoint independent[50].

2. The curvature of a SHGC’s contour at a point is zero iff either the curvature
of the sweeping rule or that of the cross section is zero at this point [121].
This means in particular that, ignoring self-occlusion, any inflection of the
sweeping-rule results in an inflection of the contour (but not vice-versa).

3. The contours of an SOR to the left and right of the projection of the axis are
related by a plane harmonic homology [5]:

H = I3 − 2
v`T

vT`
. (2.59)

This is equivalent to projective symmetry as described in Section 2.8.

Additionally we can make the following statement about two cross sections of an
SOR

4. Two cross sections of a SHGC are related by a plane homology:

H = I3 +
1− cr

cr
�

v`T

vT`
(2.58)

with the vertex v on the axis of the SHGC, (a, b, c)Tv = 0. For any two
points on the same meridian, the tangents to the cross sections at these points
intersect on the vanishing line of a plane parallel to the cross sections [132].

So what additional information could we get from the use of more restrictive camera
models?

7.2.3 Quasi-Calibrated Camera Model

In the case of a quasi calibrated camera (here: an aspect-ratio of 1) we can replace
property 3 with a quasi-invariant approximation:
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3b. The contours of an SOR to the left and right of the projection of the axis
are to a very good approximation related by a plane harmonic homology with
a fixed point at infinity, i. e. v = (`1, `2, 0)T. This is equivalent to an affine
(skewed) symmetry between the two sides. This is only a quasi-invariant, but
usable for all but the most extreme of wide-angle lenses [5].

7.2.4 Weak Perspective Camera Model

The weak perspective camera model, as described in Section 2.3.1, assumes that
all rays are parallel to each other and orthogonal to the image plane. For normal
cameras, this is an accurate model only when viewing a planar object parallel to the
image plane; otherwise it is a valid simplification only if the extent of the object’s
depth is much smaller than its distance from the camera, requiring a telephoto-lens.
Although the weak perspective camera model is usually of only limited practical
value, it has none the less been added here as as it is the model of choice for much
of the literature on the subject [121, 131, 132, 153, 163].

The main reason for the prevalence of this model in much of the literature is that
the constraints 3 and 4 simplify considerably to:

3c. The two contours of an SOR to the left and right of the projection of the axis
are related by a (Euclidean) symmetry-transformation, i. e. a particular plane
harmonic homology with v = (`2,−`1, 0)T in Equation (2.59).

4c. Two cross sections of the same SHGC are related by a similarity transforma-
tion, i. e. a plane homology according to Equation (2.58) with ` = (0, 0, 1)T

and a direct relation between the cross-ratio and the sweeping-rule, cr =
f(z1)/f(z2), for cross sections at z1 and z2.

The latter constraint, which is not used in this thesis, makes reconstruction of the
objects considerably simpler.

7.3 Grouping

Grouping the outline of an SOR is essentially a three-step process. In a first step we
need to identify corresponding curve-fragments on both sides of the axis based on
local properties of the contour; how this is done will be described in Section 7.3.1.
Next we can use these corresponding curve-fragments to calculate the axis ` and
vertex v in constraint 3 above based on a number of distinguished points from both
sides of the outline and verify that the two sides are related by a plane (harmonic)
homology. This will be described in more detail in Section 7.3.2. In Section 7.3.3
finally we group several outline-pairs which all share the same plane harmonic ho-
mology into one object — this approach of course ignores the possibility that two
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axes might have been aligned by accident, or might appear aligned in one particular
view only (the vertices are the same for all objects where the axes were parallel in
3D, and therefore have little discriminating power).

The assumption of a common plane harmonic homology makes a reliable calculation
of the axis and vertex parameters necessary, while the need to calculate many such
homologies makes a fast algorithm mandatory. It is for this reason that particular
attention has been payed to the calculation of the homology (and, in particular, the
axis). Section 7.4 compares several commonly used methods and feature-sets.

7.3.1 Matching Curves

Corresponding curve fragments on both side’s of an SOR’s contour are projectively
related1, as stated in Restriction 3 or 3b. They consequently have the same pro-
jective invariants. Associating corresponding curve fragments is then a matter of
matching curve segments with the same projective invariant. Using an index into a
hash-table, similar to [4], this is essentially an O(n) process in the number of curve
fragments n, although it can become O(n2) for pathologic cases. Invariants for this
task abound, possible candidates can be taken from [25, 35, 127] — using the invari-
ants from [127], which are based on bitangents, has the additional advantage that
the number of features n is small, typically in the order of n = 25 bitangents [4];
it has the disadvantage that it constrains the set of recognisable objects to have at
least one pair of concavities.

Once pairs of matching contour fragments have been found, it is then possible to
find the transformation between each pair’s two segments and test whether the
transformation is a plane harmonic homology, as required by Restriction 3, see the
next section. This is necessary as many other contour-fragments will also be related
by a projective transformation, e. g. instances of repeated structure as described in
Section 5.

7.3.2 The Transformation

Once corresponding contour-segments have been found, we can then progress to-
wards the calculation of the plane harmonic homology according to Restriction 3
above. This is done using a two-step approach. First, an approximate solution is
calculated based on a small number of distinguished points (compare Section 2.7.3).
This is then followed by a slower but more accurate calculation which directly uses
the contour-information to fit a type of projective snake. As the convergence of this
latter algorithm depends on the quality of the former, we should already calculate
a good as possible approximation in that first step — this can then also be used to

1In the case of an SOR and a quasi-calibrated camera or better this is to a very good approxi-
mation an affine relation, see [5]
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weed out many obviously wrong hypotheses.

PSfrag replacements

ccc1,2 ii c′c′ i′

x1

x′
1

x2

x′
2

Figure 7.5: Features used: bitangent intersections are marked i, crosspoints
are marked c. The points marked i′ and c′ are interpair features.

It is generally not trivial to decide which points from each side of the contour cor-
respond to each other. Only for a small number of distinguished points is this
correspondence easily found. Particularly useful in this respect are points of bitan-
gency as described in Section 2.7.3; corresponding bitangent-lines will intersect each
other on the (projection of the) axis of symmetry [50] — I will call this point the
(bitangent) intersection. It is marked i in Fig. 7.5. Additionally, for any two pairs
of distinguished points {x1,x

′
1}, {x2,x

′
2} the lines through the point-pairs {x1,x

′
2}

and {x2,x
′
1} will intersect on the axis too, I will call this point a crosspoint. It is

marked c in Fig. 7.5. Other possible features with essentially the same properties
are inflections; however, these aren’t used here.

So far we considered each bitangent-pair separately, calculating only intra-pair fea-
tures. However, if more than two distinguished points on each side of the contour
are known, each pairing of two points and their corresponding points on the other
side of the contour can be used to calculate additional intersections and crosspoints.
Figure 7.5 shows a selection of such interpair features marked i′ and c′.

The entire approach therefore goes as follows. Given profile fragment pairings (Sec-
tion 7.3.1):

1. Find an approximate transformation between the two curve fragments by
matching a number of distinguished points.

2. Test whether the transformation could be a plane harmonic homology. This
could e. g. be done by calculating a number of cross-ratios and compare them
to the expected cross-ratio (which should be −1) using the approach from
Section 4.6.4; or by projecting points from one side of the contour onto the
other side using the equation in property 3 and calculate the distance be-
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tween the transformed point and its opposite number using the approach from
Section 4.6.3.

3. If the transformation could be a plane harmonic homology, calculate a more
accurate transformation using a type of projective snake as described in [9].

7.3.3 Grouping Transformations

It then remains to group separate curve fragment (pairs) which may have arisen
from the same profile curve. Grouping is based on the similarity of the parameters
of the transformation (i. e. the symmetry axis and corresponding direction) and
corresponding pairs of matched concavities are aligned along their common central
axis. The associated outline curve fragments can be joined using existing local edgel
chain topology and smooth curve continuation, but this is outside the scope of this
section.

The comparison itself simply needs to compare the two axes, using the approach
described in Section 4.6.2, and the two vertices, using the approach described in
Section 4.6.3. As both approaches calculate a χ2 error measure we can then simply
add the two error measures in order to compute an error measure for the entire
plane harmonic homology (assuming that the cross-ratio has been fixed at −1).
However, the vertex-position comes with little discriminating power (all objects with
parallel axes in 3D will have the same vertex), and it might for many applications be
sufficient to only compare the axis, or compare the axis first and use the combined
error measure only if that initial test was passed.

7.4 The Calculation of the Homology

In the following I will mainly make use of constraint 3, which allows the computation
of the plane harmonic homology relating the two sides of a projected SOR. This, in
turn, can be used for further grouping, recognition and reconstruction, as we have
seen in the previous section.

Rather than trying to solve for the plane harmonic homology all at once (for which
usually no closed form solution exists), it is far easier to compute separate results
for the axis and vertex. Doing so basically means to compute a best-fit line through
a number of points (the axis), and the most likely intersection of a number of lines
(the vertex). This is a standard problem in computer vision (and consequently
should have a standard solution), but nonetheless many different algorithms for
the solution of this problem are in widespread use, some of which were presented in
Section 4.3 and 4.4. I will show that the four most commonly used candidates can all
be reduced to essentially the same equation, which together with 4 different feature-
sets allow us a systematic comparison of 16 different variants. These are described
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in Sec. 7.4.1. We will see in Sec. 7.4.4 that the most commonly used algorithm,
total least squares on the Euclidean plane, which did so well for the calculation of
lines through edgels in Section 4.3, tends to be the least reliable for this application.
This is another nice example that no silver bullet exists in projective geometry and
that it always pays off to incorporate an analysis of the error-behaviour of features.
We also need a vertex v for the calculation of the plane harmonic homology, and
3 different variants for the calculation of the vertex will be discussed in Sec. 7.4.2,
although I will show in Sec. 7.4.4 that the choice of the vertex is of only secondary
importance. Section 7.4.3 finally describes the error measure which I will use to
assess the goodness of the calculated transformation.

7.4.1 Axis Calculation

We have seen in Section 7.3.2 that the axis of an SOR can be found as a line
through a number of feature-points such as bitangent-intersections and cross-points.
The most common approach for the calculation of a line through points minimises
the orthogonal Euclidean distance between the points and the line:

min
a,b,c

1

N

N∑

i=1

(axi + byi + c)2 + λ(a2 + b2 − 1) . (7.2)

This is essentially (4.17); the functional implicitly assumes that the error in the
feature-points is Gaussian and independently, identically, and isotropically distrib-
uted (iiid). In the context of computer vision often a slightly different formulation
is chosen, based on homogeneous coordinates

min
a,b,c

1

N

N∑

i=1

(axi + byi + czi)
2 + λ(a2 + b2 + c2 − 1) (7.3)

with x2
i + y2

i + z2
i = 1. This functional minimises (locally) orthogonal distances

between points on a unit sphere and a great circle representing the line. It is again
implicitly based on the assumption of iiid Gaussian noise, but this time on the unit
sphere — projecting this back into the image plane we will observe that points
further away from the image centre have a much larger standard deviation, and that
the error-distribution is a skewed Gaussian. This can be helpful to mirror the fact
that features further away from the image plane are indeed usually less accurate
than the ones closer to the image plane (as we observed in Section 4.4.3, compare
Figure 4.10 on Page 92) — but of course this need not be the case.

Alternatively, both functionals can explicitly consider error-distribution of the fea-
ture points which more closely resemble their true distributions. In the follow-
ing I assume iiid Gaussian noise in the bitangent points and use standard linear
error propagation to propagate these error to the feature-points, multiplying the
bitangent-points’ covariance matrix on both sides with the Jacobian of the feature
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points. We then again get Gaussian noise, but now with a separate distribution Σpi

for each point pi = (xi.yi, zi)
T, and therefore

min
a,b,c

1

N

N∑

i=1

(axi + byi + c)2

σ2
di

+ λ(a2 + b2 − 1) (7.4)

min
a,b,c

1

N

N∑

i=1

(axi + byi + czi)
2

σ2
di

+ λ(a2 + b2 + c2 − 1) (7.5)

where we can calculate the variance in the direction of the line as σ2
di

= `TΣpi
` —

the Jacobian of the distance turns out to be the line itself — this is essentially what
we started from when fitting a line to edgels in Section 4.3.

Closer inspection shows that the four equations (7.2)–(7.5) can be subsumed by the
more general expression

min
`

1

N

N∑

i=1

`Tpip
T

i `

`TWTΣpi
W`

+ λ(`TW`− 1) (7.6)

with ` = (a, b, c)T, pi = (xi, yi, zi)
T with either zi = 1 (Euclidean coordinates)

or x2
i + y2

i + z2
i = 1 (homogeneous coordinates), and different values for W and

Σpi
. The W is a diagonal matrix with either {1, 1, 0} (for Euclidean coordinates)

or {1, 1, 1} (for homogeneous coordinates) as its diagonal elements. The Σpi
is

either the identity-matrix (implicit error model) or a full covariance matrix (explicit
model). The minimum can be calculated explicitly if an implicit error-model is used,
or else using Kanatani’s unbiased estimator [77] as described in Section 4.3.2.1.

In addition to differences in the geometric- and error model I can subdivide algo-
rithms by features used, compare Figure 7.5. These are in our case intersections
only versus intersections and crosspoints, intra-pair features only versus intra- and
interpair features.

I am coding the different combinations as follows:

8 4 2 1
Error Model Geom. Model Features Combinations
expl. / impl. xyz /xy1 i& c / i inter / intra

1/0 1/0 1/0 1/0

This results in 16 different methods for the calculation of the axis, numbered 0–15.
Alg. 3 is the one most commonly used, while Alg. 10 was, e. g., used in [3–5].

7.4.2 Vertex Calculation

I have only implemented three different algorithms. We will, however, see in Sec-
tion 7.4.4 that for SORs the actual vertex model chosen makes little difference.
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The three models are labelled 0 (an affine model without explicit error-model,
implemented as the average angle towards the vertex at infinity), 2 (a projective
model using Euclidean coordinates and no explicit error-model), and 14 (a projec-
tive model using homogeneous coordinates and an explicit error-model) — the latter
two are calculated by substituting ` with v in (7.6) and pi with the line through
two corresponding distinguished points. As for the number of features used, each
bitangent-pair creates exactly 2 lines through the vertex; pairing non-corresponding
distinguished points is not possible.

7.4.3 Error Measure

For contours related by a planar harmonic homology, it is directly possible to quan-
tify the quality of the calculated planar harmonic homology even without ground
truth — we can simply use H to map one side of the contour onto the other side,
and use some error measure between the two curves to assess the goodness of fit.
This is often done using the Hausdorff distance of the two contours, basically the
maximum distance between the two sets. This is, however, not a very intuitive or
descriptive measure, and I use instead the average difference between edgels on each
side of the contour,

ε =
1

y2 − y1

∫ y2

y1

‖pright(y)−Hpleft(y)‖ d y , (7.7)

where (7.7) assumes that the object was rotated into an upright position. Note that
even for perfect symmetry this error measure or residual will not be zero, as the
position of the edgels along the contour will be noisy. We can therefore only expect
a value in the same order as the standard deviation of our edge detection algorithm
(or, more accurately,

√
2 times the standard deviation, as both sides will be subject

to measurement errors). In this thesis I used a very simple implementation of the
Canny edge finder [24] to extract the edges. Its standard deviation on grey-level
images is in the order of 0.1 pxl ≤ σ ≤ 0.3 pxl.

7.4.4 Results

Each of the 16 algorithms for the calculation of the axis and 3 algorithms for the
calculation of the vertex were run on a total of 49 images2 of 6 SORs (see Fig. 7.6)
which have previously appeared in publications about the recognition of SORs [3–5].
This resulted in 48 different values for the harmonic homology in each image and
48 × 49 = 2352 different harmonic homologies overall. For each homology I also
calculated the residual as described in Sec. 7.4.3 and used this to determine the
relative goodness of fit for each approach.

2The relevant contours and bitangents were selected by hand, so as not to confound the com-
parison with additional issues.
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Figure 7.6: 45 of the 49 images of SORs used.
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max 18. 20. 25. 24. 41. 37. 15. 32. 13. 13. 15. 15. 123 20. 5.0 5.0
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min .40 .46 .41 .41 .40 .44 .32 .36 .49 .39 .32 .32 .41 .41 .34 .35

Figure 7.7: Range of residuals. For each algorithm the minimum, median and
maximum residual are plotted — note the discontinuity along the ordinate. The
table shows the numerical values for the second best vertex model.

When comparing these different algorithms it is important to remember that any
algorithm could perform best for one particular set of features due to statistical fluc-
tuations (and we will see in Sec. 8.1 that the particular shapes of some of the objects
do indeed skew the outcome). To alleviate these effects of random fluctuations, I
use different measures of fitness to assess the quality of the algorithms. These mea-
sures are either based on the actual residual calculated (in Sec. 7.4.4.1), or on an
algorithm’s relative performance compared to all other algorithms, its ranking (in
Sec. 7.4.4.2).

7.4.4.1 Absolute Performance

Figure 7.7 shows the range (minimum, median, and maximum) of residuals encoun-
tered for each of the 48 combinations of axis- and vertex models, ordered by axis
model firstly and features used secondly. In the following I will mostly be inter-
ested in the maximum residual calculated, as some algorithms could clearly result
in unacceptably wrong results, which of course need to be avoided if the number of
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Axis model 3
Vertex model 2

r = 122.763

Axis model 9
Vertex model 2

r = 14.5296

Axis model 15
Vertex model 14

r = 5.03427

Figure 7.8: Cases of maximum residual for three axis models (using the best
vertex-model). The graphs show the left contour mapped onto the right one

false negatives is to be kept small; only then will I consider the median residual,
which gives information about the algorithms’ average performance. The minimum
residual is of little interest to us as, given enough trials, it will always be in the order
of ε ≈

√
2σpi

.

I already mentioned before that the actual algorithm used for the calculation of the
vertex is of little importance for our comparison (assuming SORs), and this is born
out by Fig. 7.7, where results look similar for all three vertex models. I will therefore
discuss algorithms by axis model in the following.

Maybe the most interesting result, when studying Fig. 7.7, and at first glance con-
trary to this thesis’ line of argument, is that a more complicated error-model will
not necessarily improve results; using more features, on the other hand, can in fact
considerably decrease performance. The former can be easily seen in the case where
only intra-pair features are used (first and third block in Figure 7.7). These features
are reasonably reliable, so that good results can be obtained even without an explicit
error-model, while the error model used obviously isn’t completely accurate at least
for some cases — we see from the table to Fig. 7.7 that an explicit error-model did
in all cases reduce the median (and in most cases also the minimum) error, just not
the maximum error. However, even the maximum error decreases once we are also
using the less reliable interpair features together with an explicit error-model (ig-
noring models 9 and 13 which, according to theory, should have performed similarly,
but surprisingly didn’t).

The latter, that more features can give worse results, can be seen when we compare
the algorithms using intra-pair bitangent-intersections, 0, 4, 8, and 12 (the first
block), with the ones using interpair intersections, 1, 5, 9, and 13 (the second block)
— the maximum and median error actually increase for the algorithms which do not
use an explicit error-model, although many more features are used (2N(N−1) versus
N features). The most striking example is provided by Algorithm 3, which uses all
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available feature points and simple orthogonal regression in the image plane. This is
the most commonly used model for the calculation of a line through several points,
and the one which performed so well when fitting a line to edgels in Section 4.3
— but clearly the solutions found by this approach cannot be relied on at all for
applications where the underlying assumption of iiid measurements is not valid.
Even the median residual for this method is higher than that from any other model,
and the maximum error can be absolutely intolerable. For the algorithms with an
explicit error model, on the other hand, the median error decreases drastically by
about 70%. Figure 7.8 illustrates how the maximum errors from Algorithms 3, 9
and 15 will affect the result, to give an idea how good or bad the relative errors are.

The third thing to be learned from Fig. 7.7 is that the additional use of crosspoints
will, as a rule, improve the results calculated. This is particularly true for algorithms
which use an explicit error-model.

To sum up: as expected a high number of features is indeed preferable, but only
if used together with an explicit error-model; without such a model the emphasis
should be put on accurate rather than numerous features — this is in direct conflict
with the assumption underlying many algorithms that more features are always
better. And although even the algorithm with the lowest maximum residual (axis
model 15, vertex-model 14 — the most refined model using the most features) will
produce noticeable errors for some input-constellations, we can see from Fig. 7.8,
right, that the results are even in the worst case much more usable than for some
of the other algorithms, Fig. 7.8 left and middle. It should also be noted that this
particular object is actually not quite symmetric, although in this case 8 out of
the 48 algorithms tested performed better. Ranking the relative performance of all
algorithms is indeed another possibility to determine fitness, and will be done in the
next section.

7.4.4.2 Relative Performance

Although any algorithm might return the smallest residual for one particular outline,
we would nonetheless expect that the better an algorithm is suited for the task, the
more often should it show up among the best N algorithms; conversely the more
often it is placed among the worst N algorithms, the more unsuitable would we deem
this algorithm. Table 7.1 lists, for each algorithm, how often it was observed among
the best 3 algorithms. From this table it seems as if performance is mostly a matter
of features used — all algorithms from the first block (intra-pair intersections only)
perform considerably worse than any of the algorithms from the last block, using
the maximum number of features, and algorithms using an intermediate number of
features perform somewhere in between. The image becomes somewhat clearer if
we also consider the 3 worst algorithms, shown in Table 7.2. The Algorithms 0–7,
which use no explicit error model, account for 84% of the worst 3 algorithms.

The usefulness of an explicit error-model becomes even more apparent if we look
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Table 7.1: How often out of 49 runs each algorithm was among the best 3

Axis Model Sum

V
er

te
x

M
o
d
el

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

0 3 2 4 3 2 4 9 7 7 8 5 5 2 14 8 8 91
2 2 1 1 1 3 2 1 2 2 1 6 22
14 1 1 3 2 2 2 2 2 3 2 5 9 34

Sum 3 2 5 4 7 5 12 10 7 13 9 8 7 18 14 23 147

Table 7.2: How often out of 49 runs each algorithm was among the worst 3

Axis Model Sum

V
er

te
x

M
o
d
el

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

0 8 5 1 11 2 1 2 1 1 2 2 19 2 1 1 59
2 5 1 1 11 1 1 1 4 19 1 45
14 6 1 11 1 1 2 1 18 2 43

Sum 19 5 2 2 33 4 1 4 1 1 5 7 56 5 1 1 147
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Figure 7.9: Histograms of rank for axis models 6, 7, 11, and 1
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Figure 7.10: The accuracy with which bitangent points can be located depends
on the contour’s curvature in that region. This has little influence on bitangent-
intersections, but can considerably influence the position of crosspoints and in-
terpair intersections

at a histogram of the ranks achieved with the Algorithms 6, 7, 11, and 15 (which,
according to Tables 7.1 and 7.2, all performed similarly, while in theory 11 and 15
should exhibit superior performance). Figure 7.9 shows a clear difference between
the algorithms which do not use an explicit error model (6 and 7, top row) on the
one hand and the ones which do (11 and 15, bottom row) on the other. The former
(as do most other models) show a nearly uniform distribution, which means that
they are similarly likely to be among the N best as well as the N worst algorithms,
while the latter’s distribution looks somewhat like a Poisson distribution, with good
ranks much more likely than bad ones. This shows that the overall likelihood of
an acceptable result is much higher for axis models which use as many features as
possible together with an explicit error-model.

I believe this to be strong evidence that the use of an explicit error-model, at least
when used together with many features of varying quality, can considerably improve
an algorithm’s performance.

7.5 Discussion

We have seen in Sec. 7.4.4.1 and 7.4.4.2 that using more features and an explicit
error-model will indeed overall improve the performance of an algorithm (as we ex-
pected). However, we also noticed some inconsistencies, and these will be explained
in the following.

Considering only the maximum residuals in Fig. 7.7 we noticed that algorithms
using more features (second and forth block in Fig. 7.7) can perform noticeably
worse than the corresponding algorithms which use fever features, in particular if no
explicit error-model is used. The reason for this is the particular shape of most of
our test-objects. Consulting Fig. 7.6 we notice that most objects contain sections of
extremely low curvature (nearly straight in fact), and that in most cases a bitangent
will touch the object in that area. This is true for the neck of the first object and the
foot of the second and sixths, which together contribute about 66% of all contours.
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Figure 7.11: interpair intersections can be quite inaccurate for many com-
mon objects, yet at the same time far enough away from the object to have
considerable influence on the location of the axis

The position of a bitangent point along such a low-curvature segment can only be
calculated quite inaccurately, see Fig. 7.10, independent of the algorithm used (I
used a Houghbased algorithm with iterative refinement, [127]). This has very little
influence on the orientation of that particular bitangent (whose accuracy basically
depends on the distance between the two points of tangency), and consequently
little influence on the position of the bitangent-intersection (and, in consequence,
little influence on the axis models 0, 4, 8, and 12); it can, however, greatly influence
the position of interpair intersections (1, 5, 9, and 13) — Figure 7.11 gives an
example. Given N bitangent-pairs, only 1 intersection (containing the erroneous
bitangent point) will be calculated correctly, but 2(N − 1) intersections will be
incorrect (compare Fig. 7.5). Additionally, many of those intersections will be far
away from the object, and will consequently have high influence on the final result
(in particular if Euclidean coordinates were used). It is therefore not surprising
that results can become nearly arbitrarily wrong. Using crosspoints (models 3, 7,
11, 15) can mediate this effect; while their position will be wrong too, they will
actually be on the other side of the axis and therefore offset some of the effect. The
correct solution of course would be an error model which computes a point’s accuracy
along the bitangent based on the contour’s curvature around the point. However,
as curvature is impossible to compute accurately for low-curvature contours (as I
demonstrated in [7]), such a model will be difficult to implement (see Sec. 7.6).

7.6 Conclusions

A computer-vision system which aims to locate, group, identify and possibly recon-
struct SORs needs to calculate the harmonic homology relating the two sides of the
contour. A very accurate algorithm for the calculation of the harmonic homology
was given by me about 10 years ago [9], however, this algorithm is based on numer-
ical minimisation and, depending on the initial estimate of its parameters, might
require many iterations in order to converge. While not a problem for a single out-
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line (each iteration is quite fast), this can nonetheless severely limit its usefulness
in the case of cluttered images containing many possibly symmetric objects, or in
the case where huge numbers of images need to be analysed, as for image-database
applications or within webcrawlers. Having a faster algorithm which serves both
to weed out many wrong matches, as well as providing the following stages with
accurate initial values, can provide a considerable speedup. Having an algorithm
available which is based solely on distinguished points is also of particular impor-
tance for SHGCs, where no better algorithm is known — see also the discussion in
Section 7.7.

In this section 48 different algorithms for this intermediate step have been compared
and it has been demonstrated that using an explicit error model can considerably
improve the results, in particular where many features of varying accuracy are used.
This can mean the difference between completely useless results in the naive — but
widely used — case on the one side and highly reliable results on the other.

There is, however, still room for improvements. We have seen in Sec. 7.5 that the
proposed method, while already of very high accuracy even in the worst case, could
most likely be further improved by the use of a curvature-based error model. Once
such an error model were in place it would also enable us to use an additional kind
of distinguished point, namely inflections, isolated points of zero curvature. All the
properties of bitangent points given above also hold for inflections; it is however
difficult to accurately compute both their orientation (needed for the intersection)
and position (needed for crosspoints, interpair intersections and the calculation of the
vertex) simultaneously. A curvature-based error-model would allow us to quantify
this uncertainty and take it into account. While easily enough done in theory it
unfortunately suffers from the fact that curvature for low-curvature regions cannot
be calculated accurately in practice, as I demonstrated in [7].

7.7 SHGCs and Symmetric Contours

Much of what has been said about SORs is also applicable to objects with a pla-
nar symmetric contour generator and to SHGCs. The former is immediately obvious
from the fact that I only used property 3 explicitly, relating to the projective symme-
try between the two sides of the contour of an SOR. This symmetry-relationship of
course also applies to all planar symmetric objects, as well as to all three-dimensional
objects which only have a planar outline — examples include flying airplanes as
viewed from the ground [12], tools like a pair of pliers or scissors [27, 83, 92], objects
like spoons or ashtrays [101], or individual faces of complex objects [55, 128]. Prop-
erties 1 and 2 were only used implicitly, in the selection of the distinguished points,
but since order of contact is a projective invariant those do of course hold here too.

Things are more difficult for SHGCs. Here only Properties 1 and 2 are valid; we can
use those to locate distinguished points and to compute the axis as a line through

Error Propagation in Geometry-Based Grouping



188 SHGCs and Symmetric Contours

the intersections of bitangents or inflections. However, neither cross sections nor
interpair features are meaningful for SHGCs, and pairing corresponding contour-
segments will usually be difficult. One possible approach is to use the Hough-like
algorithm proposed in [121] to identify candidate pairs and from there proceed using
bitangent points and intersections; otherwise we would have to investigate all O(n2)
possible combinations.
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Conclusion

“Tut, tut, child,” said the Duchess. “Everything’s got a moral if only you
can find it.”

Lewis Carrol, Alice’s Adventures in Wonderland, 1832–1898
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8.1 Discussion

In this thesis I have presented an approach for the combination of projective geome-
try with error propagation. I also presented three different application domains were
the combination of projective geometry and error propagation was used successfully
to group diverse features of images of two- and three-dimensional structures. I be-
lieve that these examples favourably showcase the advantage of error-propagation
augmented projective geometry over standard projective geometry. In the follow-
ing I will recapitulate the individual chapters and their main observations in more
detail.

The thesis started with introductions into projective geometry in Chapter 2 and
error propagation in Chapter 3. These only serve as a summary and reminder and
do not contain any original material. The thesis proper started in Chapter 4, which
describes the combination of error-propagation principles with projective geometry.
Here I discussed a number of additional parameterisations, in addition to standard
homogeneous coordinates, exemplarily concentrating on the (α, x, y)T parameterisa-
tion for lines in many examples. As a first example I revisited the line-fitting problem
in Section 4.3. Starting from first principles I demonstrated that the usually em-
ployed algorithm, orthogonal regression or total least squares, is only applicable for
independently, identically, and isotropically distributed (iiid) features; I then demon-
strated that this is approximately the case for edgels — and, later on in Chapter 7,
demonstrated that a violation of this restriction can result in completely unusable
results. In addition to the exact solution for a line’s covariance matrix I next gave an
excellent and previously unpublished approximation to this matrix, which allows us
to reap all the advantages of error propagation at virtually no extra costs — at least
if fitting a line to iiid edgels (see Section 4.3.2.2). I next considered the problem of
incrementally fitting a line to edgels along an edgel-chain. Here the main problems
are to decide when to start fitting, and when to stop, and in Section 4.3.3 I gave a
χ2-based error measure which allows us to fit lines to considerably fewer edgels than
was previously possible (using a fixed error measure).

I next had a look at the problem of finding a point as the intersection of lines
(Section 4.4). In projective geometry this is usually considered the dual problem
of the line-fit problem described above — however, I believe that I was able to
satisfactorily show that for practical problems in computer vision this is usually
not the case. I gave a number of different approaches which all manage to find
the most likely intersection of a number of lines with varying distributions, but
tackle the problem from different angles, thereby highlighting different aspects of
the underlying geometric problem. The results of a Monte-Carlo simulation for
different line-constellations were then used to give an intuitive explanation why the
spherical normalisation used by many authors is indeed superior to a Euclidean
normalisation.

The first thing which springs to the mind of any person working in computer vision
when coincident lines or collinear points are mentioned is the cross-ratio of four such
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points or lines. The accurate calculation of such a cross-ratio traditionally requires
the accurate calculation of the common line / point prior to the calculation of the
cross-ratio. However, if done correctly this can become a costly operation, since
we have seen in Sections 4.3 and 4.4 that in the general case (non-iiid features)
only iterative solutions exist. In Section 4.5 I therefore presented a new approach
which uses error-propagation principles to approximately minimise the error in the
cross-ratio without prior calculation of a common line / point. The results from this
approach can be virtually as good as the results of the best available algorithms,
but at a fraction of the cost. I believe that this example clearly demonstrates that
not only needs the use of error propagation not be costly, but it can in fact help to
both increase the accuracy and to speed up algorithms at the same time.

In Section 4.6 I finally demonstrated how to compare geometric features consid-
ering their relative uncertainty. This offers the unwary a few pitfalls not present
in standard stochastic: redundant parameterisations, which are very common in
computer vision and projective geometry, need to be normalised, and the usually
singular covariance matrices warrant special treatment. These are, however, easy
to deal with in practice, and the use of a statistical test (I recommend the χ2-test)
allows us to replace the fixed thresholds all too common in computer vision (“Is
the difference at most 10 pixel?”) with a much more meaningful measure based on
confidence in the result (“Is there at most a 5% chance that this observation does
contradict my assumption?”). The next three chapters then showed applications of
these principles.

In Chapter 5 I presented an application where originally parallel lines of a given
cross-ratio are grouped. The size of the features can vary considerably (by about a
factor of 10) from image to image, but also within a single image, where both the
width of a stripe (due to perspective foreshortening) as well as the length (due to
occlusions) can again easily vary by a factor of 10. In addition there are only very
lax bounds on the position of the line segments; the vanishing point can be located
in the image, at infinity, or anywhere in between. All this makes fixed thresholds
absolutely useless (a 10 pixel distance between lines and vanishing point is huge
if the point is visible in the image, but nothing if the vanishing point is close to
infinity), while the χ2 measures remains the same for all possible vanishing-point
locations. I do indeed believe that this problem can not be tackled without the use
of error propagation, and the fact that all papers based on my work [6][134, 135, 137]
either used at least some form of rudimentary error propagation or (usually) only
showed examples with much more homogeneous features (line segments of similar
length and distance, vanishing point and vanishing line of the structure far outside
the image) underscores this belief (a proof is, of course, impossible).

In Chapter 6 I presented an application where the same features, short line segments,
are used both to calculate points far away as well as close to the image (vanishing
points), but also to group several short segments into one longer segment. Both
operations are based on the same basic information derived from a simple line fit
and simultaneous calculation of the line-segments’ covariance matrices as described
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in Section 4.3; however, here I also demonstrated how additional knowledge about
the uncertainty in the 3D-model can be incorporated. The vanishing points, as-
sumed orthogonal in reality, are then used to calculate an approximation of the
focal length in a statistically sound way, which takes into account the considerably
different covariances of vanishing points at infinity compared to such close to the
image, compare Section 4.4. But here I also addressed a possible representation of
uncertainties both in 2D and 3D; in Section 6.4.1 I compared the performance of
several error models from the literature on the identification of line-continuations,
and in Section 6.4.2 I had a closer look at the effect that positional and orientational
errors in 3D can have on the calculation of vanishing points (see Section 6.4.2.1) and
line-continuations (see Section 6.4.2.2). The different pieces were finally used to out-
line how an algorithm for the grouping and segmentation of the individual faces of
houses (or similar structures) could look like, and Section 6.5 presents a number of
encouraging results even for so simple an algorithm.

In Chapter 7 finally I revisited the problem of fitting a line to points, but instead
of iiid edgels, as was assumed in Section 4.3, I now used bitangent-intersections,
features which are very much neither identically nor isotropically distributed. I
compared several algorithms for the calculation of a line through these features
and demonstrated that the most commonly used algorithm, total least squares, can
fail completely under such a scenario (which violates the implicit assumption of
iiid data), while algorithms which do use error propagation and therefore take into
account the individual points’ covariances perform consistently well. All in all I
believe that Chapters 4–7 convincingly demonstrated both that error propagation
need not be painful or time-consuming, but also that error propagation can greatly
simplify or in fact afford computations which would otherwise have been difficult or
impossible.

8.2 Research Directions

A number of incremental improvements suggest themselves: the algorithm presented
in Section 6 could use corner-information and the subjective structures introduced
by Brillault-O’Mahony in [21]; the positional error in the bitangent points in Chap-
ter 7 should really be based on the curvature at that point — however, since I proved
in [7] that for all interesting cases curvature can not be calculated from edgels alone
this would either mean to find a new method for curvature calculation (possibly
based on the entire gradient-field as opposed to just the gradient’s maximum) or an
heuristic approximation to curvature. All this is thematically well outside the scope
of this thesis, but might make interesting projects for a student-thesis. Incremental
improvements are also possible in the automatic determination of an edgel’s covari-
ance depending on imaging device and edge-finder used, or in the consideration of
orientation dependent covariances; these would again make for nice student-theses.

A much more serious problem which this thesis completely ignored is the problem
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Figure 8.1: Ambiguous image of either a vase or
two faces. The ambiguity cannot be resolved without
additional information such as shading.

of bias due to projective foreshortening. The originally Gaussian (or assumed Gaus-
sian) noise in the image can become strongly non-Gaussian when projected back
onto the object; in particular will the distribution’s mean in the image not normally
be mapped onto the transformed distribution’s mean in the object frame, but will
have a systematic offset, and this offset can result in a bias of derived features. It
is possible to account for and correct this bias, but only if the transformation be-
tween object and image is known up to an Euclidean transformation, which is not
normally the case; it might be interesting to see what corrections are possible if only
structural information is available as was the case for the examples in Chapters 5–7.

8.2.1 Towards Multi-modal Representations

However, after several years of work in projective geometry, all of it contour based,
I have come to the conclusion that the confinement to edgels alone is simply too
limiting to allow for anything more than incremental improvements. Contour based
computer vision, which looked so promising 30 years ago, is really rather like sitting
in Plato’s cave, trying to guess what the world outside might look like from shadows
alone1. Getting rid of texture and shading, which looked like a boon in the days
when memory was counted in kilobytes and computing speed in kilohertz, has now
come back to haunt us. True, we can deal with images like the one in Figure 8.1
— if we know whether we are dealing with either SORs or human faces — but the
loss of information if only contours are considered is hard to make up for. I still
believe that the application described in Chapter 5 — the detection of pedestrian
crossings — is best done using a line-based algorithm; but grouping the individual
faces of houses in Chapter 6 is at least difficult without the use of colour or texture,
it becomes essentially unsolvable if we are dealing with things like row- or terrace-
houses, where individual houses differ by colour and texture alone, but otherwise
have exactly the same geometry.

1We are, of course, in a much more fortunate position than the people in Plato’s cave, since we
do have a host of a-priori knowledge about the real world at our disposal
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And of course here too we are dealing with measurements — but how do we model
the error in, e. g., a colour? A hue based representation suggests itself, but what
about the brightness? Even on a planar surface this will rarely be uniform, and this
certainly isn’t the case for any non-planar surface. Should brightness be modelled
using a predictive filter? Some sort of Markov process? Maybe it shouldn’t be
modelled at all? Currently a host of different representations for colour coexist, and
this is the easy case — modelling the error in texture representations might prove
the real challenge. It is a wide field out there, and anybody not believing that a
mixture of Gaussians is the answer to everything has his work cut out.
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Strukturen. Studienarbeit, Arbeitsbereich Technische Informatik I, TU Ham-
burg Harburg, Sept. 1996.

[55] A. D. Gross. Toward object-based heuristics. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 16(8):794–802, Aug. 1994.

[56] A. D. Gross and T. E. Boult. Analyzing skewed symmetries. International
Journal of Computer Vision, 13(1):91–111, 1994.

Error Propagation in Geometry-Based Grouping



BIBLIOGRAPHY 201

[57] A. D. Gross and T. E. Boult. Correction to “recovery of SHGCs from a
single intensity view”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(4):471–479, Apr. 1996.

[58] A. D. Gross and T. E. Boult. Recovery of SHGCs from a single intensity
view. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18
(2):161–180, Feb. 1996. errata in [57].

[59] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge Univ. Press, Cambridge, UK, second edition, 2003.

[60] R. I. Hartley and R. Kaucic. Sensitivity of calibration to principal point
position. In Proceedings of the Seventh European Conference on Computer
Vision, page 433 ff., Apr. 2002.

[61] P. V. C. Hough. Method and means for recognizing complex patterns. U. S.
Patent No. 3069654, 1962.

[62] IEEE Computer Society Technical Committee on Pattern Analysis and Ma-
chine Intelligence. Proceedings of the Conference on Computer Vision and Pat-
tern Recognition, New York City, New York, USA, June 1993. IEEE Computer
Society Technical Committee on Pattern Analysis and Machine Intelligence,
IEEE Computer Society Press, Los Alamitos, California.

[63] A. Imiya. A metric for spatial lines. Pattern Recognition Letters, 17:1265–1269,
1996.

[64] M. Irani and P. Anandan. Factorization with uncertainty. In D. Vernon,
editor, Proceedings of the sixth European Conference on Computer Vision,
volume 1842 of Lecture Notes in Computer Science, pages 539–553, Dublin,
Ireland, June 2000. Springer, Berlin.

[65] G. James and R. C. James. Mathematics Dictionary. Chapman & Hall, New
York, 5. edition, 1992.

[66] F. Jurie. Hypothesis verification in model-based object recognition with a
gaussian error model. In H. Burkhardt and B. Neumann, editors, Proceedings
of the Fifth European Conference on Computer Vision, volume 2 of Lecture
Notes in Computer Science, pages 643–656, Freiburg, Germany, June 1998.
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aberration
chromatic, 71

axial, 71
lateral, 71

monochromatic, 71
astigmatism, 71
barrel distortion, 71
coma, 71
curvilinear distortion, 71
field curvature, 71
pincushion distortion, 71
spherical, 71

Seidel, 71
affine

camera, 27
group, 22
symmetry, 173
transformation, 22

algebraic distance, 78
analysis

texture, 109
angle-centre

line parameterisation, 77
angle-distance

line parameterisation, 77
angle-intercept

line parameterisation, 77
astigmatism, 71
automorphism, 46
axial chromatic aberration, 71
axial data, 66
axis

generalised cylinder, 168
of revolution, 170
of symmetry, 170

backprojection, 42
barrel distortion, 71

Bayer filter, 72
bitangent, 43
blunder, 55
bottom-up grouping, 115
bounding rectangle, 147
buildings

model, 135

camera
affine, 27
constrained perspective, 29
natural, 30
perspective, 27

constrained, 29
weak, 25

pin-hole, 27
projective, 28
quasi-calibrated, 30
real, 30
sensible, 30
weak perspective, 25

camera calibration, 141
canonical frame, 41
casttangent, 43
central limit theorem, 59
central moments, 56
central projection, 18
centre-angle

line parameterisation, 77
chirp, 22
chromatic aberration, 71

axial, 71
lateral, 71

cofactor, 57
cofactor matrix, 59
coincident rays

space of, 49
coma, 71
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comparing crossratios, 106
comparing lines, 104
comparing points, 105
compression

lossy, 72
conic

defined by crossratio, 39
definition, 34
line-conic, 34
self-dual, 34

conic projection, 18
constrained perspective camera, 29
contour

occluding, 171
contour-generator, 171
coordinates

homogeneous, 20
projective, 39

on the line, 39
on the plane, 40

coordinate system
image-centred, 24
viewer-centred, 24

covariance matrix, 58
sample, 59

covariance region
hyperbolic, 91

crease, 171
cross section, 168
crossratio, 36

alternative formulation, 38
calculation, 93

direct, 94
comparison, 106
defining conic, 39
definition, 36
of angles, 37
of coincident lines, 37
of collinear points, 36
special cases, 37

curvilinear distortion, 71
cylinder

generalised, 168
straight homogeneous generalised, 168,

169

data
axial, 66

defocus, 72
detection

vanishing point, 139
diffraction, 72
direction, 66
discretisation, 72
distance

algebraic, 78
distinguished point, 43, 175
distortion

curvilinear, 71
barrel, 71
pincushion, 71

distribution
Gauss, 57
normal, 57

duality, 31

edge, 171
edgel, 71
edge element, 71
effect

systematic, 55
empirical mean, 57
endpoints

line parameterisation, 77
equianharmonic tetrad, 37
equivalent number of edgels, 82
error

blunder, 55
outlier, 55
random, 55
systematic, 55

error propagation, 59
error source, 71
Euclidean

group, 21
transformation, 21

expectation, 56

face (building), 147
field curvature, 71
filter

Bayer, 72
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mosaicing, 72
fixed point, 46
flares, 71
focal length, 51

calculation, 141
focus-setting, 27
frame

canonical, 41
semi, 45

Gaussian sphere, 51
Gauss distribution, 57
generalised cylinder, 168

axis, 168
spine, 168

generating curve, 170
generating function, 170
great circle, 51
group

affine, 22
Euclidean, 21
projective, 18, 22
similarity, 21

grouping
bottom-up, 115
perceptual, 114
top-down, 114

hardware
MOVIS, 127

harmonic separation, 37, 46
homogeneous coordinates, 20
homogeneous vector

line parameterisation, 77
homography, 20
homology

plane, 47
special, 47

plane harmonic, 47
hyperbolic covariance region, 91
hypotheses

merging, 122

image-centred coordinate system, 24
implicit function theorem, 63
inflection, 43

intercept-intercept
line parameterisation, 77

involution, 46

Jacobian, 61

keystoning, 22

lateral chromatic aberration, 71
Legoland, 134
lens

telecentric, 25
limb, 171
line

comparison, 104
covariance

approximation, 82
definition, 31
detection, 75

fixed number of points, 77
incremental, 84

parameterisation, 76
angle-centre, 77
angle-distance, 77
angle-intercept, 77
endpoints, 77
homogeneous vector, 77
intercept-intercept, 77
normal-form, 77
slope-intercept, 77

line-conic, 34
linearisation, 61
line segment, 77
lossy compression, 72

matrix
cofactor, 59
covariance, 58
of second central moments, 58
variance-covariance, 58

mean, 56
empirical, 57
population, 56
sample, 57, 59

mean resultant length, 66
merging hypotheses, 122
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meridian, 170
model

buildings, 135
SORs, 170
zebra crossings, 110

moment
central, 56
first, see mean
second, see variance

monochromatic aberration, 71
mosaicing filter, 72
MOVIS, 108
MOVIS hardware, 127

N -vector, 51
natural camera, 30
normal-form

line parameterisation, 77
normal distribution, 57
number of edgels

equivalent, 82

occluding contour, 171
orientation, 65
outlier, 55
overlap, 117

parallel, 170
parallel structure

repeated, 108
pedestrian crossing, 108, 109
pencil, 37
perceptual grouping, 114
perspective

camera, 27
skew, 22
transformation, 28

pin-hole camera, 27
pincushion distortion, 71
pixel noise, 72
plane harmonic homology, 47
plane homology, 47

special, 47
points

comparison, 105
polar, 35

pole, 35
population mean, 56
projection

central, 18
conic, 18
scaled orthographic, 25

projective
camera, 28
group, 18, 22
shear, 22
transformation, 22, 28

projective coordinates, 39
on the line, 39
on the plane, 40

projective symmetry, 49
propagation of errors, 59
propagation of statistical properties, 59
property

statistical, 55

quasi-calibrated camera, 30

random error, 55
random sample consensus, 55
RANSAC, 55
ray space, 49
real camera, 30
reference variance, 57
relative variance, 57
repeated parallel structure, 108
repeated structure

parallel, 108
revolution

axis of, 170
surface of, 168

rim, 171

sample covariance matrix, 59
sample mean, 57, 59
sample variance, 57
scaled orthographic projection, 25
scaling function, 170
second central moments

matrix of, 58
second moment, 56
segment
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line, 77
Seidel aberration, 71
self-dual

conic, 34
semi-frame, 45
sensible camera, 30
separation

harmonic, 37, 46
shear

projective, 22
SHGC, 168, 169
significance level, 65
similarity

group, 21
transformation, 21

skew
perspective, 22

skewed symmetry, 45, 173
slope-intercept

line parameterisation, 77
smallest bounding rectangle, 147
SOR, 168

model, 170
space of coincident rays, 49
special plane homology, 47
sphere

Gaussian, 51
spherical aberration, 71
spherical variance, 67
spine, 168
square

unit, 42
standard deviation, 57
statistical property, 55
straight homogeneous generalised cylin-

der, 168, 169
structure

parallel
repeated, 108

repeated
parallel, 108

surface of revolution, 168
sweeping rule, 168, 170
symmetry

affine, 173

projective, 49
skewed, 45, 173

symmetry axis, 170
systematic

effect, 55
error, 55

telecentric lens, 25
tetrad

equianharmonic, 37
texture analysis, 109
top-down grouping, 114
transformation

affine, 22
Euclidean, 21
perspective, 28
projective, 22, 28
similarity, 21

triangle of reference, 42

united points, 46, 47
unit point, 42
unit square, 42

vanishing line, 33
vanishing point, 32, 114
vanishing point detection, 139

iterative improvement, 139
variance, 56

reference, 57
relative, 57
sample, 57
spherical, 67

variance-covariance matrix, 58
vertex, 47
viewer-centred coordinate system, 24
vignetting, 71

weak perspective camera, 25

zebra crossing, 108, 109
model, 110
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